
Specifying Aspects of Multimedia in LOTOS

Dr Richard O. Sinnott,
GMD Fokus,

Kaiserin-Augusta-Allee 31,
10589 Berlin, Germany
sinnott@fokus.gmd.de

Abstract

The formal specification language LOTOS provides a model of systems where the
temporal ordering of actions is specified. LOTOS typically does not deal with the specific
times at when actions can occur. Most approaches for specifying real time systems in
LOTOS have either extended the language, e.g. with timing aspects, or used the language
in conjunction with a temporal logic. We argue that such approaches are not always
necessary and that LOTOS is much more flexible than sometimes claimed. To support our
arguments we show how LOTOS can be used to specify a multitude of timing issues that
can be associated with the production and consumption of multimedia flows.

1. Introduction
LOTOS [5] is a formal specification language originally developed by the international

standardisation organisation to specify protocols for the interconnection of systems. The
behaviour of a system is modelled by an ordering of events in LOTOS. As such, it does not
attempt to deal with quantitative timing considerations, e.g. where events occur at certain
specific times or within specific time intervals. Numerous approaches have been put
forward for dealing with these issues, e.g. extensions to the language [3] or using LOTOS
together with a temporal logic [1]. In this paper we show how LOTOS is expressive
enough to specify a range of temporal aspects of systems, focusing in particular on
multimedia timing issues. LOTOS is divided into two parts: a data modelling part based on
the algebraic specification language Act One [2] and a process algebra part based on CSP
and CCS [4,6]. Typically data is specified in Act One and used, e.g. passed around between
processes, in the process algebra. We shall see that through a combination of these
languages a wide range of time aspects of systems can be specified.

2. Modelling an Information Flow in Act One
We consider here a generic idea of information flow where the flow of information is

represented by a sequence of frames. A frame may be regarded as a particular item in the
flow of information. Each frame in an information flow can be considered as a unit
consisting of data (this may be compressed) which we represent by Data and a time stamp
used for modelling the time at which this particular frame was sent or received. It is also
often the case in multimedia flows that particular frames are required for synchronisation,
e.g. synchronisation of audio with video for example. Therefore we associate a particular
Name with each frame. This can then be used for selecting a particular frame from the flow
as required. From this, we may model a frame as:

 type Frame is Name, NaturalNumber, Data
 sorts Frame
 opns makeFrame: Data, Nat, Name G Frame

 getData: Frame G Data
 getTime: Frame G Nat

 getName: Frame G Name
 setTime: Nat, Frame G Frame

 eqns forall d: Data, s,t: Nat, n: Name

 ofsort Data getData(makeFrame(d,t,n)) = d;
 ofsort Nat getTime(makeFrame(d,t,n)) = t;

ofsort Name getName(makeFrame(d,t,n)) = n;
ofsortFramesetTime(s,makeFrame(d,t,n)) = makeFrame(d,s,n);

 endtype (* Frame *)

It should be noted here that we model time as a natural number, i.e. time is modelled
discretely. It might well be the case that real (dense) time could be used although we note
that the real numbers are not explicitly defined in the LOTOS standard. We also introduce
sequences of these frames:

 type FrameSeq is Frame
 sorts FrameSeq
 opns makeFrameSeq: G FrameSeq
 addFrame: Frame, FrameSeq G FrameSeq
 remFrame: Frame, FrameSeq G FrameSeq
 timeDiff: Frame, Frame G Nat
 eqns forall f1, f2: Frame, fs: FrameSeq, n1,n2: Name
 ofsort FrameSeq getTime(f1) le getTime(f2) =>
 addFrame(f1,addFrame(f2,makeFrameSeq)) = addFrame(f2,makeFrameSeq);
 endtype (* FrameSeq *)

For brevity we do not supply all equations. Frames are added to the sequence provided
they have increasing timestamps. An operation is provided to get the time difference
between time stamps of two frames. From this abstract information flow model we are able
to consider the timing issues for the production and consumption of information flows. For
simplicity we consider production and consumption of a single flow of information.

3. Realising the Flow of Information in the Process Algebra
To consider flows of information it is necessary to consider how frames are

timestamped when sent from a producer. With this information the consumer can
determine what course of action to take with the received frame. Therefore it is necessary
to consider how time is to be represented in LOTOS. There are several choices for
modelling time in LOTOS. We consider some of these options.

It might be the case that all processes have access to a global clock from which they can
establish the current time. The frames sent from a producer could then be timestamped with
this time value. The modelling of global clocks in LOTOS is not without its problems
however. For example, one model of a clock might be:

 process Clock[t](tnow: Nat) :noexit:=
 t !tnow; Clock[t](tnow) [] i; Clock[t](tnow+1)
 endproc (* Clock *)

Here the clock either outputs the current time or an internal event occurs and the time is
incremented. This model of time is limited when modelling flows of information. Here, the
time itself is based on non-deterministic internal events. Flows of information have explicit
temporal requirements that must be satisfied. As such this model of time is not sufficiently
expressive. Modifying this process so that the non-determinism is removed, e.g. each time
the clock is referenced the time is given and then incremented, is also an unsatisfactory
model since it can adversely influence concurrent behaviours [7]. Concurrency loosely
implies that they can happen at the same time. If processes are time dependent though then
this is not the case, i.e. one must happen after the other if they access the global clock.

A second approach is to model time in the formal parameter list associated with a
process modelling a flow. This might for example be represented by:

 process ProduceAction[g,s](toSend: FrameSeq, tnow: Nat):noexit:=
 g !setTime(tnow,head(toSend));
 (* other behaviour and recurse with frame removed from toSend and time incremented *)
 [] s ?tupdate: Nat; ProduceAction[g,s](toSend,tupdate)
 endproc (* ProduceAction *)

Here we have a local model of time. That is, the process itself keeps track of its current
time. With this model of time it is possible to model processes running at different speeds
say, e.g. where different tnow variables and their modifications exist in different processes.
If this approach is taken then there should exist some means whereby the current local time
can be set, e.g. so that processes can re-align their clock values (tnow variables). We

introduce the gate s for this purpose. The current time (local to the process) is time stamped
onto the frame being sent through the operation setTime. The value that the time variable
tnow is increased by is proportionate to the rate of the flow. If the modification to the time
variable is the same each time a frame is sent then we have an isochronous flow.

It is often the case that levels of control are required for modifying flows of
information, e.g. send faster or slower as the case might be. In this model, the control is
given by the recursive call and how the tnow variable is incremented. As such the
flexibility of manipulating tnow is limited.That is, the operations given in the recursive call
are static. Further, if tnow represents the local time, then operations to manipulate how time
progresses might also seem unnatural. To overcome this, it is possible to model the rate of
flow of frames to be sent as a formal parameter. This might be represented by:

 process ProduceAction[g, m](toSend: FrameSeq, tnow: Nat, rate: Nat):noexit:=
 g !setTime(tnow+rate,head(toSend));
 ...(* other behaviour and recurse with frame removed from toSend and time incremented *)
 [] m ?newRate: Nat [newRate gt 0]; ...(* other behaviour and recurse with new rate set *)
 [] s ?tupdate: Nat; ...(* other behaviour and recurse with new current time set *)
 endproc (* ProduceAction *)

Here we note that we model the rate as a natural number. This allows the rate of flow to
be sped up or slowed down depending on whether the rate is decreased or increased
respectively. When instantiated, predicates should be given to ensure that the rate is greater
than zero. Proposed new rates are checked to ensure that they are greater than zero. Having
a zero or negative value for the rate would allow consecutive frames in the sequence to
have decreasing or equal time stamp values. This could destroy the temporal integrity of
the flow of information, for example where a negative rate was given that was greater than
the time difference between two consecutive frames in the flow.

It is likely that the gate m will be internal to the object with which the interface is
associated. This gate might be used for management and control purposes e.g. another
interface used for controlling the flow of information might receive a message to slow the
speed of flow up (or slow it down) and this information then used to establish the new rate.

A third alternative is to model time entirely through Act One. That is, when the
sequence of frames is created, the time stamps are given there. For example, a constructor
operation (fs1) that returns a sequence of frames might have equations that give the time
stamps explicitly, e.g. addFrame(makeFrame(d1,t1,n1),...,addFrame(makeFrame(di,ti,ni), makeFrameSeq))). Here
the time stamps ti might be represented by explicit natural numbers. With this model of
frame sequences, frame production may be represented by:

 process ProduceAction[g](toSend: FrameSeq):noexit:=
 g !head(toSend); ...(* other behaviour and recurse with frame removed from toSend *)
 endproc (* ProduceAction *)

This model of timed frames is the simplest to represent in the process algebra.
Unfortunately, the actual sending of the frame itself is given by the occurrence of the
process algebra event. As a result, the time stamping achieved in Act One is independent of
the event offer occurrence in the process algebra. Another problem with this model of time
stamping frames is that anything like a realistic sized sequence of frames would not be well
suited to Act One specification. That is, the equations required for an information flow of
several thousand irregularly time stamped, i.e. consecutive frames in the sequence may
have time stamps whose differences are not constant, frames say would be far too verbose
to be practicable. It might be the case that only isochronous flows are considered. In this
case, the constant value of the difference between time stamps of consecutive frames could
be specified directly in the equations associated with the frame sequence.

Consumption of frames typically has different requirements placed upon it. The need to
continually monitor the time stamps of the incoming flow of information is of particular
importance. Due to the potential spatial separation of producers and consumers of flows of
information, there is often a non-negligible time difference between the sending of a frame
from a producer to its arrival at the consumer. This time difference is heavily dependent
upon the connection between the producer and consumer of the flow. This connection is

likely to have a limit on the information that can be passed through it at any given time.
The current usage of this connection will thus influence the speed at which information is
passed from producer to consumer. These issues and their modelling in LOTOS are
discussed in more detail in [7]. A consumer of an information flow may be represented by:

 process ConsumeAction[g,s](recFrames: FrameSeq, limit,tnow: Nat):noexit:=
 g ?inFrame: Frame;
 ([Diff(getTime(inFrame) - tnow) gt limit] G ...(* frame too early or too late behaviour *)
 [] [Diff(getTime(inFrame) - tnow) le limit]G
 ...(* other behaviour, e.g. display frame and recurse with time incremented *)
 (* or recurse with frame added to received frames and time incremented *))
 [] s !tnow; ConsumeAction[g,s](recFrames,limit,tnow)
 endproc (* ConsumeAction *)

Here we check that the time of the incoming frame is within some limit. We focus in
more detail on this limit and other timeliness considerations shortly. If the frame arrives
outside of the allowed time window then some appropriate behaviour is taken, e.g. the
frame is dropped, and a recursive call is made with the clock incremented by some amount.
If the frame does not violate any timing constraints, then either it is displayed or appended
to those already received, or possibly a combination of these.

We also include an event offer here that allows the current time of this process to be
passed as a parameter to synchronise clocks for example. With these models of flows we
can show how various features of the flows can be specified and checked. We focus on
jitter, throughput and delays of flows. Extensions to the work are also possible, e.g. lossy
communications and communications where latency issues have to be dealt with [7].

3.1. Maximum Jitter in LOTOS
Jitter may be regarded as the upper and lower limit on the time window at which a

consumer can accept a frame. For example, if a frame is expected every t seconds with an
allowed variation of δt, then a frame should arrive within the range t – δt to t + δt. There
are two cases of jitter that we consider here: bounded and unbounded jitter. The distinction
between the two is dependent upon whether the arrival time of the last frame influences the
arrival time of the next frame. In unbounded jitter, if frames are expected every t seconds
with a variation of δt then should frames consistently arrive early, but within the allowed
time range, then the flows will eventually drift out of synchronisation. For example if t was
30 time units say and δt was 5 time units and frames arrived every 29 time units, then after
five frames had arrived, all subsequent frames would be outside the allowed range, i.e. the
next frame would be expected at 180 but would arrive at 174 time units which would
exceed the maximum unbounded jitter rate of 5.

In bounded jitter if a frame arrives early but within the allowed time variation, then the
arrival time of the next frame is time t after that arrival time. Hence using the above
numbers, if a frame arrives at time 29 then the next one would be expected at time 59 and
not 60. From this, it can be seen that bounded jitter does not allow flows to drift out of
synchronisation. Unbounded jitter was represented previously. This corresponded to the
variable limit given in the process definition representing the consume action. It should be
noted that with this model of production and consumption of flows, consideration of the
time taken for consuming and producing single frames is critical. If both producer and
consumer produce and consume frames respectively at the same rate, then ignoring issues
of latency and lost frames, there should never be any jitter. It might be the case that
producers and consumers operate at different speeds however. Hence the modifications to
the time variable in the process instantiations are not necessarily equal. Bounded jitter
models situations where the time difference between production and consumption of
frames is slightly different but within certain limits. This may be represented as:

process Consumer[g](recFrames: FrameSeq, jitter, tnow: Nat):noexit:=
 g ?inf: Frame;
 ([Diff(getTime(inf),tnow) gt jitter] G ...(* error behaviour, e.g. drop frame *)
 Consumer[g](recFrames,jitter,(tnow+t))
 [] [(Diff(getTime(inf),tnow) le jitter) and ((getTime(inf) - tnow) gt 0)] G
 ...(* successful behaviour, e.g. display frame *)

 Consumer [g](addFrame(inf,recFrames),jitter,(tnow+t+Diff(getTime(inf)-tnow)))
 [] [(Diff(getTime(inf) - tnow) le jitter) and ((getTime(inf) - tnow) le 0)] G
 ...(* successful behaviour, e.g. display frame *)
 Consumer [g](addFrame(inf,recFrames),jitter,(tnow+t-Diff(getTime(inf)-tnow))))
endproc (* Consumer *)

Here we state that if the maximum bounded jitter is exceeded then the frame is dropped
and the local time incremented by t time units. If the frame arrives within the timing
restrictions imposed by the jitter then two conditions arise depending on whether the frame
arrives slightly early or late. If the frame arrives earlier than expected then the time variable
tnow is modified by adding on the time for consumption and subtracting the amount the
frame was early by. For example, assuming frames are expected every 30 time units and
the current time is 60 if the next frame is time stamped 59 then the time variable tnow
would be set to (60+30-1= 89). As a result, the next frame is expected at time 89.
Alternatively should the frame arrive later than expected but within the allowed variation,
e.g. at time 61 then the time variable is modified to (60+30+1= 91). Hence the next frame
is expected at time 91.

3.2. Minimum Delay between Frames in LOTOS
The minimum delay between the frames a producer produces may be specified directly

in LOTOS. This corresponds to the minimum difference between time stamps associated
with two frames in the sequence of frames to be sent. If production of all frames is
isochronous then the minimum delay is equal to the maximum delay and is constant.
Typically, information flows can have their rate increased or decreased. The minimum
delay between two frames is inversely proportional to the maximum throughput of the
flow. The minimum delay for a producer may be represented by:

 process Producer[g](toSend: FrameSeq, tnow, maxRate: Nat):noexit:=
 g!setTime(tnow+maxRate,head(toSend));
 Producer[g](tail(toSend),(tnow+maxRate),maxRate)
 endproc (* Producer *)

Here we assume the existence of some upper limit (maxRate) on the flow of frames.
The minimum delay between frames for a consumer flow may be represented by:

 process Consumer[g](recFrames: FrameSeq, tnow, maxRate: Nat):noexit:=
 g ?inf: Frame; ((* reject frame if outside timing constraints *)
 [] (* accept (display) frame and recurse *)
 Consumer[g](addFrame(inf,recFrames),(tnow+maxRate), maxRate))
 endproc (* Consumer *)

4. Conclusions
In this paper we have shown that the LOTOS language can be used to model numerous

timing issues that can apply to multimedia flows of information. We have largely avoided
dealing with how these flows are established in the first place. The issues in establishing
meaningful stream connections are discussed in more detail in [7].

5. References
[1] L. Blair, The Formal Specification and Verification of Distributed Multimedia Systems, Ph.D Thesis,
University of Lancaster, England, June 1994.
[2] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 1, vol 6 EATCS Monographs on Theoretical
Computing Science, Springer Verlag, 1985.
[3] E-LOTOS, Extended-LOTOS, ISO/IEC/WG7 Working Draft WI1.21.20.2.3.
[4] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[5] LOTOS, A Formal Technique Based on the Temporal Ordering of Observational Behaviour, ISO 8807, 1989.
[6] R. Milner, A Calculus of Communicating Systems, vol 92, Lecture Notes in Computing Science, 1980.
[7] R. Sinnott, An Architecture Based Approach to Specifying Distributed Systems with LOTOS and Z, Ph.D
Thesis, University of Stirling, Scotland, July 1997.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
SINNOTT, RICHARD

Title:
Specifying aspects of multimedia in LOTOS

Date:
1999

Citation:
Sinnott, R. (1999). Specifying aspects of multimedia in LOTOS. In Proceedings: Third
International Conference on Computational Intelligence and Multimedia Applications, New
Delhi, India.

Publication Status:
Published

Persistent Link:
http://hdl.handle.net/11343/28807

http://hdl.handle.net/11343/28807

	Text1: © 1999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

