Otolaryngology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    A Deep Learning Framework for Segmenting Brain Tumors Using MRI and Synthetically Generated CT Images
    Islam, KT ; Wijewickrema, S ; O'Leary, S (MDPI, 2022-01)
    Multi-modal three-dimensional (3-D) image segmentation is used in many medical applications, such as disease diagnosis, treatment planning, and image-guided surgery. Although multi-modal images provide information that no single image modality alone can provide, integrating such information to be used in segmentation is a challenging task. Numerous methods have been introduced to solve the problem of multi-modal medical image segmentation in recent years. In this paper, we propose a solution for the task of brain tumor segmentation. To this end, we first introduce a method of enhancing an existing magnetic resonance imaging (MRI) dataset by generating synthetic computed tomography (CT) images. Then, we discuss a process of systematic optimization of a convolutional neural network (CNN) architecture that uses this enhanced dataset, in order to customize it for our task. Using publicly available datasets, we show that the proposed method outperforms similar existing methods.
  • Item
    Thumbnail Image
    A deep learning based framework for the registration of three dimensional multi-modal medical images of the head
    Islam, KT ; Wijewickrema, S ; O'Leary, S (NATURE PORTFOLIO, 2021-01-21)
    Image registration is a fundamental task in image analysis in which the transform that moves the coordinate system of one image to another is calculated. Registration of multi-modal medical images has important implications for clinical diagnosis, treatment planning, and image-guided surgery as it provides the means of bringing together complimentary information obtained from different image modalities. However, since different image modalities have different properties due to their different acquisition methods, it remains a challenging task to find a fast and accurate match between multi-modal images. Furthermore, due to reasons such as ethical issues and need for human expert intervention, it is difficult to collect a large database of labelled multi-modal medical images. In addition, manual input is required to determine the fixed and moving images as input to registration algorithms. In this paper, we address these issues and introduce a registration framework that (1) creates synthetic data to augment existing datasets, (2) generates ground truth data to be used in the training and testing of algorithms, (3) registers (using a combination of deep learning and conventional machine learning methods) multi-modal images in an accurate and fast manner, and (4) automatically classifies the image modality so that the process of registration can be fully automated. We validate the performance of the proposed framework on CT and MRI images of the head obtained from a publicly available registration database.
  • Item
    Thumbnail Image
    A Vision-Based Machine Learning Method for Barrier Access Control Using Vehicle License Plate Authentication
    Islam, KT ; Raj, RG ; Islam, SMS ; Wijewickrema, S ; Hossain, MS ; Razmovski, T ; O'Leary, S (MDPI, 2020-06)
    Automatic vehicle license plate recognition is an essential part of intelligent vehicle access control and monitoring systems. With the increasing number of vehicles, it is important that an effective real-time system for automated license plate recognition is developed. Computer vision techniques are typically used for this task. However, it remains a challenging problem, as both high accuracy and low processing time are required in such a system. Here, we propose a method for license plate recognition that seeks to find a balance between these two requirements. The proposed method consists of two stages: detection and recognition. In the detection stage, the image is processed so that a region of interest is identified. In the recognition stage, features are extracted from the region of interest using the histogram of oriented gradients method. These features are then used to train an artificial neural network to identify characters in the license plate. Experimental results show that the proposed method achieves a high level of accuracy as well as low processing time when compared to existing methods, indicating that it is suitable for real-time applications.