Rural Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Generation and analysis of Siah2 mutant mice
    Frew, IJ ; Hammond, VE ; Dickins, RA ; Quinn, JMW ; Walkley, CR ; Sims, NA ; Schnall, R ; Della, NG ; Holloway, AJ ; Digby, MR ; Janes, PW ; Tarlinton, DM ; Purton, LE ; Gillespie, MT ; Bowtell, DDL (AMER SOC MICROBIOLOGY, 2003-12)
    Siah proteins function as E3 ubiquitin ligase enzymes to target the degradation of diverse protein substrates. To characterize the physiological roles of Siah2, we have generated and analyzed Siah2 mutant mice. In contrast to Siah1a knockout mice, which are growth retarded and exhibit defects in spermatogenesis, Siah2 mutant mice are fertile and largely phenotypically normal. While previous studies implicate Siah2 in the regulation of TRAF2, Vav1, OBF-1, and DCC, we find that a variety of responses mediated by these proteins are unaffected by loss of Siah2. However, we have identified an expansion of myeloid progenitor cells in the bone marrow of Siah2 mutant mice. Consistent with this, we show that Siah2 mutant bone marrow produces more osteoclasts in vitro than wild-type bone marrow. The observation that combined Siah2 and Siah1a mutation causes embryonic and neonatal lethality demonstrates that the highly homologous Siah proteins have partially overlapping functions in vivo.
  • Item
    No Preview Available
    The ubiquitin ligase component Siah1a is required for completion of meiosis I in male mice
    Dickins, RA ; Frew, IJ ; House, CM ; O'Bryan, MK ; Holloway, AJ ; Haviv, I ; Traficante, N ; de Kretser, DM ; Bowtell, DDL (AMER SOC MICROBIOLOGY, 2002-04)
    The mammalian Siah genes encode highly conserved proteins containing a RING domain. As components of E3 ubiquitin ligase complexes, Siah proteins facilitate the ubiquitination and degradation of diverse protein partners including beta-catenin, N-CoR, and DCC. We used gene targeting in mice to analyze the function of Siah1a during mammalian development and reveal novel roles in growth, viability, and fertility. Mutant animals have normal weights at term but are postnatally growth retarded, despite normal levels of pituitary growth hormone. Embryonic fibroblasts isolated from mutant animals grow normally. Most animals die before weaning, and few survive beyond 3 months. Serum gonadotropin levels are normal in Siah1a mutant mice; however, females are subfertile and males are sterile due to a block in spermatogenesis. Although spermatocytes in mutant mice display normal meiotic prophase and meiosis I spindle formation, they accumulate at metaphase to telophase of meiosis I and subsequently undergo apoptosis. The requirement of Siah1a for normal progression beyond metaphase I suggests that Siah1a may be part of a novel E3 complex acting late in the first meiotic division.
  • Item
    Thumbnail Image
    The retinoid anticancer signal: mechanisms of target gene regulation
    Liu, T ; Bohlken, A ; Kuljaca, S ; Lee, M ; Nguyen, T ; Smith, S ; Cheung, B ; Norris, MD ; Haber, M ; Holloway, AJ ; Bowtell, DDL ; Marshall, GM (NATURE PUBLISHING GROUP, 2005-08-08)
    Retinoids induce growth arrest, differentiation, and cell death in many cancer cell types. One factor determining the sensitivity or resistance to the retinoid anticancer signal is the transcriptional response of retinoid-regulated target genes in cancer cells. We used cDNA microarray to identify 31 retinoid-regulated target genes shared by two retinoid-sensitive neuroblastoma cell lines, and then sought to determine the relevance of the target gene responses to the retinoid anticancer signal. The pattern of retinoid responsiveness for six of 13 target genes (RARbeta2, CYP26A1, CRBP1, RGS16, DUSP6, EGR1) correlated with phenotypic retinoid sensitivity, across a panel of retinoid-sensitive or -resistant lung and breast cancer cell lines. Retinoid treatment of MYCN transgenic mice bearing neuroblastoma altered the expression of five of nine target genes examined (RARbeta2, CYP26A1, CRBP1, DUSP6, PLAT) in neuroblastoma tumour tissue in vivo. In retinoid-sensitive neuroblastoma, lung and breast cancer cell lines, direct inhibition of retinoid-induced RARbeta2 expression blocked induction of only one of eight retinoid target genes (CYP26A1). DNA demethylation, histone acetylation, and exogenous overexpression of RARbeta2 partially restored retinoid-responsive CYP26A1 expression in RA-resistant MDA-MB-231 breast, but not SK-MES-1 lung, cancer cells. Combined, rather than individual, inhibition of DUSP6 and RGS16 was required to block retinoid-induced growth inhibition in neuroblastoma cells, through phosphorylation of extracellular-signal-regulated kinase. In conclusion, sensitivity to the retinoid anticancer signal is determined in part by the transcriptional response of key retinoid-regulated target genes, such as RARbeta2, DUSP6, and RGS16.
  • Item
    Thumbnail Image
    Statistical analysis of an RNA titration series evaluates microarray precision and sensitivity on a whole-array basis
    Holloway, AJ ; Oshlack, A ; Diyagama, DS ; Bowtell, DDL ; Smyth, GK (BMC, 2006-11-22)
    BACKGROUND: Concerns are often raised about the accuracy of microarray technologies and the degree of cross-platform agreement, but there are yet no methods which can unambiguously evaluate precision and sensitivity for these technologies on a whole-array basis. RESULTS: A methodology is described for evaluating the precision and sensitivity of whole-genome gene expression technologies such as microarrays. The method consists of an easy-to-construct titration series of RNA samples and an associated statistical analysis using non-linear regression. The method evaluates the precision and responsiveness of each microarray platform on a whole-array basis, i.e., using all the probes, without the need to match probes across platforms. An experiment is conducted to assess and compare four widely used microarray platforms. All four platforms are shown to have satisfactory precision but the commercial platforms are superior for resolving differential expression for genes at lower expression levels. The effective precision of the two-color platforms is improved by allowing for probe-specific dye-effects in the statistical model. The methodology is used to compare three data extraction algorithms for the Affymetrix platforms, demonstrating poor performance for the commonly used proprietary algorithm relative to the other algorithms. For probes which can be matched across platforms, the cross-platform variability is decomposed into within-platform and between-platform components, showing that platform disagreement is almost entirely systematic rather than due to measurement variability. CONCLUSION: The results demonstrate good precision and sensitivity for all the platforms, but highlight the need for improved probe annotation. They quantify the extent to which cross-platform measures can be expected to be less accurate than within-platform comparisons for predicting disease progression or outcome.
  • Item
    Thumbnail Image
    Terminal osteoblast differentiation, mediated by runx2 and p27(KIP1), is disrupted in osteosarcoma
    Thomas, DM ; Johnson, SA ; Sims, NA ; Trivett, MK ; Slavin, JL ; Rubin, BP ; Waring, P ; McArthur, GA ; Walkley, CR ; Holloway, AJ ; Diyagama, D ; Grim, JE ; Clurman, BE ; Bowtell, DDL ; Lee, JS ; Gutierrez, GM ; Piscopo, DM ; Carty, SA ; Hinds, PW (Rockefeller University Press, 2004-12-06)
    The molecular basis for the inverse relationship between differentiation and tumorigenesis is unknown. The function of runx2, a master regulator of osteoblast differentiation belonging to the runt family of tumor suppressor genes, is consistently disrupted in osteosarcoma cell lines. Ectopic expression of runx2 induces p27KIP1, thereby inhibiting the activity of S-phase cyclin complexes and leading to the dephosphorylation of the retinoblastoma tumor suppressor protein (pRb) and a G1 cell cycle arrest. Runx2 physically interacts with the hypophosphorylated form of pRb, a known coactivator of runx2, thereby completing a feed-forward loop in which progressive cell cycle exit promotes increased expression of the osteoblast phenotype. Loss of p27KIP1 perturbs transient and terminal cell cycle exit in osteoblasts. Consistent with the incompatibility of malignant transformation and permanent cell cycle exit, loss of p27KIP1 expression correlates with dedifferentiation in high-grade human osteosarcomas. Physiologic coupling of osteoblast differentiation to cell cycle withdrawal is mediated through runx2 and p27KIP1, and these processes are disrupted in osteosarcoma.