
Creating Telecommunication Services based on Object-Oriented
Frameworks and SDL

   Dr Richard Sinnott    Mario Kolberg
 GMD Fokus       Dept. of Electronic and Electrical Engineering

Kaiserin-Augusta-Allee 31          University of Strathclyde
     Berlin, Germany   Glasgow, Scotland
  sinnott@fokus.gmd.de   mkolberg@comms.eee.strath.ac.uk

Abstract
This paper describes the tools and techniques being

applied in the TINA Open Service Creation Architecture
(TOSCA) project to develop object-oriented models of
distributed telecommunication services in SDL. The paper
also describes the way in which Tree and Tabular
Combined Notation (TTCN) test cases are derived from
these models and subsequently executed against the
CORBA-based implementations of these services through a
TTCN/CORBA gateway.

1. Introduction

The aim of the TOSCA project is to develop a service
creation environment that enables multimedia-based
telecommunication services to be produced in an effective
manner, i.e. they are created rapidly but not at the expense
of their reliability [18]. Central to the approach is that the
services to be generated are validated. This validation is
required both when the service is initially created and also
when it is deployed in an environment where it may
interwork with other services causing potentially undesired
behaviours of one or more of the services. In this paper we
focus predominantly upon the validation of isolated
services. Aspects of service interworking and the issues
involved in their validation are discussed in [6].

Validation of services implies that formality is
introduced into the service creation process. Producing
formal specifications of the system to be developed is a
traditional starting point in applying formal techniques [13].
Unfortunately, it is often the case that formal techniques are
used only at this stage of the software development process.
Ideally, formality should be taken through to the final
implementation of the software itself. This is a notoriously
difficult activity often - depending upon the nature of the
formal language and method - requiring arduous refinement
and obligatory proof steps [23]. An alternative process to
refinement of specifications through to implementations is
to develop the specification and implementation as dual, i.e.
concurrent, activities. Provided that the specification and
implementation are at the same level of abstraction, the

specification can be used as a basis for testing the
implementation.

Specifications and implementations are typically not at
the same level of abstraction however. Abstraction may be
considered as a two-sided sword. On the one hand it enables
simpler models of systems to be constructed and can thus
act as a better requirements capturing technique. On the
other hand the gap between the model of the software and
the final software itself is increased. This reason is often
cited by formal methods detractors who fail to see the
advantage in formal models that bear little or no relation to
the software under development and that all but a few
specialists understand.

Distributed system development offers one area where
the parallels between the development of specification and
implementation can be more readily drawn, i.e. they can be
expressed at the same levels of abstraction. Interface
definition languages (IDL) when used as a common
vocabulary for describing the syntactic aspects of interface
interactions, serve as an ideal starting point for developing
both specifications and implementations. Support of an IDL
mapping is thus critical if a formal language is to be used to
model distributed systems.

Few formal techniques have adopted current techniques
in software development as has the ITU-T Specification and
Description Language (SDL) [9]. As well as providing an
IDL mapping which we describe in section 4, it offers state
of the art tool support that few other formal techniques can
match1. We discuss some of these tools and how they are
being applied in TOSCA to develop, validate and derive
tests from the SDL models in sections 4, 5 and 6.

IDL is only a basis for the development of both
implementations and specifications. Given that rapid
development of high quality services is a fundamental
feature of service creation in TOSCA, developing
specifications (and implementations) from nothing, or from
an IDL only basis, is not a viable option. Instead techniques

                                                
1 Lack of tool support is another common objection raised
against formal techniques!



that can expedite the software development process are thus
necessary. Whilst it is typically the case that
implementations rarely (if ever!) start from nothing, the
same cannot be said for the development of formal
specifications. In TOSCA we are addressing this issue
through the adoption of techniques based upon object-
oriented implementation and specification frameworks. We
note that these frameworks are developed both in the
implementation world, e.g. using C++ and distributed
technologies such as CORBA [3] and the specification
world, e.g. using SDL. Our focus in this paper is based upon
the development of SDL frameworks, their usage in
developing real services and how these models of services
can be applied to test the real implementations of those
services.

2  The TOSCA  Approach to Service Creation

The TOSCA project proposes an approach to service
creation which should provide both for rapid service
provisioning and for high service quality. The approach
assumes that for certain categories of service, a flexible and
reliable software framework is developed. The concept of
framework based software engineering has arisen to help to
realise the holy grail of software engineering: re-use.
Frameworks are a natural extension of object-oriented
techniques [7]. Whilst object technology provides a basis
for re-use of code, it does not provide features to capture the
design experience as such. Frameworks have developed to
fulfil this need.

A framework can be regarded as a collection of pieces of
software or specification fragments that have been
developed to produce software of a certain type or niche [5].
A framework is only partially complete. Typically, they are
developed so that they have holes or flexibility points in
them where service specific information is to be inserted.
This filling in (specialisation) of the flexibility points is
used to develop a multitude of services with differing
characteristics.

In TOSCA, this specialisation may be done by non-
technical people, e.g. business consultants, through
paradigm tools. Paradigm tools offer a graphical and
intuitive means whereby services can be designed. Thus the
service designer should not necessarily have to consider the
lower level behaviour of the service to be able to create one.
Rather, they should be provided with a high-level
representation of the service components and the ability to
tune their behaviour and how they are composed with one
another. In this paper we do not focus on the issues in the
application of paradigm tools to specialise implementation-
oriented and specification-oriented frameworks to create
service implementations and service specifications
respectively. More information on the paradigm based
approach to service development can be found in [11].

Once the SDL framework has been specialised to create
a completed model of the service, in the first instance, it is
necessary to provide some immediate feedback to ensure
that the service behaviour is as desired. This is achieved
through (graphically) animating the service behaviour. Once
the basic functionality of the service is satisfactory to the
service designer, a more detailed check on its behaviour is
required, e.g. to ensure that it has certain properties such as
deadlock/livelock freedom. Once the specification has been
thoroughly checked it is then used to derive test suites
against which conformance of the service implementation to
the specification can be tested.

The immediate question that arises from the TOSCA
approach is where do the frameworks come from? Given the
nature of the services to be created within TOSCA, we have
based our services around the Telecommunications
Information Networking Architecture (TINA), or more
specifically the Service Architecture [15] and Network
Resource Architecture [16] of TINA and an existing
implementation of a multimedia-conferencing service based
on TINA [19].

3  Development of Frameworks based on TINA

The TINA architecture introduces the underlying
concepts and provides information on how
telecommunication applications and the components they
are built from, have to behave. Central to the architecture is
the concept of a session. Three sessions are identified:

• access session: this represents mechanisms to
support access to services (service sessions) that
have been subscribed to.

• service session: includes the functionality to
execute and control and manage sessions, i.e. it
allows control of the communication session.

• communication session: controls communication
and network resources required to establish end to
end connections.

Currently, the service session has been the main area
upon which frameworks are being developed in TOSCA.
The relation between the sessions is depicted in Figure 1.

 access session

 service session

 communication
 session

  SF

 SSM

 ssUAP

user domain user domainprovider domain

 ssUAP  USM  USM

stream   connections   established

Figure 1: Relation Between the TINA Sessions



Here the service session user application (ssUAP)
represents the users interface to the service, i.e. it
determines how they may participate in the service. The
Service Factory (SF) is used to create instances of services
when requested to do so by components in the access
session: namely user agents. Broadly speaking, an instance
of a service typically consists a Service Session Manager
(SSM) to control the global service behaviour, and a
collection of User Service Session Managers (USM) – one
of each is used to control a users participation in the service.

Typically, users can join services, suspend, resume or
terminate their participation in services. The logic
associated with these requests are processed in the service
session, e.g. whether the user is able to resume themselves
in the service at that time. If successful, the appropriate
connection operations are invoked on the communication
session, e.g. resume my previously suspended connections.

It is important to note that this architecture does not
overly constrain the kinds of services that can be created
from it. Rather, it acts as a template for a multitude of
services, e.g. multimedia conferencing services, chatline
services, videophone services, neighbourhood watch
services or newsflash services. Indeed even within these
services there exist a plethora of variations. In multimedia
conferencing for example, there might be differing roles,
e.g. chairman, observer, participant. These differing roles
might result in differing expected functionalities, e.g. only
chairman can invite (or suspend or terminate) other users,
only participants can vote. Users might be able to have
differing charging (or billing or accounting) possibilities,
e.g. reverse or split charging, or other variations.

As well as these role specific specialisations, numerous
others are possible also, e.g. only start the service if a
certain number of successful responses to the invite have
been received, or quit the service if the number of users falls
below a certain level (or if the total charges generated from
using the service falls below a certain level). It is precisely
these variations on the general theme that specialisations are
expected to capture whilst the general theme itself is
represented by the framework.

To engineer frameworks it is thus necessary to have a
core behaviour. In TOSCA this core behaviour is based
around the informal (textual) description of the behaviour of
the service session components; their Object Definition
Language (ODL) [17] description and parts of the ERI-
TIMMAP multimedia videoconference service [19]. TINA
ODL is a superset of IDL which allows amongst other
things, to distinguish between supported and required
interfaces. ODL also allows for the expression of groups of
objects and the objects used to manage those groups.

4 Overview of the TOSCA Framework

If developing software is a complex activity then
developing frameworks is more complex again. Developing

a framework so it removes large parts of the problem of
service design, thus expediting the creation process, whilst
still offering a means to create numerous different kinds of
services is an especially challenging activity. To produce
successful frameworks requires that the  points where
design decisions are made, are made flexibility points.
Using frameworks to produce services then requires that
these flexibility points are made available so that new
design choices can be taken to produce new services or
service flavours. Perhaps the hardest part of the framework
development process is the identification of these flexibility
points [10].

In TOSCA we focused on a small set of flexibility
points. This set of flexibility points allowed us to produce a
multitude of different services with different types of
behaviour. Specifically, we chose the following flexibility
points:

• the start up, suspension, resumption and termination
of users sessions;

• the start up, suspension, resumption and termination
of service sessions.

In producing a framework it is necessary to have fixed
places where the flexibility points are to exist. Flexibility
points cannot simply be placed anywhere in the design of
the framework. Rather, flexibility points may only be filled
in (specialised) at certain fixed times. Thus it is necessary to
represent the points of flexibility directly in the design of
the framework, but the actual behaviour associated with
these flexibility points is effectively NULL until they are
specialised. To achieve this we introduced appropriate IDL
operations that were associated with the appropriate objects
in the framework design. As an example we consider the
USM and the representation of the flexibility points
concerned with the start up, suspension, resumption and
termination of users sessions.

The simplified ODL for the USM modelled in the
TOSCA framework is

group USM
{components UFS, ...;
  manager UFSmgr;
  contracts i_UFSmgr,i_Callback, i_ControlWindowHandler    
    ...; };

The UFSmgr object is responsible for controlling the
objects in the specialisable part of the USM. In reality this
means that it should – amongst other things - be able to:
terminate, suspend or resume existing all objects it controls,
or add new (named) objects to those it currently knows
about3. This implies that all objects controlled by the
UFSmgr support this basic lifecycle functionality, i.e. upon
reception of certain signals all objects can suspend, resume

                                                
3 Typically, the object name and a null reference are passed
in and the name and PId of the created object returned.



or terminate themselves. To achieve this, all objects inherit
from interface i_CO_lifecycle. The IDL for this interface is:

interface i_CO_lifecycle
{ void initialiseObject(in PropertyList initInfo,

in Object mgrRef);
   void suspendObject();
   void resumeObject(in Object mgrRef);
   void terminateObject();
   ... };
When initialised or resumed, objects need to be made

aware of the reference for their managers. This allows for
later checks on arriving invocations, i.e. to check that they
originated from their manager. As well as supporting this
core functionality, the interface to the UFSmgr (i_UFSmgr)
supports other operations. The default behaviour for the
UFSmgr is that it allows a user to suspend and terminate
their participation in the current session. The IDL for the
i_UFSmgr interface is:

interface i_UFSmgr : i_CO_lifecycle
{void suspendSessionRequest();

// called by user to suspend their session
  void terminateSessionRequest();
 // called by user to terminate their session
  void suspendAll();        

 // used to suspend USM and all associated objects
  void requestObject(inout NamedObject obj);
 // called to  create window handlers
 oneway void ufsstart(); 

// not implemented in framework – specialised!
 oneway void ufssuspend();      // “
 oneway void ufsresume();      // “
 oneway void ufsstop();      // “
 ... };
We point out here that we define several operations

whose sole purpose is to act as a placeholder in the
framework design through which the specialisation can be
achieved, i.e. these represent the points of flexibility that
enable us to have different service behaviours. The other
behaviours may be implemented directly.

In terms of formal specification development the first
stage in this implementation step is to map the ODL
descriptions to the formal language of choice. We note here
that relatively few IDL to formal specification language
mappings have been made. One of the reasons for this is the
lack of support for object-orientation in the formal
specification world and more particularly the lack of
support for object references as first class entities, i.e. they
can be passed around as parameters. SDL is one of the few
languages that support a mapping. In TOSCA the Y.SCE
tool [21] was used to import the ODL/IDL description and
generate the associated SDL stubs and skeletons. The
following table summarises some of the main features of the

ODL/IDL to SDL mapping used (and implemented) in
TOSCA.

ODL Structure SDL Mapping
Group type block type
Object type block type
Interface type process type
Object Reference PId
Oneway  Operation signal prefixed with pCALL_
Operation signal pair prefixed with pCALL_

and pREPLY or pRAISE resp.
Exception signal prefixed with pRAISE_
Basic IDL types syntype
any not supported
enum newtype with literals
typedef syntype
struct newtype with associated structure
constant synonym

Table 1: Summary of ODL/IDL to SDL Mapping
Other mappings have been made from IDL to SDL [1],

however these are based largely around the remote
procedure call concept of SDL. The remote procedure
concept in SDL is a shorthand notation and is based on a
substitution model using signals and states. More precisely,
remote procedures are decomposed into two signals. The
first carries the outgoing parameters (in or inout) and the
second the return value of the procedure and all inout
parameters. These signals are sent via implicit channels and
signalroutes. There are several problems with mapping IDL
operations to remote procedures. For example, they prohibit
the raising of exceptions – an essential feature in realistic
distributed systems. Also, the client side of the remote
procedure call is blocked until the server side returns.

One point worth noting here regarding the mapping is
the modelling of object types through blocks in SDL. In
SDL, it is not possible to create blocks dynamically,
although this is one extension to the language that may well
be incorporated in the next version of SDL (SDL-2000). It
is possible to model SDL systems where the perception of
object (block) creation is achieved. One way of achieving
this is through providing process instances that exist at start-
up time whose sole purpose is to create other processes in
that block when requested. It is this approach we adopted in
TOSCA. These creator processes supported a single
exported remote procedure (which could be imported into
other blocks and subsequently called) operation that created
an instance of the manager process, e.g. the UFSmgr given
previously. References to this manager process, i.e. the
process identifier, would then be returned to the requesting
object.

As with other IDL language mappings, client stubs and
server skeletons are generated. These act as templates whose
behaviour is to be filled in through inheritance. These stubs
and skeletons are placed in two SDL packages:
Name_Interface and Name_Definition. The Name_Interface
package contains the interface specifications in the form of



data types, signals, remote procedures, signallists etc. An
example of the contents of the Name_Interface package is
given in Figure 2.

signa l p C A LL_ i_U FSm gr_ su sp en dSessionR equ est;
signa l p C A LL_ i_U FSm gr_ term ina teS ession R equ est;
signa l p C A LL_ i_U FSm gr_ u fssta rt; //  an d  u fsstop , u fsresum e, u fssu sp en d
signa l p C A LL_ i_U FSm gr_ su sp en dA ll;
signa l pC A LL_ i_U FSm gr_requ estO b ject(N am edO b jec t);
// and  assoc ia ted  pR E PLY _ signa ls –  b u t n ot fo r on ew ay operations
signa llis t  i_ U FSm gr_ IN V O C A TIO N S =
 p C A LL_ i_U FSm gr_ su sp en dSessionR equ est,
 p C A LL_ i_U FSm gr_ term ina teS ession R equ est,
 p C A LL_ i_U FSm gr_ u fssta rt, / / an d  u fsstop , u fsresum e, u fssu sp en d
 p C A LL_ i_U FSm gr_ su sp en dA ll, pC A LL_ i_ U FSm gr_requestO b jec t;
signa llis t  i_ U FSm gr_TE R M IN A TIO N S =
  p R E PLY _ i_U FS m gr_ suspendS ession R equ est,
  p R E PLY _ i_U FS m gr_ term ina teSessionR eq uest,
  p R E PLY _ i_U FS m gr_ suspendA ll, pR E PLY _ i_U FSm gr_requ estO b ject... ;

P ackage N am e_ In terface

Figure 2: Example of Name_Interface
Package Contents

This package is then used in the definition of the
Name_Definition package. Figure 3 gives an example of the
kind of SDL generated focusing on the i_UFSmgr interface
of the UFSmgr object:
process type <<package Name_Definition >> i_UFSmgr ;
inherits i_CO_lifecycle ;

 virtual suspendSessionRequest

 virtual ufsstart

dcl ... ;

 other virtual procedures here
  ....

       *

  ufsstart

          -

pCALL_i_UFSmgr_ufsstart

similar format for other procedure calls

Figure 3: Example of Name_Definition
Package Contents

The virtual procedure for the ufsstart (and all oneway
operations) consist of a virtual start transition followed by
an immediate exit. In non-oneway operations, the generated
procedures contain a pREPLY_ signal of the appropriate
kind. Along with the virtual procedure definitions, signals
and (asterisk) states are also generated that result in the
procedures being called.

As an example of the way in which the generated SDL
server skeletons can have their core behaviour inserted, i.e.
the behaviour before they are specialised, we consider the
implementation of the i_UFSmgr interface (i_UFSmgrImp)
of the UFS object given previously. The default behaviour
for the UFSmgr is that it creates a control window handler
only. A simplified example of the structure of this object is
given in figure 4.

 dcl
 createdRefs objRefList, cwhRef objRef, ...;
 imported procedure createCWH fpar ...;

virtual process type theUFSmgrImp;
inherits <<package Name_Definition/block type USM/block type UFS>> i_UFSmgr
fpar in FSEPref objRef, ...;

 redefined

 createdRefs := empty, ...;

 cwhRef := call
       createCWH(FSEPref, self),
 createdRefs := createdRefs //
       MkString(cwhRef), ...

   WAIT

  WAIT

  ufsstart

    READY

pCALL_i_UFSmgr_ufsstart

[i_UFSmgr_Invocations]

   [i_UFSmgr_Terminations]

other signallists

Figure 4: Structure of Basic UFSmgr
This process type is parameterised with (amongst other

things) the reference to the user application. When an
instance of this process type is created, initialisation of local
variables is done, e.g. the list of created references is set to
empty, and the default behaviour of creating a control
window handler is made. As discussed, this requires that the
necessary exported remote procedure is imported.
Following this default behaviour, the UFSmgr is ready to be
specialised, i.e. it is in a state where it can accept signal
pCALL_i_UFSmgr_ufsstart.

As stated, the specialisable procedures have null
behaviours, i.e. start and exit. This allows for the behaviour
of the framework as a whole to be checked without
necessarily having any specialisation taking place, e.g. the
basic USM behaviour (and SSM and SF) behaviours can be
checked to ensure the framework as a whole correctly
represents the informal (textual) requirements. Once the
core behaviour has been specified and verified, the
framework can be saved as a package and used in defining
services, i.e. SDL systems.

5 Specialising the Framework to a Service

As an example of framework specialisation we focus on
a videophone service here. A videophone service is mainly
characterised by having two different kinds of users, a caller
and callee who have an audio-visual connection that allows
them to see and speak to one another. There may only be
one instance of each of these users in the session at one
time. In TOSCA, a “kind” of user is represented by a user
role which has a set of privileges and characteristics
attached to it. Each member in a session is assigned a role
on joining the session and may hence only perform the
corresponding activities. In the case of the videophone
service, the invoking member, i.e. the user who starts the
service is automatically assigned the role of caller. The
distinction between the caller and callee is that the caller is
able to invite users, i.e. callees to join the service. When the
caller terminates the whole service session terminates.



When a callee terminates, the caller may issue other
invitations, i.e. the service does not terminate when the
callee quits their participation in the session. As discussed
previously, the framework already caters for session
members being able to suspend and resume their
participation in the session. However, in this particular
videophone service we wish to have the additional
restriction that a suspended callee only has thirty seconds to
resume their session, otherwise they are automatically quit
from the session. The ssUAP associated with the caller is
shown in Figure 5. The callee’s ssUAP is similar except that
it does not support invitations.

C o n fere n ce Co n tro l W in d ow

Conference In  Sess ionStatus

Suspend  Me T erm ina te Me T erm ina te Session

Inv ite New  M embers See Curr en t Mem ber s

Cha ir manY our Role

Caller ssUAP

Suspend Me

 Active

 CallerRole in Session:

Status in Session:

Terminate Me

Invite Callee

Figure 5: The ssUAP Associated with the Caller
To achieve this service specialisation we use the SDL

package representing the framework. Both simple and
virtual inheritance are used to specialise the components in
the framework. Simple inheritance is used at the upper
block level, e.g. the USM block level. Subsequent block
types, e.g. the UFS block type as well as process types and
procedures are reused by virtual inheritance. Hence the
UFSmgrImp process type given above is declared as virtual.
This is necessary since virtual inheritance allows the
communication links, i.e. channels and signalroutes in the
framework to be reused (and possibly extended). Virtual
inheritance does not, however, allow for multiple
redefinitions in one scope (e.g. different types of USM at
system level, for caller and callee). As a result, it is not
possible to use virtual inheritance for the top-level block
types: simple inheritance is used instead.

Creating the roles, caller and callee requires that the
USM block type in the framework is specialised to two
different block types: callerUSM and calleeUSM
respectively. The ufsstop procedure of the caller is
specialised so that when invoked a signal is sent to
terminate the whole service session, i.e. when the caller
quits the service is terminated.

To realise the cardinality constraints explained above,
the SSM needs to be specialised as well. The SSM knows
about all members and their current state in the session and
is responsible for allowing new users to join the session.
The SSM for this videophone service is thus specialised to
restrict the maximum cardinality of callers and callees to 1
and the minimum cardinality of callers and callees to 1 and
0 respectively.

As stated previously, the operation ufsstart in a UFSmgr
is executed whenever a new instance of the USM is created,
i.e. a user has joined the session. For the caller role the
specialised ufsstart procedure contains a call to create an
Invitation Window Handler. The specialisation of the
caller’s ufsstart procedure is represented in figure 6.

Redefined Procedure<<Substructure callerUSM /B lock Type theU FS/B lock Type theUFSmgr/
Process Type theU FSmgrImp>> ufsstart

redefined

oh!theStatus := TypeUnKnown,
oh!theObjectType!tag := 'ainvwh'

requestObject(oh)

waitForPiD

pREPLY_i_SPmgr_requestObject(oh)

Figure 6: Specialisation of the Caller’s
ufsstart procedure

The specialisation for the callee is twofold. Firstly, the
audio-visual connection between caller and callee needs to
be created and secondly, a timer needs to be introduced to
make sure that a suspended callee is terminated from the
session after 30 seconds. For setting up the connections, the
callee’s ufsstart procedure is specialised so that the SSM is
firstly queried to find the users active in the session, i.e. get
the information on the caller, and then a call is made to the
SSM to make the appropriate connections on the
communication session between the caller and the callee.

To ensure that a suspended callee is terminated after
thirty seconds, a timer is introduced in the callee’s
UFSmgrImp. This timer is set when the user suspends their
session. It is reset when the callee resumes their session. If
the timer times out then a signal is sent to the UFSmgr of
the callee with a request to quit the session. The
specialisation of the callee’s ufssuspend and ufsresume are
shown in Figure 7.

redefinedredefined

Redefined Procedure ufsresume

reset(handlerT)

Redefined Procedure ufssuspend

set(now+30,handlerT)

Figure 7: Specialisation of the Callee’s
Suspend and Resume Flexibility Points

The specialisation of the callee’s UFSmgrImp when it is
in state suspended so that it takes some action should a
timeout occur is given as:



Timer handlerT;suspended

handlerT

pCALL_i_UFSmgr_terminateSessionRequest TO self

-

Figure 8: Specialisation of the Callee’s UFSmgr
It is important to note here that the actual calling of the

ufsstart, ufsstop, ufsresume and ufssuspend procedures
always occurs at fixed points in the overall behaviour of the
framework. That is, ufsstop, ufsuspend, ufsresume are only
called when a valid terminate, suspend or resume request
respectively are received by the UFSmgrImp when it is in
state ready/suspended, ready or suspended respectively.

Once the framework has been specialised, in the first
instance, it is animated to give the service creator feedback
on its functionality. As well as the user interface creation
being animated, e.g. new windows are created on the
ssUAP, we have focused - amongst other things - on
producing graphical animations of the interface to the
communication session, e.g. showing the connections
between users in the session and how they are modified
when new users join, or existing users suspend or resume
their participation in sessions. It is important to note that the
objects performing the animation, i.e. the GUIs, are
themselves CORBA objects. A detailed discussion on the
animation activity can be found in [11].

6 Developing Test Cases from the SDL Service
Model

Once the service has been exhaustively animated and
has all expected properties validated, it may then be used to
generate test cases to ensure that the implementation has the
correct functionality, i.e. that it is conformant with the
specification. Conformance testing is an especially
challenging area in the formal methods community. Since
systems, especially those based on TINA session models,
may be very complex, it is impossible to completely test all
possible behaviours of a system. Instead, testing is normally
done by identifying certain important or essential tests of a
given system - this is an especially challenging task given
the distributed nature of the services in TOSCA.

Since the specification and implementation should be
based on the same IDL, the nature of the tests should not
have to change. For example, an isolated test of the
specification is likely to involve interacting at an operation
in an interface of a given computational object and ensuring
that when invoked the correct response is eventually
received. The same test should be applicable to the
implementation assuming that they are based on the same

IDL, i.e. the interface and accompanying operation name
will be the same and the parameters should be the same.
Typically, such simple tests are not the normal scenarios in
distributed systems, where isolated invocations on a given
interface require other remote interfaces to be monitored (so
called points of control and observation - PCOs) to ensure
that the invocation was as planned. The IDL basis for the
testing and observation is the same though.

It is quite possible that given tests can be represented
directly in the specification language, i.e. in the form of
SDL processes to test the behaviour of the specification, or
MSCs. These MSCs can be used by implementors to ensure
that when interpreted in C++ for example, the
implementation allows for the same sequence of events as
given in the MSC. However, instead of relying upon an
interpretation of some notation, e.g. SDL or MSCs, a
standardised testing language exists: the Tree and Tabular
Combined Notation (TTCN) [20]. This can then be used to
generate code to test the implementation.

With TTCN an Abstract Test Suite (ATS) is specified
which is independent of test system, hardware and software.
Test suites consist of a collections of test cases, where each
test case typically consists of sending messages to the
implementation under test (IUT) and observing the
responses from the IUT until some form of verdict can be
assigned, e.g. whether the result was a pass, fail or
inconclusive. Matching may be done on the data structures
of the received messages which may themselves be
expressed either through Abstract Syntax Notation One
(ASN.1) or native TTCN. The test cases themselves are
represented in tabular form (TTCN.GR), although TTCN
also occurs in machine processable form (TTCN.MP).

We note that the IUT itself is treated as a black box, i.e.
only it’s observable interfaces are considered. The points at
which it is tested are termed points of control and
observation (PCO). Once an ATS is complete it is converted
to an Executable Test Suite (ETS) which can then be used
by the system performing the test to see whether the
implementation passes or fails the tests.

A TTCN specification has a standardised layout
consisting of four major parts:

• overview part containing a table of contents and
description of the test suite;

• declarations part declaring all messages, timers,
variables, data structures, PCOs;

• constraints part  assigning values and creating
constraints to check the responses of the IUT;

• dynamic part containing all test cases, test steps,
default tables and verdicts, i.e. it describes the actual
execution behaviour of the test suite.

Several tools exist within the Telelogic TAU toolset [14]
that allow for the derivation of tests from SDL
specifications. The Autolink tool of the SDT Validator
allows for the semi-automatic generation of TTCN test
suites based on SDL specifications.



Development of test suites from the SDL models can
also be made interactively through the SDT TTCN link tool.
This tool provides an environment that links the SDL
specification world represented by the Specification Design
Tool (SDT) with the testing world represented by the
Interactive TTCN Editor and eXecutor (ITEX) tool. Once a
TTCN link executable is generated from the specification it
may be opened with ITEX and used to generate the
declarations used to test the system. In effect this
corresponds to generating mappings for the SDL channel
names, the signals they carry and the parameters associated
with these signals that the specification has with its
environment. The SDL channels are mapped to PCO type
declarations, the signals are mapped to ASN.1 abstract
service primitive (ASP) type definitions and signal
parameters mapped to ASN.1 type definitions. An extra
TTCN table is also generated called OtherwiseFail. This
table is used to catch all other ASPs at the PCOs, i.e. signals
on channels, other than those listed in the test case through
an ?OTHERWISE statement. These result in a fail verdict
for the test. This table also accepts arbitrary timeout signals
which result in an inconclusive test through a ?TIMEOUT
statement. This table is used as the default for the test suite.

Having generated the static parts of the tests, the
dynamic parts and the constraint parts associated with the
test case can be developed through synchronising the TTCN
test case with the SDL system. Once synchronised, the
messages to be sent and received can be selected, i.e. the
PCOs used (channels to/from the specification) together
with the ASN.1 ASPs they carry from the list of possible
SDL signals at that time. Once a PCO and ASN.1 ASP has
been selected the constraints associated with the signal, e.g.
the values of the parameters being sent or the acceptable
values that are being received, can be set.

As an example of one test of the videophone service
developed earlier, we consider the termination of a callee’s
session when they have been suspended for more than thirty
seconds, i.e. they have not issued a resume session request
within thirty seconds of being suspended. To perform this
test requires that we declare two timer objects as shown in
figure 9.

Figure 9: Timer Declarations in TTCN Test
Suite

The timer declaration suspResumeTimerObject is used
to check whether a resume request occurs within thirty
seconds of the callee suspension. We note that we use
seconds as the units of measurement but this may also be
measured in values between picoseconds and minutes. We
also note that the duration of timers may be overidden when
they are started. In the successful resumption scenario, timer
suspResumeTimerObject is parameterised by a test suite
operation rand(seed) that generates a random value between
zero and thirty. When this timeout occurs a signal to resume
the callee’s session is sent by the tester. In the unsuccessful
case, this timer is started with the default value of thirty
seconds. We introduce testTimer as a general purpose timer
to ensure that responses are received within appropriate
times from the SUT5.

To run the test we require that the following test steps
are carried out successfully:

• the caller starts the videophone service and joins in
the session (1. in Figure 10);

• the caller sends out an invitation to a particular
callee to join (2. in Figure 10);

• the callee receives the invitation and then joins in
the service (3. in Figure 10);

• the callee then suspends their session (4. in Figure
10);.

For brevity we do not provide all of these test steps. We
note that they all contain provisional pass verdicts (P) if
successful.

Figure 10: Test Case to Check the Termination
of Prolonged Suspended Callee Sessions

                                                
5 The default being three seconds.



We note that the OtherwiseFail is the default behaviour
for this test case. Once a callee’s session has been
suspended (4.) timer suspResumeTimerObject is started
(5.). This was declared to timeout after thirty seconds. Once
this timeout occurs (6.) we set another timer (7.) which is
used to ensure that the videophone service terminates the
user session within a certain time period. As a default we
declared the timer to have a duration of three seconds. The
termination of the callee’s session is indicated by the receipt
of a call from the service session manager on the logical
connection graph that exists in the TINA communication
session (8.). Once this message is received successfully, e.g.
the ?TIMEOUT statement in the OtherwiseFail table never
occurred, the timer is cancelled (9.) and a send is issued
stating that the callees connections have been deleted
successfully by the logical connection graph. Once this
message has been sent a final PASS verdict is assigned to
the test case  (10.).

For brevity we do not provide the postamble test steps
associated with this test case, i.e. the termination of the
caller session and quitting of the videophone service as a
whole.

6.1 Execution of the Test Suites

Once the abstract test suites are completed, it is
necessary to convert them into executable test suites. To
achieve this requires that the executable test system is
integrated into an environment where the SUT resides. In
the case of the TOSCA services, this corresponds to having
the ETS existing in a CORBA environment. The
TTCN/CORBA gateway provides such an environment
[22]. Figure 11 illustrates the structure of the gateway and
its relation to the ETS.

Gateway

 ETS

GWmain

GWserver

Test
Cases

PCO List

Timer List

adaptor

CoDec

Interface
Repository

ORB CORE

System Under Test

GWclient

Figure 11:  Structure of ETS and Gateway in
Test Execution Scenario

The ITEX tool serves as the basis for developing the
ETS from the ATS. This tool allows for the translation of
the TTCN ATS into C-code. In addition to this it also
provides an environment – the Generic Compiler Interface
(GCI) - whereby the test cases can be adapted to the
particulars of the implementation. In reality, the GCI

requires that certain operations are implemented, e.g. coding
functions and the interpretation of PCOs and timers [22].

The actual gateway itself consists of a main part and
client and server parts. The main part is used for creating
instances of the client and server parts and acting as the
interface to the ETS. The client parts are used when test
under consideration is on one of the supported interfaces
[17] of the SUT, i.e. the SUT is acting as a server. The
server parts of the gateway are used when the SUT is acting
as a client, i.e. the SUT makes an invocation on a required
interface [17]  (represented as the GWserver). We note that
the interactions between the gateway and the ORB core are
made through the dynamic invocation interface (DII) for the
gateway acting as a client of the SUT and through the
Dynamic Skeleton Interface (DSI) for the gateway acting as
a server of the SUT. Having run time knowledge of the
types for the DII and DSI operations is achieved through the
interface repository. As discussed in section 4, the IDL basis
for the model (and hence test cases derived from the model)
and implementation are of course the same.

7 Conclusions

This paper has tried to give a flavour of the tools and
techniques that are currently being applied in TOSCA to
develop telecommunication services based around the TINA
architecture. We have seen how it is possible to take a semi-
formal description given in TINA ODL, CORBA IDL and
informal text to develop an object-oriented framework in
SDL. We have also highlighted how this framework can be
specialised to create instances of services. We produced an
instance of a videophone service with explicit temporal
constraints on user suspension and resumption. Having an
SDL model allows us to investigate more deeply the
behaviour of the service, e.g. through simulations and
applying state space exploration tools. Once the service
developer is satisfied with the overall functionality of the
developed service, i.e. it possesses all properties that they
desired, it may then be used to generate test cases against
which conformance of the real implementation to the
specification can be checked. These test cases are executed
through a  TTCN/CORBA gateway. Through this we hope
that we have shown that the TOSCA approach allows
formality to be taken right through the whole software
development lifecycle.

Currently, the work in TOSCA has regarded the service
specification and implementation development as dual
(concurrent) activities. Whilst possible, this does incur more
work, i.e. two frameworks have to be created and
conformance of the services generated from them has to be
established. To reduce the overall workload in framework
and service development, ideally the SDL model should be
used to develop the service implementation directly. Work
is thus ongoing to assess the feasibility of using SDL as an
implementation prototyping language where code



generation techniques are adapted to reflect the structure of
the specification, i.e. partitioned code is generated that
reflects the structuring and behaviour of the CORBA objects
modelled.

More information about the current status of the work in
TOSCA can be found at: http://www.teltec.dcu.ie/tosca/

8 References

[1] M. Björkander, Mapping IDL to SDL, Telelogic AB, 1997.

[2] M. Born, A. Hoffmann, M. Winkler, J. Fischer, N. Fischbeck,
Towards a Behavioural Description of ODL, Proceedings of TINA
97 Conference, Chile.

[3] The Common Object Request Broker Architecture and
Specification: Revision 2.0, Object Management Group, Inc.,
Framingham MA., July 1995.

[4] J.A. Hall, The Seven Myths of Formal Methods, IEEE
Software, volume 7(5), pages 11-19, September 1990.

[5] R. Johnson and V. Russo, Reusing Object-Oriented
Designs,Urbana, Ill., May 1991.

[6] M. Kolberg and E. Magill: Service and Feature Interactions in
TINA, Proceedings of Feature Interaction Workshop’98, Lund,
Sweden 1998.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen,
Object-Oriented Modelling and Design, Prentice Hall 1991.

[8] I. Schieferdecker, M. Li, A. Hoffmann, Conformance Testing
of TINA Service Components - the TTCN/CORBA Gateway,
Proceedings of the Intelligence in Networks & Services
Conference 1998, Antwerp, May 1998.

[9] International Consultative Committee on Telegraphy and
Telephony - SDL - Specification and Description Language,
CCITT Z.100, International Telecommunications Union, Geneva,
Switzerland, 1992.

[10] R. Sinnott, Frameworks: The Future of Formal Software
Development, Journal of Computer Standards and Interfaces
Journal, special edition on Semantics of Specifications, August
1998.

[11] R. Sinnott, M. Kolberg, Business-Oriented Development of
Telecommunication Services with SDL, Proceedings of OOPSLA

Workshop on Precise Behaviour Specifications of OO Systems
and Business Specifications, Vancouver Canada, October 1998.

[12] R. Sinnott, M. Kolberg, Engineering Telecommunication
Services With SDL, Proceedings of Conference on Formal
Methods for Open, Object-based Distributed Systems, Florence,
Italy, February 1999.

[13] R. Sinnott, An Architecture Based Approach to Specifying
Distributed Systems in LOTOS and Z, PhD Thesis, University of
Stirling, Scotland, June 1997.

[14] Telelogic AB, Getting Started Part 1 - Tutorials on SDT
Tools, Telelogic AB, 1997.

[15] TINA-C, Service Architecture, version 5.0, 16 June 1997.

[16] TINA-C, Network Resource Architecture, Version 3.0,
February 1997.

[17] TINA-C, TINA Object Definition Language MANUAL,
version 2.3, July 1996.

[18] TOSCA Consortium Deliverable 6, Initial Approaches to the
Specification and Validation of TINA Services, Internal
Deliverable AC237/GMD/WP3/DS/R/009/a1.

[19] TOSCA Consortium, Specification of the Service Session
Framework Targetted at the Eri-TIMMAP Platform,
AC237/ETL/WP2-4/PI/I/036/A4.

[20] Information technology – Open Systems Interconnection –
Conformance Testing Methodology and Framework – Part 3: The
Tree and Tabular Combined Notation (TTCN), ISO/IEC 9646-3
1997 (E).  

[21] For more information see web address:
http://www.fokus.gmd.de/minos/y.sce.

[22] M. Li, Testing Computational Interfaces of TINA Services
Using TTCN and CORBA, Diplomarbeit, Department of Electrical
Engineering, Telecommunication Network Group, Technical
University Berlin, 1997.

[23] Basic Reference Model of ODP -Part 4: Architectural
Semantics,  ISO/IEC International Standard 10746-4, ITU-T
Recommendation X.904, Geneva, Switzerland 1997.



Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
SINNOTT, RICHARD;Kolberg, Mario

Title:
Creating telecommunication services based on object-oriented frameworks and SDL

Date:
1999

Citation:
Sinnott, R., & Kolberg, M. (1999). Creating telecommunication services based on object-
oriented frameworks and SDL. In 2nd IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC'99): proceedings, Saint-Malo, France .

Publication Status:
Published

Persistent Link:
http://hdl.handle.net/11343/28809

http://hdl.handle.net/11343/28809

	Text4: © 1999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.


