Otolaryngology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Intra-cochlear Flushing Reduces Tissue Response to Cochlear Implantation
    Razmovski, T ; Brody, KM ; Stathopoulos, D ; Zhang, D ; Cho, E ; Hampson, AJ ; Collins, A ; Bester, C ; O'Leary, S (Wiley, 2024-03)
    INTRODUCTION: Intraoperative trauma leading to bleeding during cochlear implantation negatively impacts residual hearing of cochlear implant recipients. There are no clinical protocols for the removal of blood during implantation, to reduce the consequential effects such as inflammation and fibrosis which adversely affect cochlear health and residual hearing. This preclinical study investigated the implementation of an intra-cochlear flushing protocol for the removal of blood. METHODS: Three groups of guinea pigs were studied for 28 days after cochlear implantation; cochlear implant-only (control group); cochlear implant with blood injected into the cochlea (blood group); and cochlear implant, blood injection, and flushing of the blood from the cochlea intraoperatively (flush group). Auditory brainstem responses (ABRs) in addition to tissue response volumes were analyzed and compared between groups. RESULTS: After implantation, the blood group exhibited the highest ABR thresholds when compared to the control and flush group, particularly in the high frequencies. On the final day, the control and blood group had similar ABR thresholds across all frequencies tested, whereas the flush group had the lowest thresholds, significantly lower at 24 kHz than the blood and control group. Analysis of the tissue response showed the flush group had significantly lower tissue responses in the basal half of the array when compared with the blood and control group. CONCLUSIONS: Flushing intra-cochlear blood during surgery resulted in better auditory function and reduced subsequent fibrosis in the basal region of the cochlea. This finding prompts the implementation of a flushing protocol in clinical cochlear implantation. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1410-1416, 2024.
  • Item
    No Preview Available
    Electrocochleography triggered intervention successfully preserves residual hearing during cochlear implantation: Results of a randomised clinical trial
    Bester, C ; Collins, A ; Razmovski, T ; Weder, S ; Briggs, RJ ; Wei, B ; Zakaria, AF ; Gerard, J-M ; Mitchell-Innes, A ; Tykocinski, M ; Kennedy, R ; Iseli, C ; Dahm, M ; Ellul, S ; O'Leary, S (ELSEVIER, 2022-12)
    BACKGROUND: Preservation of natural hearing during cochlear implantation is associated with improved speech outcomes, however more than half of implant recipients lose this hearing. Real-time electrophysiological monitoring of cochlear output during implantation, made possible by recording electrocochleography using the electrodes on the cochlear implant, has shown promise in predicting hearing preservation. Sudden drops in the amplitude of the cochlear microphonic (CM) have been shown to predict more severe hearing losses. Here, we report on a randomized clinical trial investigating whether immediate surgical intervention triggered by these drops can save residual hearing. METHODS: A single-blinded placebo-controlled trial of surgical intervention triggered when CM amplitude dropped by at least 30% of a prior maximum amplitude during cochlear implantation. Intraoperative electrocochleography was recorded in 60 adults implanted with Cochlear Ltd's Thin Straight Electrode, half randomly assigned to a control group and half to an interventional group. The surgical intervention was to withdraw the electrode in ½-mm steps to recover CM amplitude. The primary outcome was hearing preservation 3 months following implantation, with secondary outcomes of speech-in-noise reception thresholds by group or CM outcome, and depth of implantation. RESULTS: Sixty patients were recruited; neither pre-operative audiometry nor speech reception thresholds were significantly different between groups. Post-operatively, hearing preservation was significantly better in the interventional group. This was the case in absolute difference (median of 30 dB for control, 20 dB for interventional, χ² = 6.2, p = .013), as well as for relative difference (medians of 66% for the control, 31% for the interventional, χ² = 5.9, p = .015). Speech-in-noise reception thresholds were significantly better in patients with no CM drop at any point during insertion compared with patients with a CM drop; however, those with successfully recovered CMs after an initial drop were not significantly different (median gain required for speech reception score of 50% above noise of 6.9 dB for no drop, 8.6 for recovered CM, and 9.8 for CM drop, χ² = 6.8, p = .032). Angular insertion depth was not significantly different between control and interventional groups. CONCLUSIONS: This is the first demonstration that surgical intervention in response to intraoperative hearing monitoring can save residual hearing during cochlear implantation.
  • Item
    Thumbnail Image
    Automatic analysis of cochlear response using electrocochleography signals during cochlear implant surgery
    Wijewickrema, S ; Bester, C ; Gerard, J-M ; Collins, A ; O'Leary, S ; Buechner, A (PUBLIC LIBRARY SCIENCE, 2022-07-14)
    Cochlear implants (CIs) provide an opportunity for the hearing impaired to perceive sound through electrical stimulation of the hearing (cochlear) nerve. However, there is a high risk of losing a patient's natural hearing during CI surgery, which has been shown to reduce speech perception in noisy environments as well as music appreciation. This is a major barrier to the adoption of CIs by the hearing impaired. Electrocochleography (ECochG) has been used to detect intra-operative trauma that may lead to loss of natural hearing. There is early evidence that ECochG can enable early intervention to save natural hearing of the patient. However, detection of trauma by observing changes in the ECochG response is typically carried out by a human expert. Here, we discuss a method of automating the analysis of cochlear responses during CI surgery. We establish, using historical patient data, that the proposed method is highly accurate (∼94% and ∼95% for sensitivity and specificity respectively) when compared to a human expert. The automation of real-time cochlear response analysis is expected to improve the scalability of ECochG and improve patient safety.
  • Item
    Thumbnail Image
    Four-point impedance as a biomarker for bleeding during cochlear implantation
    Bester, C ; Razmovski, T ; Collins, A ; Mejia, O ; Foghsgaard, S ; Mitchell-Innes, A ; Shaul, C ; Campbell, L ; Eastwood, H ; O'Leary, S (NATURE PORTFOLIO, 2020-02-17)
    Cochlear implantation has successfully restored the perception of hearing for nearly 200 thousand profoundly deaf adults and children. More recently, implant candidature has expanded to include those with considerable natural hearing which, when preserved, provides an improved hearing experience in noisy environments. But more than half of these patients lose this natural hearing soon after implantation. To reduce this burden, biosensing technologies are emerging that provide feedback on the quality of surgery. Here we report clinical findings on a new intra-operative measurement of electrical impedance (4-point impedance) which, when elevated, is associated with high rates of post-operative hearing loss and vestibular dysfunction. In vivo and in vitro data presented suggest that elevated 4-point impedance is likely due to the presence of blood within the cochlea rather than its geometry. Four-point impedance is a new marker for the detection of cochlear injury causing bleeding, that may be incorporated into intraoperative monitoring protocols during CI surgery.