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Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over 

the world.  This paper presents a new component-based approach with evolutionary eliminations, for a 

nurse scheduling problem arising at a major UK hospital.  The main idea behind this technique is to 

decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to 

implement two evolutionary elimination strategies mimicking natural selection and natural mutation 

process on these components respectively to iteratively deliver better schedules.  The worthiness of all 

components in the schedule has to be continuously demonstrated in order for them to remain there. This 

demonstration employs an evaluation function which evaluates how well each component contributes 

towards the final objective. Two elimination steps are then applied: the first elimination eliminates a 

number of components that are deemed not worthy to stay in the current schedule; the second elimination 

may also throw out, with a low level of probability, some worthy components. The eliminated 

components are replenished with new ones using a set of constructive heuristics using local optimality 

criteria.  Computational results using 52 data instances demonstrate the applicability of the proposed 

approach in solving real-world problems. 

 

Key words: nurse rostering, constructive heuristic, local search, evolutionary elimination 

History:  Accepted by Michel Gendreau, Area Editor for Heuristic Search & Learning; received 

December 2005; revised September 2006, March 2008; accepted March 2008. 

1.  Introduction 

Employee scheduling has been widely studied for more than 40 years. The following survey 

papers give an overview of the area: Bradley and Martin 1990; Ernst et al. 2004a and 2004b.  

Employee scheduling can be thought of as the problem of assigning employees to shifts or duties 

over a scheduling period so that certain organizational and personal constraints are satisfied.  It 
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involves the construction of a schedule for each employee within an organization in order for a 

set of tasks to be fulfilled.  In the domain of healthcare, this is particularly challenging because 

of the presence of a range of different staff requirements on different days and shifts.  Unlike 

many other organizations, healthcare institutions work twenty-four hours a day for every single 

day of the year.  Irregular shift work has an effect on the nurses’ well being and job satisfaction 

(Mueller and McCloskey 1990).  The extent to which the staff roster satisfies the staff can impact 

significantly upon the working environment. 

Automatic approaches have significant benefits in saving administrative staff time and also 

generally improve the quality of the schedules produced.  However, until recently, most 

personnel scheduling problems in hospitals were solved manually (Silvestro and Silvestro 2000).  

Scheduling by hand is usually a very time consuming task.  Without an automatic tool to 

generate schedules and to test the quality of a constructed schedule, planners often have to use 

very straightforward constraints on working time and idle time in the recurring process.  Even 

when hospitals have computerized systems, testing and graphical features are often used but 

automatic schedule generation features are still not common.  Moreover, there is a growing 

realisation that the automated generation of personnel schedules within healthcare can provide 

significant benefits and savings.  In this paper, we focus on the development of new techniques 

for automatic nurse rostering systems.  A general overview of various approaches for nurse 

rostering can be found in Sitompul and Randhawa (1990), Cheang et al. (2003) and Burke et al. 

(2004). 

Most real world nurse rostering problems are extremely complex and difficult.  Tien and 

Kamiyama (1982), for example, say nurse rostering is more complex than the travelling salesman 

problem due to the additional constraint of total number of working days within the scheduling 

period.  Since the 1960’s, many papers have been published on various aspects of nurse rostering.  

Early papers (Warner and Prawda 1972, Miller et al. 1976) attempted to solve the problem by 

using mathematical programming models.  However, computational difficulties exist with these 

approaches due to the enormous size of the search space.  In addition, for most real problems, the 

goal of finding the ‘optimal’ solution is not only completely infeasible, but also largely 

meaningless.  Hospital administrators normally want to quickly create a high quality schedule 

that satisfies all hard constraints and as many soft constraints as possible. 
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The above observations have led to a number of other attempts to solve real world nurse 

rostering problems.  Several heuristic methods have been developed (e.g., Blau 1985, Anzai and 

Miura 1987).  In the 1980’s and later, artificial intelligence methods for nurse rostering, such as 

constraint programming (Meyer auf’m Hofe 2001), expert systems (Chen and Yeung 1993) and 

knowledge based systems (Beddoe and Petrovic 2006) were investigated with some success.  In 

the 1990’s and later, many of the papers tackle the problem with meta-heuristic methods, which 

include simulated annealing (Brusco and Jacobs 1995), variable neighbourhood search (Burke et 

al., 2004), tabu search (Dowsland 1998, Burke et al. 1999) and evolutionary methods (Burke et 

al. 2001, Kawanaka et al. 2001).  In very recent years, there have been increasing interests in the 

study of mathematical programming based heuristics (Bard and Purnomo 2006 and 2007, Beliën 

and Demeulemeester 2006) and the study of hyper-heuristics (Burke et al. 2003, Ross 2005) for 

the problem (Burke et al. 2003, Özcan 2005). 

This paper tackles a nurse rostering problem arising at a major UK hospital (Aickelin and 

Dowsland 2000; Dowsland and Thompson 2000).  Its target is to create weekly schedules for 

wards of nurses by assigning each nurse one of a number of predefined shift patterns in the most 

efficient way.  Besides the traditional approach of Integer Linear Programming (Dowsland and 

Thompson 2000), a number of meta-heuristic approaches have been explored for this problem.  

For example, in (Aickelin and Dowsland 2000 and 2003, Aickelin and White 2004) various 

approaches based on genetic algorithms are presented.  In (Li and Aickelin 2004) an approach 

based on a learning classifier system is investigated.  In (Burke et al. 2003) a tabu search 

hyperheuristic is introduced, and in (Aickelin and Li 2007) an estimation of distribution 

algorithm is described.  In this paper we will report a new component-based heuristic search 

approach with evolutionary eliminations, which implements optimization on the components 

within single schedules. This approach combines the features of iterative improvement and 

constructive perturbation with the ability to avoid getting stuck at local minima. Similar to the 

ruin and recreate principle reported in (Schrimpf et al. 2000), our approach applies a new method 

to destroy a part of a solution and then reconstruct it. 

The framework of our new algorithm is an iterative improvement heuristic, in which the 

steps of Evaluation, Elimination-I, Elimination-II and Reconstruction are executed in a loop until 

a stopping condition is reached.  In the Evaluation step, a current complete schedule is first 

decomposed into assignments for individual nurses, and then the assignment for each nurse is 
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evaluated by a function based upon both hard constraints and soft constraints.  In the 

Elimination-I step, some nurses are marked as ‘rescheduled’ and their assignments are removed 

from the schedule according to the evaluating values of their assignments.  In the Elimination-II 

step, each remaining nurse still has a small chance to be rescheduled, disregarding the evaluating 

value of his/her assignment.  Finally, in the Reconstruction step, a refined greedy heuristic is 

designed to repair a partial (candidate) solution and the obtained complete solution is fed into the 

Evaluation step again to repeat the loop. 

Our proposed approach belongs to the general class of local search methods. In particular, it 

is somewhat similar to the Iterated Local Search algorithm (Lourenco et al. 2002): they include a 

solution elimination phase and an improvement phase.  However, they differ in the way in which 

these two phases are implemented: The purpose of elimination in Iterated Local Search is to 

transform one complete solution into another complete solution. This serves as the starting point 

for the local heuristics which follow. However, the aim of the elimination in our method is to 

transform one complete solution into a partial solution which is then fed into the reconstruction 

heuristics for repair. 

The rest of this paper is organized as follows.  Section 2 gives an overview of the nurse 

rostering problem, and introduces the general framework of our methodology.  Section 3 

presents our algorithm for nurse rostering.  Benchmark results using real-world data sets 

collected from a major UK hospital are presented in section 4.  Concluding remarks are in 

section 5. 

2  Preliminaries 

2.1  The Nurse Rostering Problem 

The nurse rostering problem tackled in this paper is concerned with creating weekly schedules 

for wards of up to 30 nurses at a large UK hospital.  These schedules have to meet the demand 

for a minimum number of nurses of different grades on each shift, whilst being seen to be fair by 

the staff concerned and satisfying working contracts.  The fairness objective is achieved by 

meeting as many of the nurses’ requests as possible and considering historical information (e.g. 

previous weekends) to ensure that unsatisfied requests and unpopular shifts are evenly 

distributed.  In our model, the day is partitioned into three shifts: two types of day shift known as 



 

 5 

‘earlies’ and ‘lates’, and a longer night shift.  Due to hospital policy, a nurse would normally 

work either days or nights in a given week (but not both), and because of the difference in shift 

length, a full week’s work would normally include more days than nights.  However, some 

special nurses work other mixtures and the problem can hence not simply be decomposed into 

days and nights. 

However, as described in Dowsland and Thompson (2000), the problem can be split into 

three independent stages.  The first uses a knapsack model to ensure that there are sufficient 

nurses to meet the covering constraints.  If not, additional nurses (agency staff) are allocated to 

the ward, so that the problem tackled in the second phase is always feasible.  The second stage is 

the most difficult and involves allocating the actual days or nights a nurse works.  Once this has 

been decided, a third phase uses a network flow model (Ahuja et al. 1993) to allocate those on 

days to ‘earlies’ and ‘lates’.  Since stages 1 and 3 can be solved quickly, this paper is only 

concerned with the highly constrained second step. 

The days or nights that a nurse could work in one week define the set of feasible weekly 

work patterns (i.e. shift patterns) for that nurse.  Each shift pattern can be represented as a 0-1 

vector with 14 elements, where the first 7 elements represent the 7 days of the week and the last 

7 elements the corresponding 7 nights of the week.  A ‘1’ or ‘0’ in the vector denotes a scheduled 

day/night “worked” or “not worked”.  For example, (1111100 0000000) would be a pattern 

where the nurse works the first 5 days and no nights.  In total, the hospital allows just under 500 

such shift patterns.  A specific nurse’s contract usually allows 50 to 100 of these. Depending on 

the nurses’ preferences, the recent history of patterns worked, and the overall attractiveness of 

the pattern, a preference cost is allocated to each nurse-shift pattern pair.  These values were set 

in close consultation with the hospital and range from 0 (perfect) to 100 (unacceptable), with a 

bias to lower values.  Due to the introduction of these preference costs which takes into account 

historic information (e.g. weekends worked in previous weeks), we are able to reduce the 

planning horizon from the original five weeks to the current one week without affecting solution 

quality. Further details about the problem can be found in Dowsland (1998). 

The problem can be formulated as follows. 

 

Decision variables: 

xij =1 if nurse i works shift pattern j, 0 otherwise. 
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Parameters: 

m = Number of possible shift patterns; 

n = Number of nurses; 

g = Number of grades; 

ajk =1 if shift pattern j covers period k, 0 otherwise; 

qis =1 if nurse i is of grade s or higher, 0 otherwise; 

pij = Preference cost of nurse i working shift pattern j; 

Rks = Demand for nurses with grade s on period k; 

A(i) = Set of feasible shift patterns for nurse i. 

 

Target function: 

 Min  ∑ ∑
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The constraints outlined in (2) ensure that every nurse works exactly one shift pattern from 

his/her feasible set.  The constraints represented by (3) ensure that the demand for nurses is 

fulfilled for every grade on every day and night and in line with hospital policy more nurses than 

necessary may work during any given period.  In practice, there is an acute shortage of nurses 

and actual overstaffing is very rare.  Note that the definition of qis allows that higher graded 

nurses can substitute those at lower grades if necessary.  This problem can be regarded as a 

multiple-choice set-covering problem.  The sets are given by the shift pattern vectors and the 

objective is to minimize the cost of the sets needed to provide sufficient cover for each shift at 

each grade.  The constraints described in (2) enforce the choice of exactly one pattern (set) from 

the alternatives available for each nurse. 

2.2  General Description of the Component Based Heuristic Method with 

Evolutionary Elimination (CHEE) 
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The basic methodology iteratively operates the steps of Evaluation, Elimination-I, Elimination-II 

and Reconstruction in a loop on one solution (see the pseudo code presented in Figure 1).  At the 

beginning of the loop, an Initialization step is used to obtain a starting solution and initialize 

some input parameters (e.g. stopping conditions).  In the Evaluation step, the fitness (i.e. the 

degree of suitability) of each component in the current solution is evaluated under an evaluation 

function.  Then, the fitness measure is used probabilistically to select components to be 

eliminated in the Elimination-I step.  Components with high fitness have a lower probability of 

being eliminated.  Furthermore, to escape local minima in the solution space, capabilities for 

uphill moves must be incorporated.  This is carried out in the Elimination-II step by 

probabilistically eliminating even some superior components of the solution in a totally random 

manner. 

The resulting partial solutions are then fed into the Reconstruction step, which implements 

application specific heuristics to derive a new and complete solution from partial solutions.  

Throughout these iterations, the best solution is retained and finally returned as the final solution.  

This algorithm uses a greedy search strategy to achieve improvement through iterative 

perturbation and reconstruction. 

_____________________________________________________________________________ 

CHEE ( ) 

{ 

t = 0; 

Create an initial solution S(0) with an associate cost C(0); 

Cbest= C(0); 

While (stopping conditions not reached) { 

/* Decompose the solution into its component (i.e. shift patterns of individual nurses) */ 

S(t)={s1, s2,..., sn}; 

/* The Evaluation step 

Use an evaluation function to assign each component a score; 

/* The Elimination-I step 

Eliminate some well-arranged components from S(t); 

Obtain an incomplete solution )(tS ′ ; 

/* The Elimination-II step 
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Randomly eliminate some components from )(tS ′ ; 

/* The Reconstruction step 

Add new components into )(tS ′  to make it complete; 

)()( tStS ′= ; 

If (C(t) is better than Cbest) Cbest = C(t); 

t = t+1; 

} 

Return the best solution with the cost Cbest; 

} 

_____________________________________________________________________________________________ 

Figure 1:  The Pseudo Code of the Basic Algorithm 

 

In summary, our methodology differs from some other local search methods such as simulated 

annealing (Kirkpatrick et al. 1983) and tabu search (Glover 1989) in the way that it does not 

follow one trajectory in the search space.  By systematically eliminating components of a 

solution and then replenishing with new components, this algorithm essentially employs a longer 

sequence of moves between iterations, thus permitting more complex and more distant changes 

between successive solutions.  This feature means that our method has the ability to jump quite 

easily out of local minima.  Furthermore, unlike population-based evolutionary algorithms which 

need to maintain a number of solutions as parents for offspring propagation in each generation, 

this method operates on a single solution at a time.  Thus, it should be able to eliminate the extra 

CPU-time needed to maintain a set of solutions. 

3  A Component Based Heuristic Procedure with 

Evolutionary Elimination for Nurse Rostering 

The basic idea behind the method is to determine, for each current schedule, the fitness of shift 

patterns assigned to individual nurses.  The process keeps the shift patterns of some nurses that 

are well chosen (having high fitness values) in the current schedule and tries to replace the shift 

patterns of other nurses that have low fitness values.  To enable the algorithm to execute 

iteratively, at each iteration, a randomly-produced threshold (in the range [0, 1]) is generated, 
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and all shift patterns whose fitness values exceed the threshold are labelled as “good patterns” 

and survive in the current schedule. The remaining shift patterns are labelled as “bad patterns” 

and do not survive (become extinct).  The fitness value therefore corresponds to the survival 

chance of a shift pattern assigned to a specific nurse.  The “bad” shift patterns are removed from 

the current schedule and the corresponding nurses are released, waiting for their new 

assignments by a constructive heuristic.  Following this, the above steps are iterated.  Thus the 

global scheduling procedure is based on iterative improvement, while an iterative constructive 

process is performed within. 

3.1  Initialization 

In this step, an initial solution is generated to serve as a seed for its iterative improvement.  It is 

well known that for most meta-heuristic algorithms, the initialization strategy can have a 

significant influence on performance.  Thus, normally, a significant effort will be made to 

generate a starting point that is as good as possible.  For nurse rostering, there are a number of 

heuristic techniques that can be applied to produce good starting solutions. 

For our methodology, due to the fact that the replacement rate in its first iteration is relatively 

high, the performance is generally independent of the quality of the initial solution.  However, if 

the seed is already a relatively good solution, the overall computation time will decrease.  Since 

the major purpose of this paper is to demonstrate the performance and general applicability of 

the proposed methodology, we deliberately generate an extremely poor initial solution by 

randomly assigning a shift pattern to each nurse.  The steps described in section 3.2 to 3.5 are 

executed in sequence in a loop until a stopping condition (i.e. solution quality or the maximum 

number of iteration) is reached. 

3.2   Evaluation 

In this step, the fitness of individual nurses’ assignments, based on complete schedules, is 

evaluated.  The evaluation function should be normalized and hence can be formulated as  
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where Ei are the shift pattern assigned to the i-th nurse, n is the number of nurses, )(1 iEf  and 

)(2 i
Ef  is the contribution of Ei towards the preference and the feasibility aspect of the solution 

respectively. 

)(1 iEf  evaluates the shift pattern assigned to a nurse in terms of the degree to which it 

satisfies the soft constraints (i.e. this nurse’s preference on his/her assigned shift pattern).  It can 

be formulated as 

 },...,1{    ,)(
minmax

max

1 ni
pp

pp
Ef

ij

i ∈∀
−

−
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where pij is the preference cost of nurse i working shift pattern j and pmax and pmin are the maximum and 

minimum cost values among the shift patterns of all nurses on the current schedule, respectively. 

)(2 iEf  evaluates how far the shift pattern assigned to a nurse satisfies the hard constraints 

(i.e. coverage requirement and grade demands).  This can be formulated as 
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where cij is the coverage contribution of nurse i working shift pattern j and cmax and cmin are the maximum 

and minimum coverage contribution values among the shift patterns of all nurses on the current schedule, 

respectively. 

In a current schedule, the coverage contribution of each nurse’s shift pattern is its 

contribution to the cover of all three grades, which can be calculated as the sum of grade one, 

two and three covered shifts that would become uncovered if the nurse does not work on this 

shift pattern.  Therefore, we formulate cij as 

 ∑ ∑
= =
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3
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where qis = 1 if nurse i is of grade s or higher, 0 otherwise; 

ajk = 1 if shift pattern j covers period k, 0 otherwise; 

 dks = 1 if there is a shortage of nurses during period k of grade s (i.e. the coverage value 

                     without considering shift pattern j is smaller than demand Rks), 0 otherwise. 
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3.3  Elimination-I 

This step is to determine whether the i-th nurses’ assignment (denoted as Ei, }),...,1{ ni∈∀  should 

be retained for the next iteration or whether it should be eliminated and the nurse placed in the 

queue waiting for the next rescheduling.  This is done by comparing his/her assignment fitness 

F(Ei) to a random number rs generated for each iteration in the range [0, 1].  If F(Ei) ≤ rs, then Ei 

will be removed from the current schedule; otherwise Ei will survive in its present position.  The 

days and nights that the nurses’ shift pattern covers are then released and updated for the next 

Reconstruction step (see below).  By using this step, an assignment Ei with a larger fitness value 

F(Ei) has a proportionally higher probability of survival in the current schedule.  This mechanism 

performs in a similar way to roulette wheel selection in genetic algorithms. 

3.4   Elimination-II 

Following the Elimination-I step, the shift pattern of each remaining nurse still has a chance to 

be eliminated from the partial schedule at a given rate of rm.  The days and nights that an 

eliminated shift pattern covers are then released for the next Reconstruction step.  As usual for 

mutation operators, compared with the elimination rate in the Elimination-I step, the rate here 

should be relatively smaller to facilitate convergence.  Otherwise, there will be no bias in the 

sampling, leading to a random restart type algorithm.  From a series of experiments we found 

that rm ≤5.0% yields good results and hence is the value adopted by us for our experiments.  This 

process is analogous to the mutation operator in a genetic algorithm.  Note that our method uses 

its Elimination-II step to eliminate some fitter components and thus generate a new diversified 

solution indirectly. 

3.5   Reconstruction 

The Reconstruction step takes a partial schedule as the input, and produces a complete schedule 

as the output.  Since the new schedule is based on iterative improvement from the previous 

schedule, all shift assignments in the partial schedule should remain unchanged.  Therefore, the 

Reconstruction task is reduced to assigning shift patterns to all unscheduled nurses to complete a 

partial solution. 

Based on the domain knowledge of nurse rostering, there are many rules that can be used to build 

schedules.  For example, Aickelin and Dowsland (2003) introduce three building rules: a ‘Cover’ rule, a 
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‘Contribution’ rule and a ‘Combined’ rule.  Since the last two rules are quite similar, in this paper we only 

apply the ‘Cover rule and the ‘Combined’ rule to fulfil the Reconstruction task. 

The ‘Cover’ rule is designed to achieve the feasibility of the schedule by assigning each unscheduled 

nurse the shift pattern that covers the largest number of uncovered shifts.  For instance, assume that a shift 

pattern covers Monday to Friday night shifts.  Further assume that the current requirements for the night 

shifts from Monday to Sunday are as follows: (-4, 0, +1, -3, -1, -2, 0), where negative symbol means 

undercover and positive means over-cover.  The given shift pattern hence has a cover value of 3 as it 

covers the night shifts of Monday, Thursday and Friday.  Note that for nurses of grade s, this rule only 

counts the shifts requiring grade s nurses as long as there is a single uncovered shift for this grade.  If all 

shifts of grade s are covered, shifts of grade (s-1) are counted.  This operation is necessary as otherwise 

higher graded nurses might fill lower graded demand first, leaving the higher graded demand unmet. 

The ‘Combined’ rule is designed to achieve a balance between solution  quality and feasibility by 

going through the entire set of feasible shift patterns for a nurse and assigning each one a score.  The one 

with the highest (i.e. best) score is chosen.  If there is more than one shift pattern with the best score, the 

first such shift pattern is chosen.  The score of a shift pattern is calculated as the weighted sum of the 

nurse’s preference cost pij for that particular shift pattern and its contribution to the cover of all three 

grades.  The latter is measured as a weighted sum of grade one, two and three uncovered shifts that would 

be covered if the nurse worked this shift pattern, i.e. the reduction in shortfall.  More precisely and using 

the same notation as before, the score Sij of shift pattern j for nurse i is calculated as 

 ∑ ∑
= =

+−=
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14
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s k

ksjkissijpij eaqwpwS , (9) 

where wp is the weight of the nurse’s preference cost pij for the shift pattern and ws is the weight 

of covering an uncovered shift of grade s.  qis is 1 if nurse i is of grade s or higher, 0 otherwise.  

ajk is 1 if shift pattern j covers day k, 0 otherwise.  eks is the number of nurses needed to at least 

satisfy the demand Rks if there are still nurses in shortage during period k of grade s, 0 otherwise.  

(100−pij) must be used in the score, as higher pij values are worse and the maximum for pij is 

100. 

Using the above two rules at the rates of p1 and p2 respectively, the Reconstruction step 

assigns shift patterns to all unscheduled nurses until the partial solution is complete.  In addition, 

to avoid stagnation at local optima, randomness needs to be introduced into the Reconstruction 

steps.  This is achieved by allowing each unscheduled nurse to have an additional small rate p3 to 

be scheduled by a randomly-selected shift pattern.  Note that the sum of p1, p2 and p3 should be 

1.  Also note that because we solve the problem without relying on any prior knowledge about 
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which nurses should be scheduled earlier and which nurses later, the indexing order of nurses 

given in the original data set will be applied throughout the Reconstruction step. 

After a partial solution is repaired, the fitness of this complete solution has to be calculated.  

Unfortunately, due to the highly-constrained nature of the problem, feasibility cannot be 

guaranteed. Hence, the following penalty function approach is used to evaluate the solutions 

obtained 

 Min  
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where constant wdemand is the penalty per uncovered shifts in the solution, and a “max” function is 

used due to the penalization of undercovering. 

4  Computational Results 

This section describes the computational experiments used to test our proposed algorithm.  For 

all experiments, 52 real data sets (as provided by the hospital) are available.  Each data set 

consists of one week’s requirements (i.e. 14 time periods) for all shift and grade combinations 

and a list of nurses available together with their preference costs pij and qualifications.  Typically, 

there will be between 20 and 30 nurses per ward, 3 grade-bands and 411 different shift patterns.  

They are moderately sized problems compared to other problems reported in the literature 

(Burke et al. 2004).  The data was collected from three wards over a period of several months 

and covers a range of scheduling situations, e.g. some data instances have very few feasible 

solutions whilst others have multiple optima.  A zip file containing all these 52 instances is 

available to download at http://www.cs.nott.ac.uk/~jpl/Nurse_Data/NurseData.zip. 

4.1  Algorithm Details 

Table 1 lists detailed computational results of various approaches over 52 instances.  The results 

listed in Table 1 are based on the best result out of 20 runs for each method with different 

random seeds.  The second last row (headed ‘Av.’) contains the mean values of all columns, and 

the last row (headed ‘%’) shows the relative percentage deviation values of the above mean 

values to the optimal solution values.  When computing the mean, a censored cost value of 255 

has been used if an algorithm fails to find a feasible solution (denoted as N/A).  The following 

notations are employed in the table: 
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• IP: optimal or best-known solutions found by XPRESS MP, a commercial integer 

programming solver (Dowsland and Thompson 2000); 

• GA-1: basic genetic algorithm reported in (Aickelin and White 2004); 

• GA-2: adaptive GA, which is the same as GA-1, but it also tries to self-learn good parameters 

during the runtime starting from the values given below (Aickelin and White 2004); 

• GA-3: multi-population genetic algorithm, which is the same as GA-2, but also features 

competing sub-populations (Aickelin and White 2004); 

• GA-4: hill-climbing genetic algorithm, which is the same as GA-3, but it also includes a local 

search in the form of a hill-climber around the current best solution (Aickelin and White 

2004); 

• GA-5: indirect genetic algorithm, which maps the constraint solution space into an 

unconstrained space, then searches within that new space and eventually translates solutions 

back into the original space (Aickelin and Dowsland 2003).  Up to four different rules and a 

hill-climber are used in this algorithm; 

• EDA: estimation of distribution algorithm reported in (Aickelin and Li 2007); 

• LCS: learning classifier system reported in (Li and Aickelin 2004); 

• Con-heu: our method without the two steps of elimination; 

• CHEE: our full Component based Heuristic method with both evolutionary perturbation 

steps; 

• Best: best result out of 20 runs of CHEE; 

• Mean: average result of 20 runs of CHEE; 

• Inf: number of runs terminating with the best solution being infeasible; 

• #: number of runs terminating with the best solution being optimal; 

• ≤3: number of runs terminating with the best solution being within three cost units of the 

optimum.  The value of three units was chosen as it corresponds to the penalty cost of 

violating the least important level of requests in the original formulation.  Thus, these 

solutions are still acceptable to the hospital. 
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Table 1:  Comparison of Results by Various Approaches over 52 Instances 

Set IP GA GA GA GA GA EDA LCS Con CHEE (20 runs) 

  -1 -2 -3 -4 -5   -heu Best Mean Inf # ≤3 

01 8 9 9 8 8 8 8 9 31 8 8.0 0 20 20 

02 49 57 57 50 50 51 56 60 100 50 54.2 0 0 8 

03 50 51 51 50 50 51 50 68 94 50 51.0 0 14 18 

04 17 17 17 17 17 17 17 17 20 17 17.0 0 20 20 

05 11 12 11 11 11 11 11 15 22 11 11.0 0 20 20 

06 2 7 7 2 2 2 2 2 20 2 2.1 0 19 20 

07 11 N/A N/A 11 13 12 14 31 45 11 11.1 0 9 20 

08 14 18 18 15 14 15 15 43 41 14 15.3 0 12 18 

09 3 N/A N/A 3 3 4 14 17 N/A 3 4.0 0 13 19 

10 2 6 6 4 2 3 2 5 13 2 2.6 0 9 20 

11 2 4 4 2 2 2 2 2 N/A 2 2.0 0 20 20 

12 2 14 14 2 2 2 3 4 N/A 2 2.0 0 20 20 

13 2 3 3 2 2 2 3 5 103 2 2.0 0 20 20 

14 3 4 4 3 3 3 4 17 21 3 5.8 0 15 15 

15 3 6 6 3 3 3 4 5 5 3 3.0 0 20 20 

16 37 40 40 38 38 39 38 38 159 37 37.0 0 20 20 

17 9 12 12 9 9 10 9 22 N/A 9 10.3 0 2 20 

18 18 19 19 19 19 18 19 33 125 18 18.9 0 18 18 

19 1 5 5 1 1 1 10 32 N/A 1 11.5 0 11 12 

20 7 10 10 8 8 7 7 7 36 7 9.3 0 15 17 

21 0 7 7 0 0 0 1 6 23 0 0.2 0 18 20 

22 25 43 35 26 25 25 26 38 150 25 26.5 0 7 18 

23 0 8 8 0 0 0 1 3 N/A 0 0.7 0 6 20 

24 1 4 3 1 1 1 1 1 N/A 1 1.0 0 20 20 

25 0 6 5 0 0 0 0 0 4 0 0.4 0 13 20 

26 48 N/A N/A 48 48 48 52 93 148 48 63.3 0 11 17 

27 2 17 17 2 2 4 28 19 N/A 2 18.2 0 9 9 
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28 63 66 66 63 63 64 65 67 N/A 63 63.2 0 16 20 

29 15 20 20 141 17 15 109 56 N/A 15 104.1 0 2 2 

30 35 44 44 42 35 38 38 41 97 35 80.5 2 4 5 

31 62 N/A 284 166 95 65 159 123 N/A 66 116.3 0 0 0 

32 40 51 51 99 41 42 43 42 N/A 40 42.6 0 11 17 

33 10 N/A N/A 10 12 12 11 15 N/A 10 11.1 0 4 20 

34 38 42 42 48 40 39 41 70 N/A 38 57.9 1 1 11 

35 35 36 36 35 35 36 46 64 N/A 35 41.2 0 1 5 

36 32 N/A 36 41 33 32 45 54 198 32 36.0 0 4 14 

37 5 8 8 5 5 5 7 12 62 5 5.5 0 11 20 

38 13 N/A N/A 14 16 15 25 30 121 13 24.6 0 2 9 

39 5 9 8 5 5 5 8 13 118 5 5.2 0 18 20 

40 7 14 10 8 8 7 8 15 26 7 8.7 0 17 18 

41 54 N/A 65 54 54 55 55 57 121 54 54.1 0 19 20 

42 38 41 41 38 38 39 41 80 51 38 41.6 0 4 18 

43 22 24 24 39 24 23 23 58 N/A 22 23.0 0 18 18 

44 19 36 36 19 48 25 24 34 N/A 19 28.3 0 3 4 

45 3 N/A 9 3 3 3 6 15 111 3 9.1 0 12 18 

46 3 17 10 3 6 6 7 28 N/A 3 29.9 2 2 15 

47 3 N/A 5 4 3 3 3 3 N/A 3 3.0 0 20 20 

48 4 9 9 6 4 4 5 18 N/A 4 5.9 0 6 17 

49 27 36 36 30 29 30 30 37 N/A 27 29 0 5 20 

50 107 N/A N/A 211 110 110 109 110 N/A 107 108.1 0 11 20 

51 74 N/A N/A N/A 75 74 171 125 N/A 96 167.9 0 0 0 

52 58 N/A N/A N/A 75 58 67 85 N/A 58 67.9 0 4 4 

Av. 21.1 79.8 65.0 37.1 23.2 22.0 29.7 35.5 157.4 21.7 29.9 0.1 11.1 15.85 

% 0 278 208 76 10 4 41 68 646 2.7 13.2    

 

For all data instances, we used the following set of fixed parameters in our experiments: 
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• Stopping criterion: a maximum iteration of 50,000, or an optimal/best-known solution has 

been found; 

• Rate of Elimination-II in Section 3.4: rm =0.05; 

• Rates of Reconstruction in Section 3.5: p1 =0.80, p2 =0.18, p3 =0.02; 

• Weight set in formula (9): wp =1, w1 =8, w2 =2 and w3 =1; 

• Penalty weight in fitness function (10): wdemand =200. 

Note that some parameter values (i.e. the maximum number of iterations, rm, p1, p2 and p3) 

are based on our experience and intuition and thus we cannot prove they are the best for each 

instance. The rest of the values (i.e. wp, w1, w2, w3 and wdemand ) are the same as those used in 

previous papers for solving the same 52 instances, and we are continuing to use them for 

consistency. 

Our method was coded in Java 2, and all experiments were undertaken on a Pentium 4 

2.1GHz machine under Windows XP.  To test the robustness of the proposed algorithm, each 

data instance was run twenty times by fixing the above parameters and varying the pseudo 

random number seed at the beginning.  The execution time per run and per data instance varies 

from several milliseconds to 20 seconds depending on the difficulty of the individual data 

instance.  Table 2 lists the average runtimes of various approaches over the same 52 instances: 

the first six (i.e. IP, GA-1, GA-2, GA-3, GA-4 and GA-5) were run on a different Pentium III 

PC, while the following two (i.e. EDA and LCS) on a similar Pentium 4 2.0GHz PC.  Obviously, 

the IP is much slower than any of the above meta-heuristics. Among these meta-heuristic 

methods, our algorithm takes no more time although an accurate comparison in terms of runtime 

is difficult due to the different environments (i.e. machines, compilers and programming 

languages) in use.  For example, the genetic algorithms are coded in C and the EDA is coded in 

C++.  The comparison in terms of the number of evaluations is also difficult because the other 

algorithms evaluate each candidate solution as a whole, while our algorithm evaluates partial 

solutions as well. 

 

Table 2:  Comparison of the Average Runtime of Various Approaches 

 IP GA-1 GA-2 GA-3 GA-4 GA-5 EDA LCS CHEE 

Time (sec) >24hours 19 23 13 15 12 22 42 12 
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Table 3 lists the average results of 20 runs of CHEE under different parameter settings. Its 

first five columns contain the results after different maximum number of iterations, namely 

10,000-20,000-30,000-50,000-100,000. Its last five columns contain the results of evaluating 

individual parts of CHEE, namely “Elimination-I (rs=0.5) + Elimination-II + Con-heu”, 

“Elimination-I + Con-heu”, “Elimination-II + Con-heu”, “Elimination I + Elimination II + Con-

with-Cover-only” and “Elimination I + Elimination II + Con-with-Combined-only”. 

 

Table 3: Results of CHEE under Different Parameter Settings 

Max number of iterations Evaluation on individual parts (after 5×104 iterations) 

Set 
104 2×104 3×104 5×104 105 

Pert-I 

(rs=0.5) 

Pert-I 

only 

Pert-II 

only 

Con-cover 

rule only 

Con-combined 

rule only 

1 8.2 8.0 8.0 8.0 8.0 9.3 9.6 8.0 8.9 8.0 

2 57.4 55.7 54.4 54.2 52.8 55.4 61.9 56.6 62.1 372.3 

3 53.8 52.7 50.9 51.0 50.1 58.7 66.3 50.0 77.1 434.8 

4 17.0 17.0 17.0 17.0 17.0 17.2 17.5 17.0 17.1 17.0 

5 11.4 11.0 11.0 11.0 11.0 14.5 16.6 11.0 26.1 11.0 

6 2.2 2.1 2.1 2.1 2.1 8.7 3.35 22.4 101.1 2.0 

7 72.7 34.5 30.6 11.1 11.5 34.4 103.8 70.6 27.4 191.6 

8 19.6 16.9 17.9 15.3 14.6 27.0 28.3 26.2 46.8 14.7 

9 6.4 6.9 3.4 4.0 3.1 25.4 11.4 24.2 59 10.8 

10 4.2 2.8 2.7 2.55 3.0 4.3 5.4 18.1 10.5 2.7 

11 2.1 2.1 2.0 2.0 2.0 3.2 5.3 2.0 6.5 2.0 

12 2.4 12.1 2.0 2.0 2.0 8.1 47.5 7.1 2.4 2.0 

13 34.9 3.1 2.0 2.0 2.0 5.5 4.6 2.15 53.7 2.0 

14 13.7 12.9 12.0 5.75 4.2 30.3 20.8 100.0 161.9 3.5 

15 10.7 3.1 3.0 3.0 3.0 4.9 4.8 3.0 21.9 3.0 

16 37.4 37.7 37.0 37.0 37.0 63.0 38.5 107.5 130.6 425.0 

17 21.4 10.1 10.0 10.3 9.9 22.7 41.1 47.2 106.4 32.9 

18 48.6 20.7 18.1 18.9 18.0 108.7 27.45 210.7 61.1 60.4 
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19 16.2 14.4 15.9 11.5 7.2 29.7 64.6 48.1 57.5 100.6 

20 20.4 13.5 9.8 9.3 10.8 14.0 15.4 46.2 11.6 205.0 

21 20.4 20.1 20 0.2 0.0 1.3 29.6 15.0 21.5 10.1 

22 29.6 26.9 27.1 26.5 25.2 34.4 52.6 31.5 31.8 26.0 

23 10.0 0.5 0.8 0.7 0.5 3.2 4.5 40.3 220.8 50.2 

24 1.0 1.0 1.0 1.0 1.0 2.1 1.1 1.0 26.7 1.0 

25 0.7 0.4 0.6 0.4 0.1 1.0 2.2 0.9 1.1 0.4 

26 198.8 148.5 138.4 63.3 48.2 183.4 207.8 158.5 153.9 229.1 

27 16.6 18.9 6.7 18.2 7.6 83.9 45.8 80.9 41.9 71.8 

28 63.7 63.3 63.6 63.2 63.1 65.1 70.8 63.0 68.7 63.0 

29 114.6 114.4 114.1 104.1 114.0 152.5 111.7 148.4 207.6 215.0 

30 138.7 125.2 146.5 80.5 43.3 160.0 116.6 164.2 212.7 307.3 

31 135.3 123.9 123.0 116.3 105.3 221.7 151.3 226.6 158.4 468.5 

32 89.9 52.1 44.8 42.6 44.6 165.2 67.05 98.7 323.9 410.2 

33 49.3 20.9 12.0 11.1 10.8 14.1 18.4 70.1 17.0 86.9 

34 141.4 118.7 94.6 57.9 41.6 106.8 126.5 122.1 61.2 226.2 

35 54.1 49.5 46.5 41.2 38.5 59.3 69.6 48.5 71.4 39.5 

36 45.8 43.1 40.1 36.0 32.6 47.2 53.6 51.3 136.8 153.3 

37 6.4 6.6 6.1 5.5 5.4 11.7 12.5 10.3 17.2 5.7 

38 61.4 30.3 20.1 24.6 19.6 66.6 66.2 76.9 28.8 86.0 

39 16.1 6.4 5.5 5.2 5.1 10.5 15.4 5.2 57.5 5.2 

40 14.3 14.2 12.0 8.7 7.2 17.4 15.7 37.8 46.5 41.3 

41 55.1 54.1 54.1 54.1 54.0 68.2 58.1 148.3 141.2 433.6 

42 49.5 43.1 46.7 41.6 39.8 51.0 78.7 77.1 135 60.2 

43 29.2 26.0 23.0 23.0 24.0 106.0 34.6 211.3 72.5 22.0 

44 38.2 33.8 31.7 28.3 26.3 30.4 34.9 62.6 32.4 91.7 

45 25.9 33.9 15.6 9.1 3.0 15.4 40.4 18.8 24.3 23.1 

46 148.8 109.7 54.5 29.9 5.3 186.9 166.9 74.7 232.3 196.0 

47 3.2 3.0 3.0 3.0 3.0 4.0 7.9 3.0 19.7 3.0 

48 14.7 9.6 8.4 5.9 4.3 16.8 19.9 11.8 20.6 54.9 
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49 31.3 32.2 32.0 29.0 27.5 54.4 45.3 147.5 111.7 205.2 

50 108.6 108.9 108.6 108.1 107.4 112.3 111.1 272.3 129.5 275.1 

51 175.8 173.4 162.5 167.6 171.0 285.0 176.1 294.1 333.0 429.0 

52 132.4 79.7 74.5 67.9 59.0 93.2 96.8 132.3 78.9 222.0 

Av. 47.7 39.0 35.5 29.9 27.1 57.2 52.0 72.7 82.4 123.3 

 

4.2  Analysis of Results 

The results of all the approaches in Table 1 are obtained by using the same 52 benchmark test 

instances, with the bold figure representing the optimal solution found by a commercial software 

package.  Compared with the results of the mathematical programming approach which can take 

up to 24 hours runtime (shown in the ‘IP’ column), our results (shown in the ‘Best’ column) are 

only 2.7% more expensive on average but they are all achieved within 20 seconds.  Compared 

with the best results of various meta-heuristic approaches, in general the CHEE results are 

slightly better than those of the best-performing indirect genetic algorithm (with a relative 

percentage deviation value of 4%) and are much better than the others (with deviation values 

from 10% to 278%). A student’s t-test (where “255” is used instead of “N/A”) also suppose the 

observations: considering the best values for 52 instance, CHEE performs better tan GA-1, GA-

2, GA-3, EDA and LCS within a confidence interval of 95%. 

Since our proposed methodology uses a ‘Cover’ rule and a ‘Combined’ rule in its 

Reconstruction step for schedule repairing, it may be interesting to know if the good 

performance of our algorithm is mainly due to these two delicate building rules.  To clarify this, 

we performed an additional set of experiments by skipping the two elimination steps, i.e. only 

implementing the Reconstruction step to build a schedule from an empty solution.  This method 

does not yield a single feasible solution for 24 instances, as the ‘Con-heu’ column shows.  This 

underlines the difficulty of this problem, and most importantly it underlines the key roles played 

by the two elimination steps in our full methodology, as the Reconstruction step alone is not 

capable of solving the problem. 

Table 2 shows the effect of the maximum number of iterations and the effect of each method 

with different parameter setting to the proposed CHEE. Clearly, the larger the maximum number 

of iterations, the better the solution quality we can obtain. Regarding the five methods within 
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CHEE, “Elimination-I + Con-heu” performs best (with an average value of 52.0), “Elimination-I 

(rs=0.5) + Elimination-II + Con-heu” performs second, “Elimination-II + Con-heu” performs 

third, “Elimination I + Elimination II + Con-with-Cover-only” performs fourth and “Elimination 

I + Elimination II + Con-with-Combined-only” performs worst. However, even the best 

performing “Elimination-I + Con-heu” method is much worse than a standard full CHEE method 

introduced in Section 3 (with an average value of 29.9). These results reveal that all the parts of 

CHEE are important to deliver high quality solutions and none of them could be freely removed. 

Figures 2 and 3 show the results of our method and the best indirect genetic algorithm 

graphically in more detail.  The bars above the y-axis represent solution quality out of 20 runs: 

the black bars show the number of optimal solutions found (i.e. the value of ‘#’ in Table 1), and 

the dotted bars represent the number of good feasible solutions which are within 3 cost units of 

their optimal solutions (i.e. the value of ‘≤3’ in Table 1).  The bars below the y-axis represent the 

number of times the algorithm failed to find a feasible solution in these 20 runs (i.e. the value of 

‘Inf’ in Table 1).  Hence, the smaller the area below the y-axis and the larger the area above, the 

better the algorithm’s performance.  Note that ‘missing’ bars mean that, over 20 runs, feasible 

solutions are obtained at least once, but none of them are optimal or of good quality (within 3 

units of optimal values). 
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Figure 2:  Results from CHEE 
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Figure 2 shows that 21 out of 52 data instances are solved well by CHEE (i.e. with all solutions 

being within 3 units of optimal values), 49 instances are solved optimally at least once, and 

overall there are 5 infeasible solutions for 3 instances.  For the best indirect genetic algorithm 

(shown in figure 3), the results are slightly worse: 15 data instances are solved well, 28 are 

solved to optimality at least once, and overall there are 56 infeasible solutions for 6 data 

instances. 
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Figure 3: Results of the Best Indirect Genetic Algorithm (i.e. GA-5) 

 

Figure 4 summarizes Table 1 in graphical format and provides an overall performance 

comparison between our proposed methodology and the other approaches.  The best results for 

these instances are obtained by the IP software, and in general, our approach performs better than 

the previous best-performing meta-heuristic approach.  The basic genetic algorithm (i.e. GA-1), 

the adaptive genetic algorithm (i.e. GA-2), the multi-population genetic algorithm (i.e. GA-3) 

and even the hill-climbing genetic algorithm (i.e. GA-4) which includes multiple populations and 

an elaborate local search are all significantly outperformed in terms of feasibility, best and 

average results. 

The other three approaches (i.e. the GA-5, the EDA and the LCS) belong to the class of 

indirect approaches, in which a set of heuristic rules, including the ‘Cover’ rule and the 

‘Combined’ rule used in our approach, is used for schedule building.  Compared with the EDA 
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and the LCS, our new approach performs much better in terms of the best and average results, 

and slightly worse in terms of feasibility.  Compared with the GA-5 which performs best among 

all the heuristic algorithms, our approach performs better in all aspects of feasibility (99% vs. 

95%), best results (21.7 versus 22.0) and average results (28.6 vs. 35.6).  In addition, it is worth 

mentioning that the GA-5 uses the best possible order of the nurses (which, of course, has to be 

found) for the greedy heuristic to build a schedule, while our algorithm only uses a fixed 

indexing ordering given in the original data sets. 
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Figure 4:  Summary Results of Various Search Algorithms 

5   Conclusions 

This paper presents a new approach to address the hospital personnel scheduling problem.  The 

major idea behind this method is to decompose a solution into components, and then to 

implement two evolutionary-based elimination strategies on these components to make iterative 

improvements in each single schedule.  In each iteration, an unfit portion of the solution is 

removed.  Any partial solution is repaired by a refined greedy building process. 

Taken as a whole, the proposed approach has a number of distinct advantages.  Firstly, it is 

simple and easy to implement because it uses greedy algorithms and local heuristics.  Secondly, 

due to its features of maintaining only a single solution at each iteration and eliminating inferior 

parts from this solution, it can quickly converge to local optima.  Thirdly, the technique has the 

ability to jump out of local optima in an effective manner.  Finally, this approach can be easily 

combined with other meta-heuristics to achieve its peak performance on solution quality if CPU-
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time is not the major concern.  For example, tabu search can be used in the Reconstruction step 

to explore the neighbouring solutions in an aggressive way and avoid cycles by declaring 

attributes of visited solutions as tabu.  In addition, simulated annealing could be used as the 

acceptance criteria for the resulting solutions after Reconstruction to accept not only improved 

solutions as in the current form, but also worse ones with a certain level of probability. 
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