
Comparison of Advanced Authorisation Infrastructures for Grid

Computing

A.J. Stell, Dr R.O. Sinnott, Dr J.P. Watt

National e-Science Centre

University of Glasgow, UK

ajstell@dcs.gla.ac.uk

ros@dcs.gla.ac.uk

jwatt@dcs.gla.ac.uk

Abstract

The widespread use of Grid technology and

distributed compute power, with all its

inherent benefits, will only be established if the
use of that technology can be guaranteed

efficient and secure. The predominant method
for currently enforcing security is through the

use of public key infrastructures (PKI) to

support authentication and the use of access
control lists (ACL) to support authorisation.

These systems alone do not provide enough

fine-grained control over the restriction of
user rights, necessary in a dynamic Grid

environment. This paper compares the

implementation and experiences of using the
current standard for Grid authorisation with

Globus - the Grid Security Infrastructure (GSI)

- with the Role-Based Access Control (RBAC)
authorisation infrastructure PERMIS. The

suitability of these security infrastructures for

integration with regard to existing Grid
technology is presented based upon

experiences within the JISC-funded DyVOSE

project.

1. Introduction

Institutions in science and industry are

increasingly turning to distributed computer

technology to achieve higher efficiency and

greater production. Grid technologies allow

distributed resources such as data storage or

CPU compute power to be made available to a

much wider user base beyond the original

domain. To gain optimum use of this resource

sharing, institutions form collaborative

communities known as Virtual Organisations

(VOs). Within these VOs, a flexible approach

to resource use and acquisition must be

adopted but as the degree of trust between

participants varies, it must not be at the

expense of security.

To enforce security in such an open and

dynamic environment presents many

challenges and any solution must allow for a

variety of fine-grained security policies to be

realised. At the same time, this infrastructure

needs to be simple to use, set up and deploy.

The most common approach for security is

based upon authentication, whereby a user

makes an action request and they are

challenged to prove their identity. This is

commonly realised by means of a Public Key

Infrastructure (PKI). In a PKI, a root of trust

issues certificates and keys to trusted users;

these are, upon request, presented to a gate-

keeper that protects the resource. To enforce

authorisation, the process of allowing a user

certain access privileges based on who they

are, the most basic (and currently most

widespread) method is to use an Access

Control List (ACL). The ACL simply lists

which users are allocated given privileges.

These privileges are often achieved through

mapping user requests to specific accounts on

those protected resources, e.g. through a grid-

mapfile which maps a distinguished name

(DN) to a local user account.

Both these methods of security are very

coarse-grained and static in their ability to

ascertain the privileges of a user, and hence

their ability to provide a decision on a resource

request. Grid technology requires dynamic and

quick authorisation decisions, once again

emphasising a balance between flexibility and

security.

Many solutions to this have been proposed in

the Grid community and currently no one

standard has been widely adopted. PERMIS [5,

6, 7], CAS [2], VOMS [8], Cardea [3] and

Akenti [1] are all examples of authorisation

infrastructures. In this paper we present the

implementation effort involved in setting up

and using the Grid Security Infrastructure

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

(GSI) [4], which exemplifies the use of an

ACL, and PERMIS, which uses an advanced

infrastructure based on Role-Based Access

Control (RBAC). The implementation and

application of these infrastructures is discussed

along with an outline of the performance

overheads in applying these technologies.

2. Authorisation Background

Authorisation is closely linked to

authentication. Once a user has had their

identity validated at a remote resource, it is

essential that users actions are restricted based

on who they are, what they are trying to do,

and in what context etc. There are various

methods of enforcing this restriction, the

simplest method being the use of an Access

Control List (ACL), which lists what users

have access to a privilege.

Essentially, a user presents their credentials at

the gate-keeper to a resource, which consults a

list of users. This basic authorisation structure

extends the concept of authentication and no

more. If the user cannot authenticate to the

satisfaction of the gate-keeper then the

resource request will be denied. A problem

that arises when trying to apply this method to

a dynamic Grid environment is that only one

list exists, where there could be many

privileges that require different ACLs. For

example, a user might need access to a given

resource for different purposes within a given

VO. Having a single list with a predefined set

of accounts and user DNs does not support this

multi-role approach. This is a solution that

would not scale well in a large VO.

A more sophisticated method of applying

authorisation controls is through use of Role-

Based Access Control (RBAC) mechanisms,

which allow Privilege Management

Infrastructures (PMI).

2.1 PMI & Role-Based Access Control

The relationship between a PMI and

authorisation is similar to the relationship

between a PKI and authentication.

Consequently, there are many similar concepts

in the two types of infrastructure.

Central to a PMI is the idea of the attribute

certificate (AC), which maintains a binding

between the user and their privilege attributes.

It is similar in notion to the public key

certificate in a PKI. The entity that signs a

public key certificate is a Certification

Authority (CA); the entity that signs attribute

certificates is called an Attribute Authority

(AA). The root of trust of a PKI is often called

the root CA, which can delegate this trust to a

subordinate CA; the root of trust of a PMI is

called the Source of Authority (SOA). The

SOA may have subordinate authorities to

which it can delegate powers of authorisation.

Certificate Revocation Lists (CRLs), which

show a list of certificates that should not

longer be accepted as valid, exist in a PKI;

Attribute Certificate Revocation Lists

(ACRLs) exist in a PMI [15].

The critical idea in a PMI is that the access

rights of a user are not held in an ACL but in

the privilege attributes of the ACs that are

issued to the users. This is the central idea

behind RBAC – the privilege attribute will

describe one or more of the user’s rights and

the target resource will then read a user’s AC

to see if they are allowed to perform the action

being requested. This de-couples the user’s

privileges from their local identity and allows

a more dynamic and flexible approach to

access control.

The X.812 | ISO 10181-3 Access Control

Framework standard [19] defines a generic

framework to support this type of

authorisation, depicted in figure 1.

ADF

Initiator Target Submit
Access

Request

Present
Access

Request

Decision

Request Decision

AEF

ADF= application independent

Access control Decision Function

Internet

Target Domain

AEF= application dependent

Access control Enforcement Function

User Domain

Figure 1: Overview of X.812 Access Control
Function

In this model, the initiator attempts to access a

target in a remote domain. Two key

components support authorised access to the

target: a Policy Enforcement Point (PEP),

described in the figure as the Access control

Enforcement Point (AEF), and a Policy

Decision Point (PDP), described as the Access

control Decision Function (ADF). The PEP

ensures that all requests to access the target are

run through the PDP and the PDP casts the

authorisation decision on the request based on

a collection of rules (policies). To provide a

generic interface between this framework and

grid-enabled applications, an API has been

proposed and created.

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

2.2 GGF SAML AuthZ API & PERMIS

The GGF (Global Grid Forum) have put

forward an API that provides a generic PEP,

which can be associated with an arbitrary

authorisation infrastructure. The specification

for Grid technologies is an enhanced profile of

the OASIS (Organisation for the Advancement

of Structured Information Standards) Security

Assertion Markup Language (SAML) v1.1

[21].

The OASIS SAML AuthZ specification

defines a message exchange between a PEP

and PDP consisting of an

AuthorizationDecisionQuery (which contains a

subject, a resource and an action) going from

PEP to PDP, and an assertion returned

containing a number of

AuthorizationDecisionStatements.

The GGF SAML AuthZ specification [20]

defines a SimpleAuthorizationDecisionStatement

(a boolean stating “granted/denied”) and an

ExtendedAuthorisationDecisionQuery that allows

the PEP to specify whether the simple or full

authorisation decision is to be returned. Figure

2 shows the interactions supported by this API.

Container

Policy

Decision

Point
Signed ACs

(policies, roles etc)

 2. SAML-

 AuthorizationQueryDecision

 3. SAML-

 AuthorizationQueryResponse

 1. Invocation request

4. Response/results

GT3.3

Service

 Deployment descriptor file

(.wsdd) includes information

 on access/usage policies Grid

Client

Figure 2: GGF SAML AuthZ API

By using this API, a generic policy

enforcement engine can be constructed, that

can be used by arbitrary grid services. Instead

of having to explicitly create new policy

engines for every application, the information

can be incorporated into the deployment

descriptor of the service and together with the

policy identifier, the policy repository and the

user DN, authorisation checks can be made for

every method that is accessed on a service.

The PDP in the model above has been realised

in the form of the Privilege and Role

Management Infrastructure Standards

Validation (PERMIS) initiative. This is an EC

project that has built an authorisation

infrastructure to realise a scalable X.509

Attribute Certificate based PMI.

The PERMIS software provides an RBAC

authorisation infrastructure that uses XML

based policies, specifying the access control

decisions to be made for given resources

within a VO. The rules that the policy covers

include:

subject definitions

source of authority definitions

roles and their hierarchies

target resources

which roles are allowed to perform which

actions

Through implementing PERMIS, a dynamic

and flexible authorisation infrastructure is

established.

3. Establishing and Using Grid

Security Infrastructures

To explore Grid security requires Grid services

to have been implemented. Within the

BRIDGES [29] and DyVOSE [11] projects

various Globus Toolkit (v3.3) services have

been prototyped. The steps for creating these

services are similar:

Create a schema file in GWSDL (Grid

Web Services Description Language – a

temporary version of WSDL for use with

the OGSI specification).

Implement the service operations

Construct a deployment descriptor for the

service

Generate and compile the necessary stub

classes.

Package these into a Grid ARchive

(GAR) file, and deploy it into the Globus

container. The service URI is published

upon starting the container.

The client that uses this basic grid service must

have access to two classes specifically

generated for this service:

The first implements the

GridServiceLocator interface and provides

the handle on the service instance.

The second implements the

GridServicePortType interface and is the

stub, which interacts with the service

handle. This is the class instance upon

which the service operations are

performed.

To provide access to the authorisation

infrastructures requires that the infrastructures

are set up and that the services and clients

developed above are modified to use the

infrastructure.

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

3.1 Grid Security Infrastructure (GSI)

Some general security features must be put in

place before GSI can be used. A host

certificate and key must be available to allow

the Globus container to be started up securely.

Also the root certificate and signing policy of

the CA that issued these certificates must be

available – in this implementation, the UK e-

Science Certificate Authority [18] (based in

the Rutherford Appleton Laboratory) was

used, as this provides trust on a national scale.

To set up the authorisation infrastructure in

GSI requires a grid-map file, which provides

the ACL. The grid-map file is traditionally

placed in the /etc/grid-security/ folder. The file

is a list that maps Distinguished Names (DNs)

to local usernames. This provides local

authorisation control, with access to requested

(secured) resources being permitted or denied

depending on whether the DN produced by

creating a proxy certificate corresponds to an

entry on that list. To demand additional

security requirements such as encryption or

signatures, a customised security configuration

file can be written. (The default is gsi-security-

config.xml.)

To make use of this infrastructure requires

modification of the deployment descriptor to

point to the ACL. The service is pointed to the

gridmap file by adding the following

parameters to the deployment descriptor

(server-deploy.wsdd) before building and

deployment:

<parameter = “authorisation”,
value = “gridmap”/>

<parameter = “gridmap”,
 value = “/etc/grid-security/

grid-mapfile”/>

Modifying the deployment descriptor to use a

security configuration file is done by adding a

similar parameter called “securityConfig”. To

enable strong authentication on the client

requires setting properties on the stub. To

enable the client to “shake hands” with the

service in a secure manner, properties on the

relevant stubs must be set so that an action will

only take place if strong authentication has

taken place and the requesting action call has

been found to be valid. In order to do this the

following code is inserted into the client class

to set these properties:

((Stub)stubname)._setProperty(
Constants.GSI_SEC_CONV,
Constants.ENCRYPTION);

This property demands that a secure

conversation is set up by requiring that the stub

has method calls encrypted.

((Stub)stubname)._setProperty(

Constants.AUTHORIZATION,
HostAuthorization.getInstance())

This property allows the client call to be

authorised if a hostname is returned. This is an

example of client-side authorisation that is

performed in addition to the grid-map

authorisation set up on the server side.

Once these modifications have been made, all

services that have these security features

enabled, can be accessed by only those users

with DNs present on the ACL. (This is

essentially security at the container level.) The

users identify themselves by creating proxy

certificates from their own certificate, located

in their home directory.

3.2 PERMIS

In the context of securing grid services,

PERMIS is provided in the form of a grid

service itself, deployed into the same container

as the service to be restricted. This PERMIS

service acts as the PEP between the target and

the PDP. To implement the service, a GAR file

is downloaded from the PERMIS development

pages [28] and deployed into the container.

The infrastructure requires a Lightweight

Directory Access Protocol (LDAP) server to

store the roles and policies in the form of

attribute certificates. The server is set up so

that the DNs on the proxy certificates of the

domains, users and central managers

correspond to the location of the user

certificates. This allows the client to be

identified when making the service call. The

version used is OpenLDAP v2.1, obtained by

CVS from the OpenLDAP software repository

[26]. The LDAP server process can reside on a

separate machine as long as this is visible from

the machine running the Globus container, by

means of an IP address.

In the DyVOSE project [10], to provide users

with certificates that corresponded to the

LDAP structure, it was necessary to create our

own local certificate authority (CA). This

involved creating a root certificate using

OpenSSL [22], signing this certificate and then

using it to create and sign all subsequent user

certificates. This root certificate, originally

created in Privacy Enhanced Mail (PEM)

format, was converted to Direct Encoding

Rules (DER) format and was imported into the

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

Source of Authority (SOA) node on the LDAP

server. The p12 (Personal Information

Exchange) file created for the SOA user was

then used to sign all the attribute certificates

created using the privilege allocator (see

below). As is standard when using Globus in a

security context, the user certificate and key

must be extracted from the p12 file that has

been distributed from their certificate authority

and must be placed in a folder called .globus/

beneath their home directory. The signing

policy and root certificate associated with the

certificate authority must be placed in a folder

called certificates/ beneath the aforementioned

.globus/ folder, for each user. UK e-Science

[18] certificates were not used for DyVOSE,

but will be in future project implementations.

This will allow a much wider user base as UK

e-Science certificates are trusted on a national

scale, whereas a local CA is only trusted by the

certificates that it issues and has local control

over. To attempt to scale the local CA model

up would involve complicated issues such as

creating CA “bridges”. [23]

Two important user tools exist that allow the

necessary XML security policies and attribute

certificates to be created. The policy editor is

a graphical user interface that allows XML

policies to be created using English semantics.

By presenting the concept of domains and

roles in terms that are understandable by non-

computer scientists, the policy editor takes the

input from the policy writer and generates a

policy that fits the necessary XML syntax. The

critical parts of the policy are the users, targets

and actions specified. The other important

graphical tool is the privilege allocator, which

allows attribute certificates to be created.

These attribute certificates, in DER format, can

comprise either the XML policy or the role

that a user can take.

To allow the grid service to be authorised

using the PERMIS Authorisation Service,

three parameters must be added to the

deployment descriptor, either in server-

deploy.wsdd before the service is deployed or

under the relevant service name in server-

config.wsdd, located in the Globus installation

directory. These parameters are:

<parameter = “authorization”,
value = “custom”/>

<parameter = “authzClass”,
value = “org.globus.ogsa.impl

.security.authorization

.SAMLAuthorisationCallout” />

<parameter = “authzService”,
value = “http://localhost:8080/

ogsa/services/decider/
PermisAuthorizationService”/>

These parameters indicate the customised

nature of the authorisation, the class that will

be used for implementing the authorisation

service and the URI that will actually provide

the authorisation service.

Additionally, the PERMIS service must be

pointed towards the LDAP server, the policy

that you wish to use and the source of

authority that manages the policy and roles

within this domain. In order to do this, the

following parameters must be added (or

modified) within server-config.wsdd under the

“decider/PermisAuthorisationService”:

<parameter = “LDAP”,
value = “ldap://cassini.

nesc.gla.ac.uk:389”/>

<parameter = “OID”,
value = “1.0.0.1”/>

<parameter = “SOA”,
value = “cn=Administrator,
o=University of Glasgow, c=GB”/>

The DN given by the client user’s proxy

certificate provides the identification necessary

for the PERMIS engine to recognise what user

is making the service call. To pick the DN up

and use it in this context requires extra Globus

security code to be inserted into the client,

allowing strong authentication to take place

between client and server. The necessary lines

are as follows:

((Stub)stubname)
._setProperty(
Constants.GSI_SEC_CONV,
Constants.SIGNATURE)

((Stub)stubname)
._setProperty(
GSIConstants.GSI_MODE,
GSIConstants.GSI_MODE_NO_DELEG)

((Stub)stubname)
._setProperty(
Constants.AUTHORIZATION,
HostAuthorization.getInstance())

((Stub)stubname)
._setProperty(
Constants.GRIM_POLICY_HANDLER,
new IgnoreProxyPolicyHandler())

These properties require that the credentials

are signed, that they cannot be from a

delegated party, that the container must be

authorised using the host credentials and that

any policies created and maintained using the

Globus GRIM (Grid Resource Identity

Mapper) facility are ignored.

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

4. Experiences and Performance

Analysis of Security

Infrastructures

The JISC-funded DyVOSE project is

investigating advanced RBAC infrastructures

(PERMIS) for dynamic establishment of VOs

within a teaching environment, specifically as

part of the Advanced MSc Grid Computing

module at the University of Glasgow. Students

at Glasgow were asked to develop a Globus

service (version 3.3 of the toolkit) that wraps a

Condor based application, which itself offers

two methods to search and sort a large text file

(the complete works of Shakespeare – 5MB).

The students were split into two groups with

the PERMIS authorisation policy to ensure that

the sort method could only be invoked by

members of their own student group and the

lecturing staff, and that the search method

could be invoked by everyone. Students were

also asked to ensure (through GSI) that the

service itself could only be invoked by

themselves individually and the lecturing staff.

They were requested in particular to undertake

performance benchmarking of the search/sort

application on a single PC; on a Condor pool;

as a grid service on that pool; and to compare

the respective speeds of PERMIS RBAC

authorisation and GSI-based authorisation, on

the service.

Their experiences in developing these services

have offered numerous insights into the

benefits and pitfalls of the Grid. Table 1 shows

the various statistics gathered from the

students - arrived at by averaging the results

reported. The results were most comprehensive

for jobs run on four nodes in the pool, so these

are shown for comparison between security

infrastructures.

Table 1: The job completion times for the
different scenarios.

The time taken to search and sort the given file

typically took, on a single PC, around 2

seconds for the search and 6 seconds for the

sort. Distributing the application across a

Condor pool required that subsets of the data

were distributed and Condor jobs submitted to

the various (16 nodes) of the Condor pool. The

overheads in distributing the sort/search were

significant and typically resulted in taking

around 62 seconds to search the file and 60

seconds to sort it, using all the nodes in the

pool.

The reasons for this are primarily due to the

overheads involved in farming out the jobs

across a network. The time taken to split the

text files, traverse the local network, prepare

the Condor jobs, process them, come back to

the original machine and concatenate the final

results gave a significant time overhead. A

further key factor in the performance is due to

the job being completed when all distributed

Condor jobs have completed, i.e. one queued

or delayed job delays the overall time. Other

issues that contributed was the high network

latency and the non-deterministic nature of

benchmarking on a multi-user system. Possible

solutions to this include the use of NFS to

provide the platform for the Condor pool and

also to increase the size of the data sets to be

analysed.

The GSI-based authorisation of the application

required an increase of around 8-11 seconds to

complete the jobs, compared to the unsecured

service. The PERMIS based authorisation of

the search/sort application took approximately

2-3 seconds more than the unsecured service.

The reasons for these increases were due to the

time overhead in consulting the grid-map file

and the LDAP repository, respectively, then

proceeding through the necessary stages of

credential validation. These results suggest

PERMIS to be more efficient, however the

error margins are relatively large so more

testing must be undertaken before stronger

conclusions can be drawn.

5. Conclusions and Future Plans

Based upon the experiences within the

DyVOSE project, both the PERMIS and GSI

technologies incur considerable overheads,

however in comparison with the overheads

incurred in distributed processing via Condor

these were not so significant. For Grid security

infrastructures such as PERMIS and GSI to be

accepted by the wider Grid community, it is

clear that performance aspects need to be

addressed and developed significantly. This is

Search (s) Sort (s)

Single

Processor

1.7 + 0.4 5.7 + 3.3

Condor Pool

(16 nodes)

62.2 + 4.4 60.7 + 0.1

Condor Pool

(4 nodes)

29.5 + 6.9 35.2 + 1.8

Grid Service

(4 nodes)

31.8 + 5.9 37.6 + 11.2

GSI

(4 nodes)

39.9 + 8.6 48.3 + 15.3

PERMIS

(4 nodes)

34.5 + 8.6 38.5 + 9.8

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

especially true when real time high throughput

Grid applications require fine grained security,

e.g. for secure visualisation. The next stage in

DyVOSE is to use PERMIS in conjunction

with Shibboleth [25] to establish a dynamic

mapping of local PMI’s to a wider

infrastructure involving institutions beyond the

local domain. Future uses of PERMIS also

include the MRC-funded VOTES (Virtual

Organisations for Trials and Epidemiological

Studies) [24] project, which will explore

PERMIS suitability to secure bio-medical data

sets as part of conducting clinical trials.

5.1 Acknowledgements

The authors would like to thank collaborators

from the PERMIS team including Prof David

Chadwick and Dr Sassa Otenko, the other Grid

Computing lecturer at Glasgow, Dr Colin

Perkins, and also the students that provided the

benchmarking data.

6. References

[1] Johnston, W., Mudumbai, S., Thompson, M.

Authorization and Attribute Certificates for Widely

Distributed Access Control, IEEE 7th Int.

Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises,

Stanford, CA, June, 1998, p340-345 (http://www-

itg.lbl.gov/security/Akenti/)

[2] L Pearlman, et al., A Community Authorisation

Service for Group Collaboration, in Proceedings of

the IEEE 3rd International Workshop on Policies

for Distributed Systems and Networks. 2002.

[3] Lepro, R., Cardea: Dynamic Access Control in

Distributed Systems, NASA Technical Report NAS-

03-020, November 2003

[4] Globus Grid Security Infrastructure (GSI),

http://www-

unix.globus.org/toolkit/docs/3.2/gsi/index.html

[5] D.W.Chadwick, A. Otenko, E.Ball, Role-based

Access Control with X.509 Attribute Certificates,

IEEE Internet Computing, March-April 2003, pp.

62-69.

[6] D.W.Chadwick, A. Otenko, The PERMIS X.509

Role Based Privilege Management Infrastructure,

Future Generation Computer Systems, 936 (2002)

1–13, December 2002. Elsevier Science BV.

[7] Privilege and Role Management Infrastructure

Standards Validation project www.permis.org

[8] VOMS Architecture, European Datagrid

Authorization Working group, 5 September 2002.

[9] Steven Newhouse, Virtual Organisation

Management, The London E-Science centre,

http://www.lesc.ic.ac.uk/projects/oscar-g.html

[10] Dynamic Virtual Organisations in e-Science

Education project (DyVOSE),

www.nesc.ac.uk/hub/projects/dyvose

[11] Globus, http://www.globus.org

[12] R. Housley, T. Polk, Planning for PKI: Best

Practices Guide for Deploying Public Key

Infrastructures, Wiley Computer Publishing, 2001.

[13] ITU-T Recommendation X.509 (2001) |

ISO/IEC 9594-8: 2001, Information technology –

Open Systems Interconnection – Public-Key and

Attribute Certificate Frameworks.

[14] JISC Authentication, Authorisation and

Accounting (AAA) Programme Technologies for

Information Environment Security (TIES),

http://www.edina.ac.uk/projects/ties/ties_23-9.pdf.

[15] D. Chadwick, O. Otenko, A Comparison of the

Akenti and PERMIS Authorization Infrastructures,

in Ensuring Security in IT Infrastructures,

Proceedings of ITI First International Conference on

Information and Communications Technology

(ICICT 2003) Cairo University, Ed. Mahmoud T El-

Hadidi, p5-26, 2003

[16] A.J. Stell, Grid Security: An Evaluation of

Authorisation Infrastructures for Grid Computing,

MSc Dissertation, University of Glasgow, 2004.

[17] ITU-T Rec. X.509 (2000) | ISO/IEC 9594-8.

The Directory: Authentication Framework.

[18] UK e-Science Certification Authority,

http://www.grid-support.ac.uk

[19] ITU-T Rec X.812 (1995) | ISO/IEC 10181-

3:1996, Security Frameworks for open systems:

Access control framework

[20] V. Welch, F. Siebenlist, D. Chadwick, S.

Meder, L. Pearlman, Use of SAML for OGSA

Authorization, June 2004,

https://forge.gridforum.org/projects/ogsa-authz

[21] OASIS. Assertions and Protocol for the OASIS

Security Assertion Markup Language (SAML)

v1.1,. 2 September 2003, http://www.oasis-

open.org/committees/security/

[22] OpenSSL to create certificates,

http://www.flatmtn.com/computer/Linux-

SSLCertificates.html

[23] J. Jokl, J. Basney and M. Humphrey,

Experiences using Bridge CAs for Grids,

Proceedings of UK Workshop on Grid Security

Practice - Oxford, July 2004

[24] Virtual Organisations for Trials and

Epidemiological Studies project (VOTES),

www.nesc.ac.uk/hub/projects/votes

[25] Shibboleth, http://shibboleth.internet2.edu

[26] OpenLDAP, http://www.openldap.org

[27] A. Otenko, personal communications

[28] PERMIS development pages,

http://sec.isi.salford.ac.uk

[29] BRIDGES (Biomedical Research Informatics

Delivered by Grid Enabled Services) –

http://www.brc.dcs.gla.ac.uk/projects/bridges

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Stell, A. J.;Sinnott, R. O.;Watt, J. P.

Title:
Comparison of advanced authorisation infrastructures for grid computing

Date:
2005

Citation:
Stell, A. J., Sinnott, R. O., & Watt, J. P. (2005). Comparison of advanced authorisation
infrastructures for grid computing. In 19th International Symposium on High Performance
Computing Systems and Applications (HPCS 2005), Guelph, Ontario, Canada.

Publication Status:
Published

Persistent Link:
http://hdl.handle.net/11343/28783

http://hdl.handle.net/11343/28783

	Text2: © 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

