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Abstract

Background: Algorithms and software for CNV detection have been developed, but they detect the CNV regions
sample-by-sample with individual-specific breakpoints, while common CNV regions are likely to occur at the same
genomic locations across different individuals in a homogenous population. Current algorithms to detect common
CNV regions do not account for the varying reliability of the individual CNVs, typically reported as confidence
scores by SNP-based CNV detection algorithms. General methodologies for identifying these recurrent regions,
especially those directed at SNP arrays, are still needed.

Results: In this paper, we describe two new approaches for identifying common CNV regions based on (i) the
frequency of occurrence of reliable CNVs, where reliability is determined by high confidence scores, and (ii) a
weighted frequency of occurrence of CNVs, where the weights are determined by the confidence scores. In
addition, motivated by the fact that we often observe partially overlapping CNV regions as a mixture of two or
more distinct subregions, regions identified using the two approaches can be fine-tuned to smaller sub-regions
using a clustering algorithm. We compared the performance of the methods with sequencing-based results in
terms of discordance rates, rates of departure from Hardy-Weinberg equilibrium (HWE) and average frequency and
size of the identified regions. The discordance rates as well as the rates of departure from HWE decrease when we
select CNVs with higher confidence scores. We also performed comparisons with two previously published
methods, STAC and GISTIC, and showed that the methods we consider are better at identifying low-frequency but
high-confidence CNV regions.

Conclusions: The proposed methods for identifying common CNV regions in multiple individuals perform well
compared to existing methods. The identified common regions can be used for downstream analyses such as
group comparisons in association studies.

Background
Copy-number variants (CNVs) are genomic regions that
contain an abnormal number of copies. In humans, we
normally expect two copies of each autosomal region,
but in CNV regions we may observe copy gains or
losses. Current common technology used for CNV
detection are high-density single nucleotide polymorph-
ism (SNP) arrays or array comparative genomic hybridi-
zation (aCGH) arrays. Detection of CNVs from aCGH
arrays is mostly based on locating change-points in
intensity-ratio patterns that would partition each chro-
mosome into several discrete segments [1-5]. On the
other hand, the hidden Markov model (HMM) is

particularly popular for detection of CNVs from SNP
arrays, where the hidden states provide a natural way of
combining information from the total signal intensity
and the allele frequency values (see for example, [6,7]).
These approaches detect CNVs sample-by-sample, and
because of the high noise level in the intensity values,
especially for SNP array data, the boundaries of the
detected CNVs tend to vary among individuals. How-
ever, in a homogenous population, common CNV
regions are likely to occur at the same genomic loca-
tions across different individuals. Our focus in this
paper is to identify common CNV regions in multiple
individuals from a given population.
Common CNV detection algorithms for SNP arrays

report the log Bayes factor as a confidence score for
each identified region; this provides a measure of the
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reliability of a detected CNV within an individual. Pre-
vious methods developed to identify recurrent CNV
regions (see [8] for a review) were primarily developed
for aCGH data and hence did not incorporate confi-
dence scores. For example, a previously published
method, STAC [9], uses two statistics to identify recur-
rent CNV regions. These statistics are based on the
frequency of occurrence of the regions and the align-
ment of the regions. However, since the method does
not incorporate confidence scores, every individual
region contributes equally to the statistic, whereas in
fact, inter-sample variability is bound to exist, where
some regions are more likely to be true/false positives.
Furthermore, STAC requires each chromosome to be
split into non-overlapping windows of a user-defined
fixed size. The algorithm then searches for evidence of
common CNV regions within each window. The weak-
ness of this is that the output from such an approach
will only provide evidence of whether each window
harbours a common CNV, but will not indicate the
breakpoints of the CNV. Although we may decrease
the window size to improve the resolution, in practice,
doing so will incur an enormous computational
burden.
In this paper, we investigated two different methods

to detect common CNV regions. The methods take
segmented data as the input. The first method esti-
mates a statistic based on the frequency of occurrence
of reliable CNVs, where reliability is determined by a
high confidence score. The second method is based on
a weighted frequency of occurrence of CNVs, where
the weights are determined by the confidence scores.
Figure 1 illustrates a common CNV region in chromo-
some 22, identified using the first method, and shows
evidence of several distinct subregions within the iden-
tified common region. Hence, in addition to these
methods, we also investigated the use of a clustering
algorithm to split the common regions into smaller
subregions.
To assess the performance of the methods, we ran

the algorithms on 112 HapMap samples from the Illu-
mina iControl database, composed of individuals from
three populations (Yoruba, Caucasian and Asian). We
compared the regions we identified to the regions
identified using sequencing [10]. In general, the discor-
dance rates with sequencing-based CNV regions as
well as the rates of departure from HWE decreased
when we filtered the individuals with a stricter confi-
dence score threshold. To benchmark the proposed
methods to currently available methods, we performed
comparisons with STAC [9] and GISTIC [11] and
found that the proposed methods outperformed both
STAC and GISTIC in identifying low-frequency but
high-confidence CNV regions.

Methods
Data Structure
We assume that the raw intensity data have been pro-
cessed by a CNV detection algorithm. Denote by Ri =

{Ri1, Ri2..., R R R Ri i i i i
 { , , , }1 2   } the collection of

CNV regions detected in individual i, for i = 1,...,n. A
region is defined by its start and end probe locations,
and its CNV type (duplication or deletion). For each
region, we assume we have a confidence score statistic
that measures the likelihood that the detected region is
real. An example of this statistic is the log Bayes Factor
(see [6]). For region j detected in individual i, we denote
this statistic as Cij.

Cumulative Overlap Using Very Reliable Regions (COVER)
Our confidence in a CNV region depends on the within-
and between-subject information; our methods shall uti-
lize both information. The within-subject information
comes from the strength of the signal within an indivi-
dual CNV region, and this is measured by the confi-
dence score. The between-subject information comes
from the consistency of the CNVs across different indi-
viduals. Intuitively, we have less confidence in a CNV
that occurs in one individual than one that occurs in
many individuals. However, a single occurrence of CNV
might still be a true discovery if it is associated with a
high confidence score, i.e., it is based on a strong signal.
Since individual CNV regions span different probes,

the number of individual regions that overlap each
probe varies. However, common CNV regions tend to
occur at almost the same genomic locations across mul-
tiple individuals. Hence, we expect the common regions
to be identified by consecutive probes where a ‘signifi-
cant’ number of individuals have an overlapping CNV
region. Furthermore, we also expect the confidence
score of the individual region to be relatively high.
Let Zijk be the indicator that region j detected in indi-

vidual i overlaps with probe k. For each probe k, we cal-
culate the Cumulative Overlap using Very Reliable
Regions (COVER) statistic yk, defined as

y Z Ik ijk C c

ji

n

ij
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where IC cij  is the indicator function for regions
detected with a confidence score above a certain thresh-
old c. The common CNV regions are then defined by

R         l l y u m mm m k k, , , , ,

representing sets of consecutive probes for which yk is
consistently greater than or equal to a specified
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threshold u. lm is the genomic position of probe m and
it is implicitly understood that the cardinal position of
the probe reflects its relative position in the chromo-
some so that when there are M probes in a chromo-
some, l1 <l2 <...<lM.
Using COVER, we can identify multiple common

CNV regions within a chromosome. Furthermore, differ-
ent subsets of individuals may contribute to different
common regions, hence allowing COVER to identify
regions that are common to only a subset of individuals.
By only considering individual regions that are detected
with high reliability, we also incorporate the uncertainty

associated with each individual region in the identifica-
tion of common regions. If this is not taken into
account, then all regions would be treated equally
despite the fact that some are more likely to be true
than the others. Figure S4 in the [Additional File 1]
gives an illustration of how COVER works.

Cumulative Composite Confidence Scores (COMPOSITE)
In COVER, regions with low confidence are given zero
weights and they do not contribute to the COVER sta-
tistic. The within-subject confidence is not fully
exploited when computing the COVER statistic: regions

Figure 1 An example of a common CNV region found based on COVER method with threshold u = 2 and c = 60. This figure illustrates a
common CNV region in part of chromosome 22, found using the COVER method with threshold u = 2 and confidence cutoff at 60th percentile.
41 out of 112 individuals have CNVs that overlap with this common region, indicated by the horizontal lines. We can see that despite being
identified as a common region, the individual regions still portray a mixture phenomenon of several distinct subregions.
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that are detected with low confidence but nonetheless
detected consistently across a large number of subjects
might be missed.
This limitation is addressed in the second method. For

probe k the composite confidence score (COMPOSITE)
statistic is defined as,

s Z Ck ijk ij

ji

n i

 

 ( ).

11



This formula is in fact similar to COVER statistic,
where instead of using the indicator function IC cij  as
weights, now all detected individual regions contribute
to the COMPOSITE statistic, with the amount of their
contribution proportional to their confidence scores.
Using COMPOSITE, the common CNV regions are

then defined as

R         l l s v m mm m k k, , , , ,

representing sets of consecutive probes for which sk is
consistently greater than or equal to a specified thresh-
old v. Figure S4 in [Additional file 1] gives an illustra-
tion of how COMPOSITE works.

Clustering of Individual CNV Regions within a Common
Region (CLUSTER)
Cluster analysis has been used in the analysis of gene
expression and aCGH data (see for example, [12-14]).
Here, the motivation for CLUSTER stems from the
observation that within a common CNV region identi-
fied by COVER or COMPOSITE, a complex mixture
phenomenon can still be observed (see Figure 1).
Figure 2 depicts the hypothetical situation where a

common region of length L bases has been identified by
COVER or COMPOSITE. Four individual regions over-
lap with the common region and from the figure, it is
clear that the first two regions are clustered to the left
while the last two are clustered to the right. The two
groups may form two distinct subregions and these

Figure 2 Hypothetical example of a identified common CNV region with 2 distinct clusters. Hypothetical situation where an identified
common CNV region is common to four individuals. From the figure, it is clear that the common region consists of two partially overlapping
regions. The first two individual regions are clustered together to the left of the common region, while the last two individual regions are
clustered to the right.
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subregions could differ biologically. In reality, the situa-
tion is more complex than the hypothetical example
here (see for example Figure 1).
To find the subregions inside this common region, we

first perform pairwise comparisons of the individual
regions that overlap with the common region. For
example, the comparison of two regions A and B can be
summarized into 4 values (a, b, c, d), where a is the
number of bases for which both A and B overlap with
the common region, b is the number of bases where A
overlaps with the common region but B does not, c is
the number of bases where B overlaps with the common
region but A does not, and d = L - a - b - c.
The (dis)similarity index can be computed using a

variety of distance metrics appropriate for binary data
such as the Manhattan, Canberra or Jaccard distance
[15]. The Jaccard distance is particularly attractive for
our case; it is defined by a/(a + b + c) and can be inter-
preted as the percentage of common overlap of the two
regions relative to the union of the overlaps of the two
regions with the common region. We then construct a
dissimilarity matrix as input to a hierarchical clustering
algorithm. The number of clusters will be determined
by the amount of within-cluster similarity we require.
The boundaries of each subregion will be the minimum
and maximum positions of all individual regions that
belong in that cluster. If these bounds overshoot the
boundaries of the initially identified region, then the
boundaries will be reset to the boundaries of the initial
region.

Results and Discussion
Assessment and Comparison
Datasets
We studied the performance of the proposed procedures
by varying the corresponding threshold parameters in
each approach. 112 HapMap samples, comprising 46
Caucasian (CEU), 29 Beijing Chinese and Tokyo Japa-
nese (CHBJPT) and 37 Yoruban (YRI) individuals were
used in the analysis. These samples are part of the Illu-
mina iControl Database. Each sample was genotyped
using the Illumina 1M chip, and PennCNV [6] was used
to detect the individual CNV regions.
Comparison with Sequenced Regions
We compared the common regions we identified to a
list of reference CNVs identified in eight HapMap sam-
ples using sequencing data [10]. For each of the eight
samples, we calculated the discordance rates by record-
ing the proportion of common CNV regions (found
using our methods) for that sample that were not con-
cordant with the sample-specific reference CNVs. To be
‘concordant’ with a reference CNV, a region has to be
either contained within the reference CNV or it has to
overlap with at least 50% of the reference region. It is

important to note however that it is difficult to get a
gold standard for common CNV boundaries; even the
sequencing-based CNV regions cannot be expected to
have 100% sensitivity and specificity in genotype calling
and certainly not in boundary calls for common CNVs.
Comparison with other Array-based Regions
We compared the regions found using our methods to
the regions found by two other groups using array-
based methods. We compared with McCarroll et al.
[16], where the regions were identified using the Affy-
metrix SNP 6.0 arrays on 270 HapMap samples. To
minimize false discoveries, they ran two independent
experiments and require a CNV to be observed in both
experiments. We also compared our regions to the
regions found by Conrad et al. [17]. These regions were
identified using tiling oligonucleotide microarrays, com-
prising of 42 million probes, on 41 HapMap samples. A
total of 11,700 CNVs were identified, and 8,599 were
validated using a set of stringent criteria including (i)
additional measurements by Agilent 105K CGH arrays,
(ii) overlap with previous studies and (iii) other quality-
control filters. For our comparisons, we used only the
8,343 validated CNVs in the autosomal regions.
Comparison to other approaches
We compared our approaches to previous common
CNV detection methods, STAC: Significance Testing for
Aberrant Copy number [9] and GISTIC: Genomic Iden-
tification of Significant Targets in Cancer [11].
Briefly, STAC takes segmented data as input and esti-

mates two statistics: 1. A frequency statistic, which esti-
mates the frequency of aberration at each location
across all individuals. 2. A footprint statistic, which uses
a subset search methodology and counts the number of
locations c such that c is contained in a set of intervals
(see [9] for more details). It then uses a permutation
test to assess the significance of the observed region.
STAC requires each chromosome to be split into non-
overlapping regions of a user-defined fixed size. The
algorithm looks for evidence of common CNV regions
within each window, and reports the associated fre-
quency and footprint p-values.
GISTIC first calculates a ‘G score’ that is associated

with both the frequency of occurrence as well as the
amplitude of the aberration. Then, it calculates the
probability (q-value) of the observed region occurring by
chance via a permutation test. One can either input the
log intensity ratios, where the GLAD algorithm [18] will
be used to segment the data, or input pre-segmented
data using other algorithms.
We had also planned to make comparison to another

method called MSA [19], but failed because the soft-
ware, which is part of the GenePattern module, did not
work properly. MSA can be viewed as an improvement
over STAC, where it extends the notions of frequency
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and footprint statistics using original intensity ratio data
instead of segmented data [8]. We also tried a compari-
son to RJaCGH [2], which uses a non-homogenous Hid-
den Markov Model fitted via the Reversible-Jump
Markov Chain Monte Carlo method to estimate the
probability that a region has copy number alterations;
the method also allows the identification of minimal
common regions of copy number changes among multi-
ple individuals.
Unfortunately, with our samples, the algorithm did not

converge, so we could not proceed with the comparison.
Testing Hardy-Weinberg Equilibrium
It has been observed that the majority of common
CNV regions are inherited [20]. Hence, for a popula-
tion of normal (healthy) individuals, we expect, for
most of the common regions, the integer copy num-
bers to be in Hardy-Weinberg equilibrium (HWE).
The small number of regions that depart from HWE
can be attributed to factors such as recent mutations.
For example, McCarroll et al. [16] found that about
98% of common diallelic CNV regions do not show
significant departure from HWE. In principle, HWE
applies to both diallelic CNVs (where only loss or gain
of copy numbers are present in addition to normal
copies) and multi-allelic CNV regions (where both loss
and gain of copies are present).
For diallelic CNVs with only loss and normal-copy

numbers (copy-number = 0,1,2), the HWE test can be
conducted by treating ‘0’ copies as minor allele homozy-
gous, ‘1’ copy as heterozygous and ‘2’ copies as reference
homozygous. Similarly, for CNVs with only gain and
normal-copy numbers (copy-number = 2,3,4), we treat
‘2’ copies as reference homozygous, ‘3’ copies as hetero-
zygous and ‘4’ copies as minor-allele homozygous. For
multi-allelic CNVs, a model with three or more alleles is
needed. However, the HWE test cannot be performed
directly on the unphased copy-number because there is
an issue with different combinations of alleles producing
the same copy-number. For example, in a 3-allele
model, a copy-number of 2 can be produced by a com-
bination of ‘0’ and ‘2’ copies or two ‘1’ copy alleles.
When dealing with samples from healthy individuals,

we propose to use the outcome of the HWE tests to
select ‘optimal’ parameter thresholds (e.g., c in COVER
and v in COMPOSITE). If we observe a large number
of common CNV regions with significant departure
from HWE (after accounting for population stratifica-
tion), it could mean that the parameters we choose are
not optimal. When dealing with a mixture of healthy
and diseased individuals such as in association studies,
it is expected that the CNVs among the diseased indi-
viduals will show some degree of departure from HWE
as some of the CNVs could be due to recent abbera-
tions. We propose performing HWE tests only among

the healthy individuals to select the optimal threshold
parameters.

Results
COVER results
Figure 3 shows the results for COVER. The discordance
rates with Kidd et al.’s [10] reference CNVs (see Com-
parison with Sequencing Results) can be as high as 80%
when we include all CNV calls in identifying the com-
mon regions. The discordance rates decrease when we
exclude CNVs whose confidence scores are below a cer-
tain percentile; more severe filtering generally reduces
the discordance rates. The lowest discordance rates of
about 55% were achieved when we excluded individual
regions whose confidence scores were below the 80th
percentile. Surprisingly, increasing the required mini-
mum number of individuals inside a region (u) does not
seem to have an effect on the discordance rates.
However, the required minimum number of indivi-

duals (u) does affect the rates of HWE violation (calcu-
lated as the percentage of diallelic CNVs whose p-value
from the HWE test is < 0.01 in at least one of the three
ethnic groups). (Some HapMap individuals were related;
the HWE test in each ethnic group was carried out on
unrelated individuals only.) There is an overall increas-
ing trend for the proportion of common CNV regions
that violate HWE when we increase the minimum num-
ber of individuals (Figure 3(b)). This is partly due to the
fact that with increasing number of individuals, we
detect CNV regions with larger minor allele frequencies
(see Figure 3(c)), hence the test for HWE will be more
powerful. Generally, the rates of departure from HWE
are less than 10% and can be lowered by filtering out
individuals with lower quality regions. A steeper reduc-
tion in the rates of departure from HWE can be
observed when only individual regions whose confidence
scores are above the 60th percentile are considered (Fig-
ure 3(b)).
The sizes of the identified common regions generally

increase when we filter lower quality individual regions
(Figure 3(d)), reflecting the fact that smaller regions
with fewer overlapping probes would tend to have lower
confidence scores. By choosing confidence score thresh-
olds (c) anywhere up to the 60th percentile, the average
size of the common regions are approximately the same
or slightly smaller than the average size that Kidd et al.
[10] obtained using sequencing methods (solid horizon-
tal line in Figure 3(d)). The dashed horizontal line in
Figure 3(d) shows that the median size of CNV regions
identified using the 500K EA chip [21] is much larger
than what we observe using our methods.
For this dataset, setting the confidence score threshold

to the 60th percentile seems to be the optimum choice.
With this setting, the discordance rates are around 60%
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and the proportion of diallelic CNVs that violate HWE
is kept at around 8%. The choice of u is more subjec-
tive, as it depends on our definition of ‘common’
regions. For example, if we require each common region
to overlap with at least three individual regions and set
c to the 60th percentile, we will identify 443 common
CNV regions (see [Additional file 2]).

COMPOSITE results
A total of 89% of the probes does not contain any indi-
vidual CNV regions and thus their composite scores are
zero. So, if we set the threshold v at the 89th percentile
of the composite scores, we do not filter out any indivi-
dual regions and this approach is essentially the same as
using u = 1 and c = 0 in COVER.
Figures 4(a) and 4(b) show that, as we increase the

threshold, the discordance rates as well as the rates of
HWE violation decrease steadily. Unlike the COVER

approach, where increasing the confidence score thresh-
old does not result in lower ability to detect rarer
CNVs, increasing the composite score threshold does
result in fewer rare CNVs being detected (Figure 4(c)).
This is because the composite score is a function of
both the confidence score and the number of individuals
within a common region. By increasing the threshold,
we are implicitly requiring more individuals within a
common region.
The increasing trend of mean minor allele frequency

(MAF) is consistently seen when the threshold is
increased to the 96th percentile. Beyond this, the mean
MAF decreases because large regions with higher MAF
may be split into several subregions with smaller MAF.
This observation is consistent with the pattern of med-
ian size of CNV regions (Figure 4(d)). Generally, we are
losing the smaller regions with low composite scores as
we increase the threshold. However, beyond the 96th

Figure 3 Results of COVER method. (a) Discordant Rates, (b) Proportion of diallelic CNVs that failed HWE, (c) mean minor allele frequency (MAF) of
diallelic CNVs and (d) Mean CNVs size (kilo-bases) as a function of confidence scores cut-off points and minimum number of individuals.
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percentile, the median region size decreases again due to
the splitting of the large regions.
The optimal setting is to set the threshold to the 94th

percentile, where the proportion of regions that failed
HWE is around 5% (Figure 4(c)). Using this setting, we are
able to detect 491 CNV regions (see [Additional file 3])
with median CNV size slightly larger then the median size
found by Kidd et al. [10]. The discordance rates among
the eight HapMap samples are approximately 70%, higher
than what can be achieved by COVER. Hence, although
COMPOSITE can pick up more regions, a higher percen-
tage of these regions is likely to be false discoveries.

CLUSTER results
The common regions identified using either COVER or
COMPOSITE can be further refined into distinct subre-
gions using CLUSTER. Here, we present the results of

applying CLUSTER to the common regions identified by
COVER. We choose the CLUSTER parameters so that
regions will be clustered together if they are at least 60%
similar. Complete linkage is used so that the distance
between any pair of clusters is defined as the maximum
distance between a pair of members drawn one from
each cluster. Single or average linkage can also be used.
Since single linkage defines the distance between any
pair of clusters as the minimum between a pair of mem-
bers from the clusters, it generally tends to produce
clusters that are more similar to each other, and when
the same similarity cut-off point is used, it tends to pro-
duce fewer clusters than complete linkage. Meanwhile,
using average linkage gives more clusters than single
linkage, but fewer than complete linkage. In the [Addi-
tional file 1], we compare the three linkage measures for
a sample region.

Figure 4 Results of COMPOSITE method. (a) Discordant Rates, (b) Proportion of diallelic CNVs that failed HWE, (c) mean minor allele frequency
(MAF) of diallelic CNVs and (d) Median size of CNV regions (kb) as a function of composite confidence scores cut-off points. Solid line is median
CNV size found by Kidd et al.
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Figure 5(a) shows that the number of clusters
decreases when we increase the confidence score thresh-
old. But even when we consider CNVs with confidence
scores above the median, the clustering effect is still evi-
dent with 1.3 to 1.7 clusters found for each common
region, depending on which threshold value u is used.
For the optimum parameters u = 3 and c = 60, on aver-
age, 1.5 clusters are found per common region. The
rates of departure from HWE (Figure 5(b)) are approxi-
mately the same as in Figure 3(b) and increasing the
confidence-score threshold lowers the rates.
Once the common regions are identified, it is straight-

forward to perform a number of downstream analyses.
For example, a principal component analysis (PCA) can
done based on subjects’ integer copy-number calls at
these regions (see Section ‘Principal Component Analy-
sis of CNV Profiles’ for more details). In the HapMap

dataset, CLUSTER clearly improves the separation
between the Yoruba and the other two populations
based on the subjects’ common CNV region profiles
(compare Figure 5(c) vs 5(d)). This result suggests that
different ethnic groups have more subtle differences in
the breakpoints of CNV regions.
Comparisons
McCarroll et al.’s versus Kidd et al.’s Results Using
the Affymetrix 6.0 arrays, McCarroll et al. [16]
employed a set of strict criteria based on duplicate
experiments to identify the CNV regions. For each of
the eight samples sequenced by Kidd et al. [10], we cal-
culated the discordance rates with McCarroll et al.’s
CNVs and they range from 71% for sample NA12878 to
84% for sample NA18517. On average, across the eight
samples, 76% of the regions found by McCarroll et al.
are discordant with the regions found by Kidd et al.

Figure 5 Results of applying CLUSTER to common regions identified by COVER method. (a) Average number of clusters, (b) rates of
departure from HWE, (c) First and second components of PCA based on subjects’ integer copy-number calls at common regions found using
COVER (with u = 3 and c = 60), (d) First and second components of PCA based on subjects’ integer copy-number calls at common regions
found using complete-linkage CLUSTER (with cluster.limit = 0.6).
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[10]. In comparison, using COVER, the discordance
rates are around 60% (see Section “COVER Results”).
Thus, the methods described in this paper, using only
data from a non-duplicated experiment, actually perform
better in terms of discordance rates against sequencing
data.
McCarroll et al.’s versus COVER/COMPOSITE
Results We also compared the regions identified by our
approaches to the list of common CNV regions identi-
fied by McCarroll et al. [16]. Figure 6(a) shows that by
using COVER, the discordance rates can be lowered by
either increasing the confidence-score threshold, placing
a higher limit on the minimum number of individuals
(u), or both. For the best scenario, the discordance rate
is about 15%. Using COMPOSITE, the discordance rates
can be reduced by increasing the composite-score
threshold, but even for the best scenario, the discor-
dance rate is around 25% (see Figure 6(b)).
Comparison to Conrad et al.’s regions Treating the set
of 8,343 validated autosomal CNVs found by Conrad
et al. [17] as reference CNVs, we calculate the discor-
dance rates against this reference list. Using the optimal
parameters for COVER/COMPOSITE for this dataset,
we obtain discordance rates of 42% and 31% for COVER
and COMPOSITE respectively. By refining the regions
using CLUSTER, the discordance rate for COVER
decreases to 34% and that for COMPOSITE remains
about the same, at 33%. These are better than McCarroll
et al.’s [16] regions, which have a discordance rate of
44%.
Comparison to GISTIC As input to GISTIC, we used
CNV calls from PennCNV for the same Hapmap

samples as described in the Datasets Section. Using the
default parameters of GISTIC, with the q-value thresh-
old set at 0.25, we obtained 342 significant common
regions with a mean frequency of 0.106 and a median
confidence score of 15.7. For comparison with COVER
and COMPOSITE, we chose threshold parameters to
give the closest number of common regions to that
detected by GISTIC. For COVER, this corresponded to
the choice of u = 3 and c = 70th percentile, which
yielded 329 regions with a mean frequency of 0.065 and
median confidence of 32.3. For COMPOSITE, the
threshold was chosen to be the 94.5th percentile, and
this yielded 360 regions with a mean frequency of 0.121
and median confidence of 27.6.
For each region identified by COVER, we checked if it

was concordant with any region identified by GISTIC.
Concordance is defined in the same way as in the Sec-
tion ‘Comparison with Sequencing Results’. The
COVER-identified regions can hence be divided into
two groups: those that are concordant with at least one
GISTIC region and those that are not. For each group,
we computed the mean frequency and median confi-
dence score, as well as the discordance rates with Kidd
et al.’s regions. We did the same for each region identi-
fied by GISTIC, checking if the region was concordant
with any region identified by COVER. Similar analysis
was done comparing COMPOSITE and GISTIC.
Table 1, for COVER, shows that regions that are con-

cordant with GISTIC regions have higher frequencies
but moderate confidence scores, while those that are
not concordant with GISTIC regions have lower fre-
quencies but higher confidence scores. The concordant

Figure 6 Comparison to McCarroll’s CNVs. (a) Discordance rates when comparing regions found using COVER and those found by McCarroll
et al., plotted against confidence score thresholds for different values of u. (b) Discordance rates when comparing regions found using
COMPOSITE and those found by McCarroll et al., plotted against composite score thresholds.
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regions have lower discordance rates with sequenced-
based results. Similar patterns in frequencies, confidence
scores and discordance rates are also seen for the
regions found by COMPOSITE. We deduce that GIS-
TIC misses regions that are of low frequencies but high
confidence scores. Hence, it seems that COVER/COM-
POSITE can identify the low-frequency CNVs better. In
addition, of the regions found by GISTIC, those that are
concordant with COVER or COMPOSITE have high
frequencies and moderate confidence scores while those
that are not concordant have low frequencies and low
confidence scores. Again, the concordant regions have
lower discordance rates with sequenced-based results.
From this, we deduce that the regions identified by GIS-
TIC but missed by our methods are those with low fre-
quencies and low confidence scores, and hence more
likely to be false positives.
Comparison to STAC For the purpose of analysis using
STAC, we split each chromosome into 1450-1500 fixed-
size windows with the size of the windows varying from
165 kb for chromosome 1 down to 24 kb for chromo-
some 22, resulting in a total of 32780 windows across
chromosome 1-22. (We tried a smaller window size but
the computational burden became too large, where even
after 48 hours the algorithm was still running in a 3
GHz windows PC with 4 Gb RAM). We used 0.05 as a
cut-off to declare windows with significant frequency or
footprint p-values, and obtained 868 significant windows
with a mean frequency of 0.155. Each significant fixed-
size window will be taken as a significant region.
To compare the regions found by STAC to the

regions found using COVER and COMPOSITE, we
chose threshold parameters to give a number of com-
mon regions closest to that detected by STAC. For
COVER, this corresponded to the choice of u = 2 and
c = 60th percentile, and for COMPOSITE, the 93th per-
centile. We obtained 777 and 805 common regions

respectively. We performed similar analysis as in the
comparison to GISTIC.
A summary of this comparison is shown in Table 2a.

We observe similar results as in the comparison to GIS-
TIC: regions that were identified by STAC but that were
missed by COVER/COMPOSITE have low frequencies
and low confidence scores, but regions identified by
COVER/COMPOSITE that were missed by STAC have
low frequencies but high confidence scores, and were
thus more likely to be true positives.
We also investigated if the relative performance of

STAC would improve if we manually filtered out indivi-
dual regions with lower confidence scores. We decided
to use only individual regions whose confidence scores
were above the median confidence score of all reported
regions. Using this filtered input, STAC identified 654
significant windows. Using u = 2 and c = 70th percen-
tile for COVER and the 93.5th percentile for COMPO-
SITE, we identified a similar number of common
regions (615 for COVER and 610 for COMPOSITE).
Table 2b summarizes the results of this comparison and
our conclusions are similar to those with the unfiltered
input data.
We conclude that COVER and COMPOSITE are able

to detect the majority of the regions found by STAC,
and in addition they also detect common high-confi-
dence CNV regions that occur in a smaller number of
subjects that were missed by STAC.

Implementation
The methods are implemented in an R package
cnvpack. The main input is a list of detected indivi-
dual CNV regions with the following information: Sam-
ple name, chromosome number, detected integer copy
number, start and end genomic locations and a confi-
dence score. The package can be downloaded from
http://www.meb.ki.se/~yudpaw.

Table 1 Comparison with GISTIC.

regions found by overlap? no. of regions mean freq median conf discordance**

COVER ✓ GISTIC 139 0.10 30 62%

✗ GISTIC 190 0.037 37.5 87%

COMPOSITE ✓ GISTIC 162 0.21 20.0 64%

✗ GISTIC 198 0.048 72.8 75%

GISTIC ✓ COVER 153 0.15 22.3 56%

✗ COVER 189 0.072 8.8 84%

✓ COMPOSITE 173 0.15 20.6 61%

✗ COMPOSITE 169 0.058 8.8 82%

✓ - overlap

✗ - no overlap

** discordance rates with Kidd’s sequencing results.

This table shows a summary of the results obtained from comparing COVER/COMPOSITE to GISTIC.
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Downstream analyses
CNV-association analysis
One important use of the identified common CNV
regions is for group comparisons in association stu-
dies. For each region we test whether certain CNVs
are over-represented in one group compared to the
others. Typically, the Fisher’s exact test or chi-squared
test for contingency tables can be used. The test can
be carried out for all identified common CNV regions
and the issue of multiple testing can be dealt with
using the false discovery rate (FDR) assessment. (See
[Additional file 1] on how to use the package for such
analyses.)
As an illustration we performed an association ana-

lysis on the common regions identified in the 112
control subjects using the optimal parameters for
COVER and COMPOSITE. The subjects were grouped
by ethnicity (YRI, CHBJPT and CEU). Both methods
showed that there were a number of highly-significant
CNV regions with p-value < 1e-06. Two of these
regions were detected by both methods. The first one
is a 16.2 kb deletion in chromosome 2 (genomic posi-
tions 203,004,035 to 203,020,242). This region occurs
exclusively in the Yoruba population (17/37) and over-
laps with the BMPR2 gene that has been linked to pri-
mary pulmonary hypertension [22]. The second region
is a 4.6 kb deletion in chromosome 4 (genomic posi-
tions 20,982,707 to 20,987,259) that occurs among
Yoruban (19/37) and CHBJPT (4/29). This region
overlaps with the KCNIP4 gene that is known to

interact with presenilin, a protein that has been
reported to be involved in early-onset Alzheimer’s dis-
ease [23].
Principal component analysis of CNV profiles
We also perform principal component analyses (PCA) to
obtain informative plots of population differentiation in
the CNV profiles (see [Additional file 1] for more infor-
mation). For the HapMap samples, the first two compo-
nents obtained using the optimal COVER parameters
separate the Yoruba population (YRI) from the Cauca-
sian(CEU) and Asian(CHBJPT) populations, but the
other two populations are not very well separated (Fig-
ure S1 in the [Additional file 1]). A better separation
between the CEU and CHBJPT populations is achieved
using the third and fourth components(see Figure 7(a))
and the separation is further improved when we use
CLUSTER to refine the CNV regions identified by
COVER (Figure 7(b)).

Conclusions
We have described and compared two different methods
for identifying common CNV regions. Using 112 Hap-
Map samples, we have shown that these methods pro-
duce common CNV regions that mostly follow Hardy-
Weinberg equilibrium (HWE). For the eight HapMap
samples where we compared the regions we identified
to the reference CNV regions found by sequencing [10],
the discordance rates can be as high as 80%, but this
can be reduced to 60% by considering CNVs with higher
confidence scores, thus showing the importance of

Table 2 Comparison with STAC.

STAC input: all data regions found by overlap? no. of regions mean(freq) median(conf)

COVER ✓ STAC 301 0.084 25.6

✗ STAC 476 0.021 31.2

COMPOSITE ✓ STAC 372 0.14 18.6

✗ STAC 433 0.023 52.5

STAC ✓ COVER 609 0.15 23

✗ COVER 259 0.11 8.1

✓ COMPOSITE 727 0.15 20.5

✗ COMPOSITE 141 0.07 7.21

STAC input: filtered data regions found by overlap? no. of regions mean(freq) median(conf)

COVER ✓ STAC 294 0.068 30.2

✗ STAC 321 0.020 37.6

COMPOSITE ✓ STAC 297 0.14 23.1

✗ STAC 313 0.045 65.2

STAC ✓ COVER 585 0.14 28.1

✗ COVER 69 0.07 16.1

✓ COMPOSITE 595 0.14 26.8

✗ COMPOSITE 59 0.06 20.2

✓ - overlap

✗ - no overlap

This table shows a summary of the results obtained from comparing COVER/COMPOSITE to GISTIC.
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further processing of the CNVs. The high level of dis-
cordance itself might be due to an inherent limitation in
the SNP array as the platform for CNV detection, but
perhaps also due to imperfection in the sequencing-
based results. Further works are needed to explain the
discordance level.
When we compared our methods to previously pub-

lished methods, STAC and GISTIC, we found that our
methods are better at identifying low-frequency CNVs.
Moreover, STAC is rather rigid and insensitive to the
actual breakpoints of a CNV region, because if two con-
secutive windows are reported as significant, we do not
know if there is one large CNV which spans both win-
dows, or two separate and distinct CNVs. Although we
can decrease the window size to increase the resolution,
in practice, decreasing the window size beyond a certain
point will incur too much computational burden.
Another limitation of previous methods is the lack of
consideration of individual-specific confidence scores.
This means that all samples contribute equally to the
calculation of the statistic used to identify the common
regions, while in fact, there is bound to be inter-sample
variability, where some CNVs are more likely to be true
positives than others.
The results of COVER and COMPOSITE are similar

in terms of discordance rates and HWE violation rates,
but COMPOSITE appears to be better at identifying
rare regions. The HWE violation rates are useful in
determining the choice of parameter values for COVER
and COMPOSITE. For this particular data set, we
observed a steeper reduction in HWE violation rates
when we used COVER with a confidence score thresh-
old set above the median or higher. For COMPOSITE, a

more noticeable reduction in HWE violation rates was
observed when we set v to the 94th percentile. For a
new dataset, we encourage users to choose the confi-
dence score and COMPOSITE score parameter thresh-
olds for which steeper reduction in HWE violation rates
can be observed.
When using COVER, the minimum number of indi-

viduals inside a common region (u) needs to be speci-
fied as well. If we are interested in rare variants
in addition to the common variants, then it makes
sense to set u = 1. Otherwise, u ≥ 2 should be used.
A higher u will result in the identification of fewer,
but more highly-recurrent CNV regions. In our experi-
ence with the HapMap samples, clustering results pro-
duce better separation of the ethnic groups than
indicated by the initial common CNV regions. In com-
parison with the highly-validated CNVs from Conrad
et al. [17], the concordance rate of COVER also
improves after refinement with CLUSTER. So, in sum-
mary, we recommend users to further refine the identi-
fied common CNV regions using CLUSTER.

Additional file 1: The supplementary report documents details on
how to use the R package cnvpack for the various analyses
described in this paper.

Additional file 2: This table shows details of the regions found by
COVER.

Additional file 3: This table shows details of the regions found by
COMPOSITE.
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