Melbourne Veterinary School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    INDUCTION OF TENASCIN IN HEALING WOUNDS
    MACKIE, EJ ; HALFTER, W ; LIVERANI, D (ROCKEFELLER UNIV PRESS, 1988-12)
    The distribution of the extracellular matrix glycoprotein, tenascin, in normal skin and healing skin wounds in rats, has been investigated by immunohistochemistry. In normal skin, tenascin was sparsely distributed, predominantly in association with basement membranes. In wounds, there was a marked increase in the expression of tenascin at the wound edge in all levels of the skin. There was also particularly strong tenascin staining at the dermal-epidermal junction beneath migrating, proliferating epidermis. Tenascin was present throughout the matrix of the granulation tissue, which filled full-thickness wounds, but was not detectable in the scar after wound contraction was complete. The distribution of tenascin was spatially and temporally different from that of fibronectin, and tenascin appeared before laminin beneath migrating epidermis. Tenascin was not entirely codistributed with myofibroblasts, the contractile wound fibroblasts. In EM studies of wounds, tenascin was localized in the basal lamina at the dermal-epidermal junction, as well as in the extracellular matrix of the adjacent dermal stroma, where it was either distributed homogeneously or bound to the surface of collagen fibers. In cultured skin explants, in which epidermis migrated over the cut edge of the dermis, tenascin, but not fibronectin, appeared in the dermis underlying the migrating epithelium. This demonstrates that migrating, proliferating epidermis induces the production of tenascin. The results presented here suggest that tenascin is important in wound healing and is subject to quite different regulatory mechanisms than is fibronectin.
  • Item
    Thumbnail Image
    TENASCIN IS ASSOCIATED WITH CHONDROGENIC AND OSTEOGENIC DIFFERENTIATION INVIVO AND PROMOTES CHONDROGENESIS INVITRO
    MACKIE, EJ ; THESLEFF, I ; CHIQUETEHRISMANN, R (ROCKEFELLER UNIV PRESS, 1987-12)
    The tissue distribution of the extracellular matrix glycoprotein, tenascin, during cartilage and bone development in rodents has been investigated by immunohistochemistry. Tenascin was present in condensing mesenchyme of cartilage anlagen, but not in the surrounding mesenchyme. In fully differentiated cartilages, tenascin was only present in the perichondrium. In bones that form by endochondral ossification, tenascin reappeared around the osteogenic cells invading the cartilage model. Tenascin was also present in the condensing mesenchyme of developing bones that form by intramembranous ossification and later was present around the spicules of forming bone. Tenascin was absent from mature bone matrix but persisted on periosteal and endosteal surfaces. Immunofluorescent staining of wing bud cultures from chick embryos showed large amounts of tenascin in the forming cartilage nodules. Cultures grown on a substrate of tenascin produced more cartilage nodules than cultures grown on tissue culture plastic. Tenascin in the culture medium inhibited the attachment of wing bud cells to fibronectin-coated substrates. We propose that tenascin plays an important role in chondrogenesis by modulating fibronectin-cell interactions and causing cell rounding and condensation.