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Background: Futibatinib is an oral, irreversible, highly selective fibroblast growth factor receptor (FGFR)1e4 inhibitor
with potent preclinical activity against tumors harboring FGFR aberrations. This first-in-human, phase I dose-escalation
trial (NCT02052778) evaluates the safety and pharmacokinetics/pharmacodynamics of futibatinib in advanced solid
tumors.
Patients and methods: Following a standard 3þ3 dose-escalation design, eligible patients with advanced solid tumors
refractory to standard therapies received 8e200 mg futibatinib three times a week (t.i.w.) or 4e24 mg once daily (q.d.).
Results: A total of 86 patients were enrolled in the nine t.i.w. (n ¼ 42) and five q.d. cohorts (n ¼ 44); 71 patients (83%)
had tumors harboring FGF/FGFR aberrations. Three of nine patients in the 24-mg q.d. cohort experienced dose-limiting
toxicities, including grade 3 increases in alanine transaminase, aspartate transaminase, and blood bilirubin (n ¼ 1 each).
The maximum tolerated dose (MTD) was determined to be 20 mg q.d.; no MTD was defined for the t.i.w. schedule.
Across cohorts (n ¼ 86), the most common treatment-emergent adverse events (TEAEs) were hyperphosphatemia
(59%), diarrhea (37%), and constipation (34%); 48% experienced grade 3 TEAEs. TEAEs led to dose interruptions,
dose reductions, and treatment discontinuations in 55%, 14%, and 3% of patients, respectively. Pharmacokinetics
were dose proportional across all q.d. doses but not all t.i.w. doses evaluated, with saturation observed between 80
and 200 mg t.i.w. Serum phosphorus increased dose dependently with futibatinib on both schedules, but a stronger
exposureeresponse relationship was observed with q.d. dosing, supporting 20 mg q.d. as the recommended phase
II dose (RP2D). Overall, partial responses were observed in five patients [FGFR2 fusion-positive intrahepatic
cholangiocarcinoma (n ¼ 3) and FGFR1-mutant primary brain tumor (n ¼ 2)], and stable disease in 41 (48%).
Conclusions: Futibatinib treatment resulted in manageable safety, pharmacodynamic activity, and preliminary
responses in patients with advanced solid tumors. The results of this phase I dose-escalation trial support 20 mg
q.d. futibatinib as the RP2D.
Clinical trial registration: FOENIX-101 (ClinicalTrials.gov, NCT02052778).
Key words: FGFR inhibitor, futibatinib, pharmacokinetics, safety, TAS-120
INTRODUCTION

Aberrant fibroblast growth factor receptor (FGFR) signaling
is associated with oncogenesis,1 and genomic aberrations
(amplifications, translocations, fusions, and activating point
mutations) of FGFR1e4 are found across several tumor
types.2
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FGFR has been shown to be a valid target in FGFR-
deregulated cancers, with several FGFR inhibitors under
clinical investigation.3e7 Although promising activity and
tolerability have been reported, most FGFR inhibitors in
development are reversible ATP-competitive inhibitors,3e7

and drug resistance is emerging as a major challenge with
such inhibitors.8e10 Newer, more potent FGFR inhibitors
with less susceptibility to drug resistance are needed.

Futibatinib (TAS-120), a structurally novel, irreversible,
highly selective FGFR1e4 inhibitor, inhibits all four FGFR
subtypes at nearly equal subnanomolar concentrations
in vitro and has exhibited potent antiproliferative activity in
a number of FGFR-deregulated cell lines and xenograft
models.11 Futibatinib forms a rapid covalent adduct with a
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cysteine in the P-loop of the kinase domain and captures
multiple FGFR P-loop conformations, unlike reversible ATP-
competitive inhibitors.12 In cell line experiments, futibatinib
inhibited FGFR mutants resistant to ATP-competitive in-
hibitors with nearly the same potency as wild-type FGFR,
and fewer drug-resistant clones emerged with prolonged
futibatinib treatment than with ATP-competitive inhibitor
treatment.13

Here we report results from the dose-escalation portion
of a first-in-human phase I study of futibatinib in patients
with advanced solid tumors. The objective was to investi-
gate the safety, pharmacokinetics (PK), and preliminary
activity of futibatinib to determine the maximum tolerated
dose (MTD) and recommended phase II dose (RP2D).

PATIENTS AND METHODS

Study design, patients, and treatment

This open-label, multicenter, phase I study (NCT02052778)
enrolled patients with histologically/cytologically confirmed
advanced metastatic solid tumors with any number of prior
therapies. Enrollment was planned to be restricted to pa-
tients with FGF/FGFR aberrations (screened locally) from
dose level 5 of both dosing schedules [56 mg three times a
week (t.i.w.); 36 mg once daily (q.d.)]. An intermediate
20-mg q.d. dose cohort enrolling patients with tumors
harboring FGF/FGFR aberrations was added per a protocol
amendment dated 15 May 2017. Additional eligibility
criteria included an Eastern Cooperative Oncology Group
performance status of 0 or 1, adequate alanine amino-
transferase (ALT) and aspartate aminotransferase [AST;
�3� upper limit of normal (ULN); �5� ULN if liver me-
tastases were present], and adequate total bilirubin (�1.5�
ULN). Patients with evidence of endocrine alteration of
calciumephosphorus homeostasis, ectopic mineralization,
or corneal disorder/keratopathy were excluded (see
supplementary Methods, available at Annals of Oncology
online, for additional screening/eligibility criteria).

The primary objective of the dose-escalation portion was
to investigate the safety and tolerability of futibatinib
administered on a t.i.w. (Monday, Wednesday, and Friday)
dosing schedule or a continuous q.d. dosing schedule to
determine MTD and RP2D. Secondary objectives included
assessment of clinical PK, pharmacodynamics (PD), and
preliminary antitumor activity of futibatinib. RP2D was
based on the MTD and the safety, PK, PD, and preliminary
efficacy data.

Dose escalation followed a 3þ3 design in which three to
six patients were enrolled into 8-, 16-, 24-, 36-, 56-, 80-,
120-, 160-, and 200-mg cohorts on a t.i.w. dosing schedule
and 4-, 8-, 16-, 20-, and 24-mg cohorts on a q.d. dosing
schedule. Escalation to the next level occurred if initially
enrolled patients did not experience a dose-limiting toxicity
(DLT; supplementary Methods, available at Annals of
Oncology online). Dose escalation was initiated at t.i.w.
dose level 1 (8 mg), and when t.i.w. dose escalation reached
dose level 5 (56 mg), enrollment was initiated in the q.d.
cohorts (supplementary Figure S1, available at Annals of
1406 https://doi.org/10.1016/j.annonc.2020.06.018
Oncology online). Futibatinib was administered on an
empty stomach (in 21-day treatment cycles) until disease
progression [clinical or per Response Evaluation Criteria of
Solid Tumors version 1.1 (RECIST v1.1)], unacceptable
toxicity, or withdrawal of consent.

This trial was approved by the institutional review boards
of participating centers and was conducted according to
Good Clinical Practice principles and in accordance with the
Declaration of Helsinki. All patients provided written
informed consent.

Assessments

Safety was monitored from first study drug dose until 30
days after the last dose (or initiation of another anticancer
therapy). Adverse events (AEs) were graded according to
National Cancer Institute Common Terminology Criteria for
Adverse Events version 4.03. A DLT was defined as one or
more of the following drug-related toxicities occurring
during cycle 1: grade �3 nonhematologic toxicity (excluding
diarrhea/nausea/vomiting); grade �3 diarrhea or nausea/
vomiting lasting >48 h; grade 4 neutropenia or thrombo-
cytopenia, febrile neutropenia, hyperphosphatemia
(defined as serum phosphorus of >7 mg/dl for >7 days, >9
mg/dl for 14 days despite phosphorus-lowering therapies,
or >10 mg/dl), creatinine increase (>1.5� ULN for 7 days);
grade 2 hypercalcemia for >7 days; ectopic de novo calci-
fication in soft tissues; or any grade >2 treatment-related
AE preventing completion of cycle 1 or initiation of cycle
2 (beyond a 21-day delay). Serum phosphorus was assessed
at screening, on day 1 (predose), and on days 8 and 15 of
cycles 1 and 2. Serum phosphorus continued to be moni-
tored on day 8 of each subsequent cycle, if clinically indi-
cated or if previous assessments showed serum phosphorus
elevations. Hyperphosphatemia was managed with dose
modifications, phosphate binders, and diet modifications.
Dose-reduction and discontinuation criteria are detailed in
supplementary Methods, available at Annals of Oncology
online.

Tumor assessments were performed up to 28 days prior
to cycle 1 initiation, at the end of cycles 2 and 4, and every
3 cycles thereafter. Tumor response was assessed according
to RECIST v1.1.

Blood samples for PK and PD measurements were
collected on day 1 and the last Wednesday of cycle 1 of the
t.i.w. dosing schedule and on days 1 and 21 of the q.d.
dosing schedule at the following time points: 0 h (predose)
and 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 h postdose on both
schedules, as well as at 48 h on the t.i.w. schedule.

For PK assessments, futibatinib was measured in plasma
and urine by validated liquid chromatography with tandem
mass spectrometry (supplementary Methods, available at
Annals of Oncology online). Serum phosphorus and FGF23
were assessed as PD markers.

Statistical considerations

The safety and efficacy analysis included all patients who
received �1 dose of study drug. Patients who experienced a
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Table 1. Baseline demographics and disease characteristics

Combined t.i.w.
cohorts
(n [ 42)

Combined q.d.
cohorts
(n [ 44)

Overall
population
(N [ 86)

Age, y
Mean (SD) 58.6 (12.6) 54.3 (14.1) 56.4 (13.5)

Sex, n (%)
Male 19 (45) 15 (34) 34 (40)
Female 23 (55) 29 (66) 52 (60)

Race, n (%)
White 31 (74) 28 (64) 59 (69)
Black 1 (2) 1 (2) 2 (2)
Asian 0 (0) 3 (7) 3 (3)
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DLT during cycle 1 or completed cycle 1 having received
�80% of the planned study drug dose were considered DLT
evaluable. Descriptive analyses were provided for efficacy
end points.

Plasma PK parameters were calculated by standard non-
compartmental methods using Phoenix WinNonlin Profes-
sional (version 6.3 or later; Certara, Princeton, NJ). Dose
proportionality of futibatinib was assessed by power regres-
sion analyses.14 PD analyses involved assessing the relation-
ship between increases in serum phosphorus levels and
futibatinib dose or systemic exposure (see supplementary
Methods, available at Annals of Oncology online).
Other 1 (2) 1 (2) 2 (2)
Missing/unknown 9 (21) 11 (25) 20 (23)

ECOG PS, n (%)
0 10 (24) 16 (36) 26 (30)
�1 32 (76) 28 (64) 60 (70)

Cancer type, n (%)
Cholangiocarcinoma 7 (17) 17 (39) 24 (28)
Intrahepatic 6 (14) 16 (36) 22 (26)
Extrahepatic 1 (2) 1 (2) 2 (2)

Breast 7 (17) 5 (11) 12 (14)
Colorectal 7 (17) 5 (11) 12 (14)
Brain 3 (7) 4 (9) 7 (8)
Urothelial 2 (5) 2 (5) 4 (5)
Other solid tumorsa 16 (38) 11 (25) 27 (31)
Head and neck 3 (7) 0 (0) 3 (3)
Esophageal 2 (5) 1 (2) 3 (3)
Cervical 0 (0) 2 (5) 2 (2)
Gastric 1 (2) 1 (2) 2 (2)
NSCLC 2 (5) 0 (0) 2 (2)
Sarcoma 1 (2) 1 (2) 2 (2)
Skin 1 (2) 1 (2) 2 (2)

Number of prior regimens, n (%)b

1 5 (12) 13 (30) 18 (21)
2 8 (19) 9 (20) 17 (20)
3 11 (26) 5 (11) 16 (19)
�4 17 (40) 17 (39) 34 (40)

ECOG PS, Eastern Cooperative Oncology Group performance status; NSCLC, none
small cell lung cancer; q.d., once daily; SD, standard deviation; t.i.w., 3 times a week.
RESULTS

Patient demographics and disposition

Between 21 July 2014 and 29 August 2017, 86 patients were
enrolled into nine t.i.w. (n ¼ 42) and five q.d. dosing co-
horts (n ¼ 44; supplementary Figure S1, available at Annals
of Oncology online). In the overall patient population (n ¼
86), the most common cancer types were chol-
angiocarcinoma [CCA; 24 patients (28%)], breast cancer [12
(14%)], colorectal cancer [12 (14%)], brain tumors [7 (8%)],
and urothelial cancer [4 (5%); Table 1]; 50 patients (58%)
had received �3 prior regimens. FGF/FGFR aberration sta-
tus was available for 74 patients (86%), and 71 (83%) had
tumors harboring �1 FGF/FGFR aberration (supplementary
Table S1, available at Annals of Oncology online). The most
common aberrations were FGFR1 amplifications (n ¼ 15)
and FGFR2 fusions (n ¼ 15). At the time of data cut-off (12
July 2019), all patients in the dose-escalation cohorts had
discontinued treatment, most [77 (90%)] because of disease
progression.
a In the overall population, there was one patient each with appendix cancer,
endometrial cancer, gallbladder cancer, mesothelioma, neuroendocrine tumor,
neuroblastoma, ovarian cancer, prostate cancer, and renal cell carcinoma; there
were two patients with adenocarcinoma of unknown primary site.
b One patient in the combined t.i.w. cohorts did not receive prior anticancer therapy.
Safety

The median duration of treatment was 49 (range, 8e359)
and 68 days (range, 1e735) in the combined t.i.w. cohorts
and q.d. cohorts, respectively, with a median of 2 (range,
0e15) and 2.5 treatment cycles (range, 0e35) completed.

One DLT [treatment-related grade 4 increased blood
creatine phosphokinase (CPK)] was reported among six
evaluable patients in the 8-mg t.i.w. cohort. However, no
DLTs were reported in other t.i.w. cohorts including at the
highest t.i.w. dose tested (200 mg); therefore, MTD was not
defined for the t.i.w. schedule. Dose was not escalated
beyond 200 mg on the t.i.w. schedule, because PK analyses
showed saturation of futibatinib exposure beyond 80 mg.
No DLTs were observed at 4, 8, 16, or 20 mg q.d. futibatinib,
but of nine DLT-evaluable patients in the 24-mg q.d. cohort,
three patients [with CCA (n ¼ 2) and neuroendocrine tumor
in liver (n ¼ 1)] experienced DLTs [grade 3 elevations of ALT,
AST, and blood bilirubin (n ¼ 1, each)]. Therefore, dose
escalation was halted in the q.d. cohorts, and 20 mg q.d.
was defined as the MTD.

In the overall population, 41 patients (48%) experienced
grade 3 treatment-emergent AEs (TEAEs), most frequently
hyperphosphatemia (12%), hyponatremia (7%), and anemia
Volume 31 - Issue 10 - 2020
(6%); 26 (30%) experienced treatment-related grade 3 AEs
(Table 2). Five patients (6%) had grade 4 TEAEs [one patient
each with increased lipase and increased CPK (t.i.w. cohorts);
one patient each with increased gamma glutamyl transferase,
increased CPK, and bile duct obstruction (q.d. cohorts)]; both
cases of increased CPK were considered treatment related.

Hyperphosphatemia, an on-target effect of futibatinib via
FGFR1 inhibition, was the most common TEAE, occurring in
21 of 42 patients [50%; grade 3: 3 (7%)] in the combined
t.i.w. cohorts and 30 of 44 patients [68%; grade 3: 7 (16%)]
in the combined q.d. cohorts. Hyperphosphatemia led to
dosing interruptions in 15 patients (17%) and dose re-
ductions in five (6%).

Other frequent any-grade TEAEs in the overall population
included diarrhea (37%), constipation (34%), dry mouth
(29%), nausea (29%), and anemia (26%). Six patients (7%)
experienced palmar plantar erythrodysesthesia syndrome
(all grade 1/2 events). Most nail toxicities [nail changes
https://doi.org/10.1016/j.annonc.2020.06.018 1407
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Table 2. Treatment-emergent adverse events

Combined t.i.w. cohorts (n [ 42)a

n (%)
Combined q.d. cohorts (n [ 44)b

n (%)

Any grade Grade 1 Grade 2 Grade 3 Grade 4 Any grade Grade 1 Grade 2 Grade 3 Grade 4

Any TEAE 42 (100) 3 (7) 14 (33) 20 (48) 2 (5) 44 (100) 5 (11) 11 (25) 21 (48) 3 (7)
Any treatment-related AE 37 (88) 12 (29) 14 (33) 10 (24) 1 (2) 41 (93) 13 (30) 11 (25) 16 (36) 1 (2)
Action taken because of TEAE
Dosing delay/interruption 21 (50) 0 (0) 6 (14) 14 (33) 1 (2) 26 (59) 1 (2) 9 (20) 16 (36) 0 (0)
Dose reduction 4 (10) 0 (0) 3 (7) 1 (2) 0 (0) 8 (18) 0 (0) 1 (2) 6 (14) 1 (2)
Treatment discontinuation 1 (2) 0 (0) 0 (0) 1 (2) 0 (0) 2 (5) 0 (0) 1 (2) 1 (2) 0 (0)

TEAEs in �10% of patientsc

Hyperphosphatemia 21 (50) 7 (17) 11 (26) 3 (7) 0 (0) 30 (68) 13 (30) 10 (23) 7 (16) 0 (0)
Constipation 11 (26) 10 (24) 1 (2) 0 (0) 0 (0) 18 (41) 13 (30) 4 (9) 1 (2) 0 (0)
Diarrhea 17 (40) 12 (29) 5 (12) 0 (0) 0 (0) 15 (34) 9 (20) 5 (11) 1 (2) 0 (0)
Nausea 12 (29) 11 (26) 0 (0) 1 (2) 0 (0) 13 (30) 8 (18) 3 (7) 2 (5) 0 (0)
ALT increased 5 (12) 3 (7) 1 (2) 1 (2) 0 (0) 11 (25) 4 (9) 4 (9) 3 (7) 0 (0)
AST increased 4 (10) 1 (2) 3 (7) 0 (0) 0 (0) 11 (25) 4 (9) 5 (11) 2 (5) 0 (0)
Dry mouth 14 (33) 13 (31) 1 (2) 0 (0) 0 (0) 11 (25) 10 (23) 1 (2) 0 (0) 0 (0)
Vomiting 9 (21) 5 (12) 3 (7) 1 (2) 0 (0) 11 (25) 6 (14) 3 (7) 2 (5) 0 (0)
Anemia 13 (31) 2 (5) 8 (19) 3 (7) 0 (0) 9 (20) 1 (2) 6 (14) 2 (5) 0 (0)
Asthenia 9 (21) 5 (12) 4 (10) 0 (0) 0 (0) 9 (20) 3 (7) 6 (14) 0 (0) 0 (0)
Stomatitis 5 (12) 2 (5) 1 (2) 2 (5) 0 (0) 9 (20) 6 (14) 2 (5) 1 (2) 0 (0)
Decreased appetite 9 (21) 5 (12) 3 (7) 1 (2) 0 (0) 7 (16) 5 (11) 2 (5) 0 (0) 0 (0)
Fatigue 7 (17) 2 (5) 5 (12) 0 (0) 0 (0) 7 (16) 3 (7) 3 (7) 1 (2) 0 (0)
Abdominal pain 8 (19) 4 (10) 2 (5) 2 (5) 0 (0) 6 (14) 1 (2) 4 (9) 1 (2) 0 (0)
Alopecia 4 (10) 4 (10) 0 (0) 0 (0) 0 (0) 6 (14) 6 (14) 0 (0) 0 (0) 0 (0)
Dry skin 7 (17) 6 (14) 1 (2) 0 (0) 0 (0) 6 (14) 6 (14) 0 (0) 0 (0) 0 (0)
Back pain 3 (7) 2 (5) 1 (2) 0 (0) 0 (0) 5 (11) 3 (7) 2 (5) 0 (0) 0 (0)
Cough 2 (5) 2 (5) 0 (0) 0 (0) 0 (0) 5 (11) 5 (11) 0 (0) 0 (0) 0 (0)
Dry eye 2 (5) 2 (5) 0 (0) 0 (0) 0 (0) 5 (11) 4 (9) 1 (2) 0 (0) 0 (0)
Pyrexia 5 (12) 4 (10) 0 (0) 1 (2) 0 (0) 5 (11) 3 (7) 1 (2) 1 (2) 0 (0)
Hypomagnesemia 5 (12) 4 (10) 1 (2) 0 (0) 0 (0) 3 (7) 3 (7) 0 (0) 0 (0) 0 (0)
Headache 7 (17) 6 (14) 1 (2) 0 (0) 0 (0) 2 (5) 0 (0) 1 (2) 1 (2) 0 (0)
Hyponatremia 5 (12) 1 (2) 0 (0) 4 (10) 0 (0) 2 (5) 0 (0) 0 (0) 2 (5) 0 (0)
Onycholysis 5 (12) 4 (10) 1 (2) 0 (0) 0 (0) 1 (2) 1 (2) 0 (0) 0 (0) 0 (0)
Rash 5 (12) 5 (12) 0 (0) 0 (0) 0 (0) 1 (2) 1 (2) 0 (0) 0 (0) 0 (0)
Hypercalcemia 5 (12) 1 (2) 1 (2) 3 (7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Urinary tract infection 5 (12) 0 (0) 4 (10) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; q.d., once daily; TEAE, treatment-emergent adverse event; t.i.w., 3 times a week.
a Three patients had grade 5 events [hematemesis (n ¼ 1), disease progression (n ¼ 1), and respiratory distress (n ¼ 1)], none of which were reported to be treatment related.
b Four patients had grade 5 events [disease progression (n ¼ 3) and respiratory failure (n ¼ 1)], none of which were reported to be treatment related.
c By decreasing order in the combined q.d. cohorts.
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(17%) and nail infection (7%)] or ocular toxicity [vision
disorders (10%), dry eye (9%), and corneal/retinal disorders
(3%)] were grade 1/2 in severity. Overall, TEAEs were
managed with dosing interruptions [in 47 patients (55%)]
and dose reductions [12 (14%)]. One patient in the 24-mg
cohort discontinued treatment owing to treatment-related
nausea and vomiting. Unrelated AEs leading to treatment
discontinuation were grade 3 spinal cord compression
(n ¼ 1; 24-mg q.d. cohort) and grade 3 hemiparesis (n ¼ 1;
120-mg t.i.w. cohort).

No treatment-related deaths were reported. Seven
deaths that occurred (within 30 days of drug administra-
tion) were related to disease progression [disease pro-
gression (n ¼ 4), hematemesis (n ¼ 1), respiratory distress
(n ¼ 1), and respiratory failure (n¼1)].
Pharmacokinetics

In the t.i.w. dosing cohorts, the area under the
concentrationetime curve (AUC) and the maximum plasma
concentration of futibatinib (Cmax) increased with dose from
8 to 80 mg; however, mean PK parameters in the 120-, 160-,
1408 https://doi.org/10.1016/j.annonc.2020.06.018
and 200-mg cohorts were similar to those in the 80-mg
cohort (Table 3). An analysis with a power regression
model suggested that Cmax increased in less than a dose-
proportional manner in the 8e200-mg dose range
(supplementary Table S2 and Figure S2AeC, available at
Annals of Oncology online). However, in the q.d. dosing
cohorts, Cmax and AUC increased with dose across all doses
tested (Table 3), and both parameters were observed to be
statistically dose proportional between 4 and 24 mg q.d.
(supplementary Table S2 and Figure S2DeF, available at
Annals of Oncology online). On both schedules, no signifi-
cant accumulation was observed with repeated doses
(Table 3), and mean plasma concentrations were compa-
rable at predose and postdose on the last dosing day of
cycle 1, indicating a steady state by cycle 1 end
(supplementary Figure S3, available at Annals of Oncology
online). On days 1 and 21, Cmax values for the MTD (20 mg
q.d.) were 256.70 and 170.58 ng/ml, respectively (reached
1.9 and 3.5 h after dose administration); on both days,
plasma concentrations decreased with a mean half-life of
z3 h (Table 3). Urinary excretion of futibatinib was lower
than 0.01% of the dose.
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Table 3. Descriptive PK parameters of futibatinib in the t.i.w. and q.d. dosing cohorts during cycle 1

Dose level Day 1 Last Wednesday (t.i.w.) or Day 21 (q.d.)

Statistica Tmax

(h)
T1/2
(h)

Cmax

(ng/ml)
AUC0elast
(ng$h/ml)

AUC0einf
(ng$h/ml)

Tmax

(h)
T1/2
(h)

Cmax

(ng/ml)
AUC0elast
(ng$h/ml)

RCmax RAUC

8 mg t.i.w. n 6 6 6 6 6 4 4 4 4 4 4
Mean 1.04 2.08 85.54 304.22 314.71 1.48 2.01 105.50 471.68 1.43 1.53
SD (1.00e4.05) 0.90 46.34 217.59 217.45 (0.60e2.08) 1.26 35.94 329.37 0.82 0.911

16 mg t.i.w. n 3 3 3 3 3 3 3 3 3 3 3
Mean 1.00 2.11 206.60 736.13 743.71 1.00 2.75 213.46 1047.97 1.00 1.35
SD (1.00e2.00) 1.12 41.32 504.26 508.41 (1.00e1.92) 1.89 99.79 958.08 0.26 0.45

24 mg t.i.w. n 3 2 3 3 2 3 2 3 3 3 3
Mean 3.00 3.52 257.94 1791.54 2204.22 1.05 5.99 360.82 2206.22 1.26 1.09
SD (1.00e3.98) NC 87.86 686.01 NC (1.00e2.33) NC 246.06 1544.77 0.64 0.56

36 mg t.i.w. n 3 3 3 3 3 2 2 2 2 2 2
Mean 2.00 4.84 556.11 2673.12 2678.16 2.56 6.57 735.91 4490.81 1.81 2.72
SD (1.00e2.00) 2.25 419.09 2074.83 2076.27 (2.05e3.08) NC NC NC NC NC

56 mg t.i.w. n 3 3 3 3 3 3 3 3 3 3 3
Mean 3.08 5.97 695.30 3291.27 3297.87 2.00 6.24 929.75 4579.39 1.34 1.66
SD (2.27e4.08) 2.20 440.01 1827.04 1826.57 (2.00e3.08) 2.80 597.45 1595.43 0.72 1.07

80 mg t.i.w. n 4 3 4 4 3 5 5 5 5 4 4
Mean 2.50 4.77 964.22 7472.25 9557.05 3.00 5.28 756.96 6772.54 1.15 1.27
SD (1.50e5.82) 1.69 575.42 5566.05 4978.57 (2.00e4.00) 1.15 246.27 3128.50 1.05 1.09

120 mg t.i.w. n 4 3 4 4 3 3 3 3 3 3 3
Mean 3.04 6.18 712.99 6635.74 5313.53 3.17 10.62 909.67 10 641.51 1.12 1.22
SD (2.05e3.95) 1.02 168.70 2993.76 938.91 (3.00e6.08) 8.69 645.05 10 684.25 0.68 0.79

160 mg t.i.w. n 8 6 8 8 6 3 3 3 2 3 2
Mean 2.52 8.75 819.22 7983.30 10 012.85 5.57 3.99 862.83 9135.52 0.95 0.70
SD (2.00e4.50) 3.28 363.18 6866.19 6940.93 (2.00e8.00) 1.88 296.09 NC 0.22 NC

200 mg t.i.w. n 7 6 7 7 6 1 0 1 1 1 1
Mean 2.00 9.55 1291.87 10 083.94 11 725.92 d d 845.09 5780.39 0.83 0.68
SD (2.00e4.50) 5.72 918.52 9019.26 9022.04 d d NC NC NC NC

4 mg q.d. n 4 4 4 4 4 3 3 3 3 3 3
Mean 0.96 1.75 33.10 114.08 116.96 1.08 1.63 52.47 134.17 2.07 2.06
SD (0.50e2.02) 0.51 20.38 85.89 87.00 (1.00e3.00) 0.75 38.13 100.47 0.33 0.72

8 mg q.d. n 5 4 5 5 4 5 5 5 5 5 5
Mean 2.00 2.26 168.89 666.07 523.74 2.00 2.75 98.16 550.41 1.32 1.37
SD (1.00e25.50) 0.78 149.75 504.84 421.23 (1.00e3.08) 0.59 56.52 442.30 1.53 1.12

16 mg q.d. n 14 14 14 14 14 9 9 9 9 9 9
Mean 2.00 2.73 148.35 536.16 549.25 2.07 2.53 171.67 736.73 1.24 1.65
SD (1.00e3.00) 1.76 67.04 283.78 290.38 (0.93e3.07) 1.13 72.65 373.30 0.61 0.67

20 mg q.d. n 7 6 7 7 6 2 2 2 2 2 2
Mean 1.92 2.94 256.70 1189.00 1301.45 3.52 3.44 170.58 1179.48 0.73 1.17
SD (1.00e3.00) 0.78 70.07 647.98 654.98 (3.05e3.98) NC NC NC NC NC

24 mg q.d. n 14 13 14 14 13 3 2 3 3 3 3
Mean 1.98 3.13 245.76 1217.25 1270.29 2.00 3.12 193.56 1415.66 0.92 1.51
SD (0.98e3.08) 0.94 112.73 656.03 668.46 (1.98e6.07) NC 112.37 903.24 0.31 0.86

AUC0elast, area under the concentrationetime curve from time 0 to the last observable concentration; AUC0einf, area under the concentrationetime curve from time 0 to infinite
time; Cmax, maximum plasma concentration; NC, not calculable; PK, pharmacokinetics; q.d., once daily; SD, standard deviation; RAUC, accumulation ratio calculated based on
AUC0elast; RCmax, accumulation ratio calculated based on Cmax; SD, standard deviation; T1/2, terminal half-life time; Tmax, time to maximum plasma concentration; t.i.w.., 3 times a
week.
a Mean and SD are displayed for all parameters except Tmax, for which the median (minimumemaximum) is presented.

R. Bahleda et al. Annals of Oncology
Pharmacodynamics

Because FGFRs play an important role in phosphorus ho-
meostasis through renal FGF23-mediated signaling,15

serum phosphorus was selected as a PD biomarker for
FGFR inhibition and for assessing doseeresponse correla-
tions with futibatinib. Serum phosphorus increased with
repeated futibatinib doses on both schedules. Across t.i.w.
and q.d. cohorts, the average phosphorus concentration
(Cavg) correlated positively with futibatinib dose
(supplementary Figure S4A, available at Annals of Oncology
online) and exposure (AUC0einf) (supplementary
Figure S4B, available at Annals of Oncology online). How-
ever, the correlation between serum phosphorus levels and
dose/exposure was stronger in the q.d. than in the t.i.w.
Volume 31 - Issue 10 - 2020
cohorts, as indicated by the steeper slopes of the q.d.
regression lines. Serum FGF23 levels initially decreased
with futibatinib dosing, reached minimum levels 8e24 h
postdose, and then increased to baseline or higher levels at
24e48 h postdose. Repeated doses resulted in increased
FGF23 levels, which showed a trend of dose dependency
with t.i.w. and q.d. dosing.
Antitumor activity

Across cohorts, five patients experienced a best overall
response of confirmed partial response (PR), and 41 (21
with t.i.w. and 20 with q.d. dosing) experienced stable
disease (SD; Figure 1). Most patients with PRs or SD had
tumors harboring FGF/FGFR aberrations; in several patients,
https://doi.org/10.1016/j.annonc.2020.06.018 1409
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Figure 1. Best percentage change in target lesions from baseline by patient in the (A) t.i.w. cohorts and (B) the q.d. cohorts.
Types of FGF or FGFR abnormalities detected in pretreatment biopsies are indicated in the grids underneath the plots. Any available genetic characterization of FGFR
abnormalities (black type) or unrelated gene abnormalities (burgundy type) is provided above the grid. Asterisks indicate confirmed partial responses. aPatient had
abnormalities in w30 genes in addition to those indicated. Patients had, in addition to those indicated, abnormalities in the following genes: bAKT2, TGFB1, and HDAC8;
cMAP3K1 and MLL3; and dMDM4, IKBE, and BAP1. CNS, central nervous system; FGFR, fibroblast growth factor receptor; NSCLC, nonesmall cell lung cancer.
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other genetic abnormalities were also detected. Confirmed
PRs were observed in three patients with intrahepatic CCA
(iCCA) harboring FGFR2eSORBS1 or FGFR2eBICC1 fusions
(n ¼ 2, 16-mg q.d. cohort; n ¼ 1, 24-mg q.d. cohort), one
1410 https://doi.org/10.1016/j.annonc.2020.06.018
patient with glioblastoma (FGFR1 N546D mutation; 16-mg
q.d. cohort), and one patient with anaplastic oligoden-
droglioma (FGFR1 M563I/K687E mutation; 160-mg t.i.w.
cohort; supplementary Table S3, available at Annals of
Volume 31 - Issue 10 - 2020
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Oncology online). Four of five responses occurred within 3
months of initiating futibatinib, and responses lasted >6
months in three patients, and >12 months in two patients.
One responder with iCCA had experienced disease pro-
gression on prior infigratinib (BGJ398), and was subse-
quently treated with futibatinib for 15.6 months. As much
as 18 of 24 patients (75%) with CCA experienced PR or SD.
DISCUSSION

Futibatinib, an irreversible, highly selective FGFR1e4 in-
hibitor, has demonstrated potent antitumor activity against
FGFR-deregulated tumors in preclinical studies; both once-
daily and intermittent dosing schedules resulted in anti-
tumor activity in animal models.11,16 This first-in-human
dose-escalation study evaluated futibatinib administered
on t.i.w. and q.d. dosing schedules in patients with
advanced solid tumors. Three DLTs, all related to liver
enzyme elevations, were observed at the highest dose
tested (24 mg) on the q.d. schedule; therefore, 20 mg q.d.
was defined as the MTD. RP2D dose selection was also
based on PK/PD data. Although MTD was not defined for
the t.i.w. schedule, saturation of PK parameters was
observed at higher doses, because of which dose escalation
was halted. PD analyses showed a steeper doseeresponse
correlation with q.d. dosing.

Futibatinib demonstrated a tolerable safety profile:
although >50% of patients experienced grade �3 TEAEs,
toxicities were managed with dosing adjustments, and
treatment discontinuations were rare. Hyperphosphatemia,
an expected on-target effect of FGFR1 inhibition, was more
frequent with q.d. (68%) than with t.i.w. dosing (50%),
which correlated with the stronger exposureeresponse
relationship observed with the q.d. dosing schedule. Over-
all, futibatinib safety was consistent across dosing sched-
ules; frequencies of diarrhea, constipation, dry mouth,
nausea, and anemia were lower with q.d. dosing or were
similar between the two schedules. The toxicity profile of
futibatinib, an irreversible inhibitor, was consistent with
that of reversible FGFR inhibitors such as infigratinib and
erdafitinib,3e7 although the incidence of grade 3 hyper-
phosphatemia was slightly higher than that observed with
erdafitinib in urothelial carcinoma.4 However, less than one-
third of all hyperphosphatemia events with futibatinib were
grade 3 in severity and were managed by sevelamer,
decreasing dietary phosphorus intake, and dosing adjust-
ments; no treatment discontinuations occurred due to
hyperphosphatemia. This result indicated that the clinical
impact of this AE was limited.

Greater dose proportionality and a stronger exposuree
response relationship supported the choice of the q.d.
dosing regimen for further investigation. Linear PK was
observed with q.d. but not t.i.w. dosing. Serum phosphorus
increases correlated with increasing doses and exposure on
both the q.d. and t.i.w. schedules, but this effect was greater
in the q.d. than in the t.i.w. cohorts. As phosphorus eleva-
tion is a PD marker of FGFR inhibition,15 these results sug-
gested a greater potential treatment effect with q.d. dosing.
Volume 31 - Issue 10 - 2020
Encouraging preliminary activity was observed with futi-
batinib in this heavily pretreated patient population: nearly
half of all patients experienced SD, and confirmed PRs were
observed in three patients with iCCA with FGFR2 fusions,
including one patient who had received prior FGFR inhibitors
and two patients with FGFR1-mutant primary brain tumors;
many patients with tumor shrinkage had comutations in
addition to FGF/FGFR aberrations. Responses were rapid
(mostly occurring within 3 months) and lasted for >12
months in two of five responders, indicating durable clinical
benefit. Four of five PRs occurred in the 16- and 24-mg q.d.
cohorts. The antitumor activity of futibatinib was particularly
pronounced in patients with iCCA, a difficult-to-treat tumor
type with poor prognosis and no standard treatment options
for inoperable, refractory advanced disease.17

In summary, this phase I dose-escalation trial demon-
strated tolerability, PD activity, and preliminary antitumor
activity of futibatinib in heavily pretreated patients with
advanced solid tumors. Safety and PK data supported 20 mg
futibatinib q.d. as the RP2D. On the basis of these results,
futibatinib has been evaluated in the phase I dose-
expansion portion of this study in multiple tumor types
(recently completed) and in a phase II registrational trial
(NCT02052778) in iCCA with FGFR2 fusions/rearrange-
ments. The phase II trial has completed recruitment, and
results of interim analyses are expected in 2020. In addition,
recruitment is ongoing in other phase II [NCT04024436
(breast cancer)] and phase III [NCT04093362 (iCCA)] trials.
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