Otolaryngology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Intra-cochlear Flushing Reduces Tissue Response to Cochlear Implantation
    Razmovski, T ; Brody, KM ; Stathopoulos, D ; Zhang, D ; Cho, E ; Hampson, AJ ; Collins, A ; Bester, C ; O'Leary, S (WILEY, 2024-03)
    INTRODUCTION: Intraoperative trauma leading to bleeding during cochlear implantation negatively impacts residual hearing of cochlear implant recipients. There are no clinical protocols for the removal of blood during implantation, to reduce the consequential effects such as inflammation and fibrosis which adversely affect cochlear health and residual hearing. This preclinical study investigated the implementation of an intra-cochlear flushing protocol for the removal of blood. METHODS: Three groups of guinea pigs were studied for 28 days after cochlear implantation; cochlear implant-only (control group); cochlear implant with blood injected into the cochlea (blood group); and cochlear implant, blood injection, and flushing of the blood from the cochlea intraoperatively (flush group). Auditory brainstem responses (ABRs) in addition to tissue response volumes were analyzed and compared between groups. RESULTS: After implantation, the blood group exhibited the highest ABR thresholds when compared to the control and flush group, particularly in the high frequencies. On the final day, the control and blood group had similar ABR thresholds across all frequencies tested, whereas the flush group had the lowest thresholds, significantly lower at 24 kHz than the blood and control group. Analysis of the tissue response showed the flush group had significantly lower tissue responses in the basal half of the array when compared with the blood and control group. CONCLUSIONS: Flushing intra-cochlear blood during surgery resulted in better auditory function and reduced subsequent fibrosis in the basal region of the cochlea. This finding prompts the implementation of a flushing protocol in clinical cochlear implantation. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1410-1416, 2024.
  • Item
    No Preview Available
    Spironolactone Ameliorates Cochlear Implant Induced Endolymphatic Hydrops.
    Creber, NJ ; Eastwood, HT ; Hampson, AJ ; Lo, J ; Zhang, D ; Chambers, SA ; Bester, CW ; Thorne, PR ; O'Leary, SJ (Ovid Technologies (Wolters Kluwer Health), 2022-07-01)
    BACKGROUND: Endolymphatic hydrops (EH) has been observed in both animal and human cochleae following cochlear implant (CI) surgery. We tested whether EH could be eliminated by administration of mineralocorticoid steroid antagonist spironolactone and explored the electrophysiological consequences of this. METHODS: Sixty-four adult guinea pigs underwent cochlear implantation with a dummy electrode. Animals then survived either 2, 7, or 28 days. Auditory function was monitored by recording electrocochleography from the round window membrane preimplantation, and on the last day of the experiment. Spironolactone or control solution was added to animals' feed for 7 days (if they survived that long) beginning immediately prior to surgery. The presence of EH was determined using thin-sheet laser imaging microscopy. RESULTS: Treatment with spironolactone resulted in significant reduction in EH in the second cochlear turn 7 days postimplantation. In all animals, the compound action potential (CAP) threshold was elevated 2 days postimplantation, but for most frequencies had recovered substantially by 28 days. There was no treatment effect on CAP thresholds. SP/AP ratios were elevated at day 2. The amplitude growth of the CAP did not differ between test and control groups at any time after implantation. CONCLUSIONS: EH can be suppressed by antagonism of mineralocorticoid receptors in the week after cochlear implantation. Reduction in EH did not lead to any change in hearing, and there was no indication of synaptopathy signalled by reduced CAP amplitude at high sound intensities. We found no electrophysiological evidence that EH early after implantation impacts negatively upon preservation of residual hearing.
  • Item
    Thumbnail Image
    Effect of cochlear implantation on middle ear function: A three-month prospective study
    Wasson, JD ; Campbell, L ; Chambers, S ; Hampson, A ; Briggs, RJS ; O'Leary, SJ (WILEY, 2018-05)
    OBJECTIVES/HYPOTHESIS: To determine if cochlear implantation has a delayed effect on the middle ear conductive hearing mechanism by measuring laser Doppler vibrometry (LDV) of the tympanic membrane (TM) in both implanted and contralateral control ears preoperatively and 3 months postoperatively, and then comparing the relative change in LDV outcome measures between implanted and control ears. STUDY DESIGN: Prospective cohort study. METHODS: Eleven preoperative adult unilateral cochlear implant recipients in previously unoperated ears with normal anatomy and aerated temporal bones were included in this study. The magnitude and phase angle of umbo velocity transfer function in response to air- conduction (AC) stimulus, and the magnitude of umbo velocity in response to bone- conduction (BC) stimulus were measured in the implant ear and the contralateral control ear preoperatively and 3 months postoperatively and compared. RESULTS: No significant changes in the magnitude or phase angle of TM velocity in response to either AC or BC stimulus were observed in the implanted ear relative to the contralateral control ear 3 months following cochlear implantation. CONCLUSIONS: From the results of LDV measurements, it can be said that cochlear implantation has no significant delayed effect on the middle ear conductive mechanism. LEVEL OF EVIDENCE: 4. Laryngoscope, 128:1207-1212, 2018.
  • Item
    Thumbnail Image
    Nanomechanical mapping reveals localized stiffening of the basilar membrane after cochlear implantation
    Choong, JK ; Hampson, AJ ; Brody, KM ; Lo, J ; Bester, CW ; Gummer, AW ; Reynolds, NP ; O'Leary, SJ (ELSEVIER, 2020-01)
    Cochlear implantation leads to many structural changes within the cochlea which can impair residual hearing. In patients with preserved low-frequency hearing, a delayed hearing loss can occur weeks-to-years post-implantation. We explore whether stiffening of the basilar membrane (BM) may be a contributory factor in an animal model. Our objective is to map changes in morphology and Young's modulus of basal and apical areas of the BM after cochlear implantation, using quantitative nanomechanical atomic force microscopy (QNM-AFM) after cochlear implant surgery. Cochlear implantation was undertaken in the guinea pig, and the BM was harvested at four time-points: 1 day, 14 days, 28 days and 84 days post-implantation for QNM-AFM analysis. Auditory brainstem response thresholds were determined prior to implantation and termination. BM tissue showed altered morphology and a progressive increase in Young's modulus, mainly in the apex, over time after implantation. BM tissue from the cochlear base demonstrated areas of extreme stiffness which are likely due to micro-calcification on the BM. In conclusion, stiffening of the BM after cochlear implantation occurs over time, even at sites far apical to a cochlear implant.
  • Item
    Thumbnail Image
    A new method for three-dimensional immunofluorescence study of the cochlea
    Brody, KM ; Hampson, AJ ; Cho, H-J ; Johnson, P ; O'Leary, SJ (ELSEVIER, 2020-07)
    Visualisation of cochlear histopathology in three-dimensions has been long desired in the field of hearing research. This paper outlines a technique that has made this possible and shows a research application in the field of hearing protection after cochlear implantation. The technique utilises robust immunofluorescent labelling followed by effective tissue clearing and fast image acquisition using Light Sheet Microscopy. We can access the health of individual components by immunofluorescent detection of proteins such as myosin VIIa to look at cochlear hair cells, NaKATPase alpha 3 to look at spiral ganglion neurons, and IBA1 to look at macrophages within a single cochlea, whilst maintaining the integrity of fine membranous structures and keeping the cochlear implant in place. This allows the tissue response to cochlear implantation to be studied in detail, including the immune reaction to the implant and the impact on the structure and health of neural components such as hair cells. This technique reduces time and labour required for sectioning of cochleae and can allow visualisation of cellular detail. Use of image analysis software allows conversion of high-resolution image stacks into three-dimensional interactive data sets so volumes and numbers of surfaces can be measured. Immunofluorescent whole cochlea labelling and Light Sheet Microscopy have the capacity to be applied to many questions in hearing research of both the cochlea and vestibular system.