

ENGINEERING TELECOMMUNICATION SERVICES

WITH SDL

Dr Richard Sinnott

GMD Fokus
Kaiserin-Augusta-Allee 31

Berlin, Germany
sinnott@fokus.gmd.de

Mario Kolberg

Dept. Electronic and Electrical Engineering
University of Strathclyde

Glasgow, Scotland
mkolberg@comms.eee.strath.ac.uk

Abstract: If formal techniques are to be more widely accepted
then they should evolve as current software engineering
approaches evolve. Current techniques in the development of
distributed systems use interface definition languages (IDLs) as a
basis for the underlying communication and also as an abstraction
tool. Object-oriented technologies [6] and the idea of engineering
software through frameworks [5] are also widely accepted
approaches in developing software. In this paper we show how the
formal specification language SDL and associated tool support
have been applied in the TOSCA1 project to engineer
telecommunication services using these current techniques.

INTRODUCTION

Open distributed systems, i.e. (extendable) systems that interoperate to achieve
some overall goal, represent a prime example of the kind of area where formal
techniques could have a significant role to play. Whilst current technologies such as
CORBA [3] have addressed many of the issues involved in developing distributed

1 This work was undertaken as part of the Advanced Communication Technologies and Services (ACTS)
TINA Open Service Creation Architecture (TOSCA) Project. The project is funded under ACTS proposal
AC237.

systems, e.g. remoteness of components and their potential heterogeneity, such
technologies fall short of being the final solution to building truly open distributed
systems. CORBA allows system interconnectivity to be achieved, i.e. sub-systems
will understand the messages that are sent to them, but this does not mean that they
will interoperate correctly, i.e. work together to achieve some predefined goal. What
they lack is behaviour.

Formal techniques offer a means whereby behavioural descriptions can be given
both precisely and concisely. Unfortunately, most developers of open distributed
systems rarely if ever apply formal techniques in the development of software.
Why? Some of the more common reasons are:

• they are based on mathematical notations that are difficult to understand;
• they produce models of systems that often bear no relation to the software itself

2;
• the models of systems produced are not usually re-used, whereas software –

especially that based upon current practices such as object-oriented technology
– is generally expected to be;

• they lack tool support for both developing and reasoning about the
specifications.

In this paper we attempt to show through example, how SDL and associated tools as
used in the TOSCA project address these issues. The rest of the paper is structured
as follows. Section 2 provides an outline of the TOSCA project and the approach
adopted to service creation together with an outline of the TINA architecture and the
TINA object definition language (ODL). Section 3 provides an outline of the
ODL/IDL mapping rules to SDL used in TOSCA. Section 4 presents the tool chain
used in TOSCA. Section 5 provides an example of the development of a framework
using this tool chain. Section 6 shows how the framework developed can be
specialised to produce a model of a service. Finally, section 7 offers some
conclusions and identifies areas of future work.

THE TOSCA APPROACH TO SERVICE CREATION

The TOSCA project proposes an approach to service creation which should provide
both for rapid service provisioning and for high service quality. The approach
assumes that for certain categories of service, a flexible and reliable software
framework is developed. The concept of framework based software engineering has
arisen to help to realise the holy grail of software engineering: re-use. Frameworks
are a natural extension of object-oriented techniques. Whilst object technology
provides a basis for re-use of code, it does not provide features to capture the design
experience as such. Frameworks have developed to fulfil this need.
A framework can be regarded as a collection of pieces of software or specification
fragments that have been developed to produce software of a certain type or niche

2 Note this is often desireable if a high-level (abstract) model of the system, e.g. a business model, is
made.

[5]. A framework is only partially complete. Typically, they are developed so that
they have holes or flexibility points in them where service specific information is to
be inserted. This filling in (specialisation) of the flexibility points is used to develop
a multitude of services with differing characteristics.

In TOSCA, this specialisation may be done by non-technical people, e.g. business
consultants, through paradigm tools. Paradigm tools offer a graphical and intuitive
means whereby services can be designed. Thus the service designer should not
necessarily have to consider the lower level behaviour of the service to be able to
create one. Rather, they should be provided with a high-level representation of the
service components and the ability to tune their behaviour and how they are
composed with one another. We shall see how this tuning is achieved in section 6.

Once the design of the service is complete, in the first instance, it is necessary to
provide some immediate feedback to ensure that the service behaviour is as desired.
This is achieved through (graphically) animating the service behaviour. Once the
basic functionality of the service is satisfactory to the service designer, a more
detailed check on its behaviour is required, i.e. it has to be validated. We do not
address validation in this paper. Instead we focus on the development of
frameworks and how they can be subsequently specialised.

Frameworks based on the TINA Architecture

The development of frameworks within TOSCA is based around the TINA
architecture, or more specifically the Service Architecture [11] and Network
Resource Architecture [12] of TINA. The Service Architecture introduces the
underlying concepts and provides information on how telecommunication
applications and the components they are built from, have to behave. Central to the
Service Architecture is the concept of a session. This is defined as:

the temporary relationship between a group of resources that
are assigned to fulfil collectively a task or objective for a time
period.

Three sessions are identified:

access session: this represents mechanisms to support access to
services (service sessions) that have been subscribed to.

service session: includes the functionality to execute and control and
manage sessions, i.e. it allows control of the communication session.

communication session: controls communication and network
resources required to establish end to end connections.

Currently, the service session has been the main area upon which frameworks are
being developed in TOSCA. The relation between the three sessions is depicted in
Figure 1.

Figure 1 Relation Between the TINA Sessions.

 access session

 service session

 com m unication
 session

 SF

 SSM
 ssU A P

user dom ain user dom ainprovider dom ain

 ssU A P U SM U SM

stream connections established

Here the service session user application (ssUAP) represents the users interface to
the service, i.e. it determines how they may participate in the service. The Service
Factory (SF) is used to create instances of services when requested to do so by
components in the access session: namely user agents. Broadly speaking, an
instance of a service typically consists a Service Session Manager (SSM) to control
the global service behaviour, and a collection of User Session Managers (USM) –
one of each is used to control each users participation (and state) in that service.

Typically, users can join services, suspend, resume or terminate their participation
in services. The logic associated with these requests are processed in the service
session, e.g. whether the user is able to resume themselves in the service at that
time. If successful, the appropriate connections operations are made on the
communication session, e.g. resume my previously suspended connections.

It is important to note that this architecture does not overly constrain the kinds of
services that can be created from it. Rather, it acts as a template for a multitude of
services, e.g. multimedia conferencing services, chatline services or newsflash
services to name but three. Indeed even within these three services there exist a
plethora of variations. In multimedia conferencing for example, there might be
differing roles, e.g. chairman, observer, participant. These differing roles might
result in differing expected functionalities, e.g. only chairman can invite (or suspend
or terminate) other users, only participants can vote. Users might be able to have
differing charging (or billing or accounting) possibilities, e.g. reverse or split
charging, or other variations.

As well as these role specific specialisations, numerous others are possible also, e.g.
only start the service if a certain number of successful responses to the invite have
been received. Quit the service if the number of users falls below a certain level (or
if the total charges generated from using the service falls below a certain level). It is

precisely these variations on the general theme that paradigm tools are expected to
capture whilst the general theme itself is represented by the framework.

To engineer frameworks it is thus necessary to have a core behaviour. In TOSCA
this core behaviour is based around the informal (textual) description of the
behaviour of the service session components, along with the TINA ODL and IDL
for those objects.

TINA ODL

The TINA ODL language [13] arose in part, out of the different interpretations of
objects that exist and the need to distinguish between client and server interfaces. In
the Open Distributed Processing (ODP) reference architecture [15], objects have
multiple interfaces. In the CORBA world, however, ODP interfaces correspond to
CORBA objects. TINA ODL is a superset of IDL that allows for IDL interfaces to
be grouped into object structures.

Object structures in ODL distinguish between client and server interfaces. This is
achieved through labelling interfaces as either required or supported. Required
interfaces are those interfaces an object needs to be supplied from its environment to
function correctly. Supported interfaces are those interfaces an object offers to its
environment. All objects should support an initial interface. This is a supported
interface that is returned when the object is instantiated. As well as the operational,
i.e. RPC-like interfaces, ODL also provides stream interfaces used for sending and
receiving information flows. Currently the modelling of stream interfaces has not
been addressed in our work.

The ODL language also provides a group structure that allows objects
(components) to be collected together. The interfaces associated with these objects,
or a subset of them can be declared as contracts with the environment of the group.
They thus represent the externally visible interfaces to the group. All groups have
one object that acts as a manager.

FROM CORBA IDL/TINA ODL TO SDL

Given the importance of ODL and IDL in the syntactic specification of objects in
TINA, and the importance of IDL in the specification of interfaces (as well as for
communicating with ORBs) generally in distributed systems development,
mappings to a formal language are essential if formal methods are to be advocated
to software developers. SDL is one of the few formal languages for which an ODL
and IDL mapping has been made [Born97]. Along with this mapping, there are
numerous other advantages in using SDL to develop frameworks. The language
itself has many features that make it suitable for framework development and
subsequent specialisation. These are discussed in more detail in [9].

The following table summarises some of the main features of the ODL/IDL to SDL
mapping used (and implemented) in TOSCA.

Table 1 Summary of the ODL/IDL to SDL Mapping.

ODL Structure SDL Mapping

Group type Block type
Object type Block type
Interface type Process type
Object Reference Pid
Oneway (asynchronous) Operation Signal prefixed with pCALL_
Operation (synchronous) Signal pair. The first signal is prefixed

with pCALL_, the second signal
prefixed with pREPLY_ or pRAISE_
(if exception raised)

Exception Signal prefixed with pRAISE_
Basic IDL types, e.g. long, char, float,… Syntype
Any not supported
Enum Newtype with corresponding literals
Typedef Syntype
Struct Newtype with corresponding structure
Constant Synonym

Other mappings have been made from IDL to SDL [1], however these are based
largely around the remote procedure call concept of SDL. The remote procedure
concept in SDL is a shorthand notation and is based on a substitution model using
signals and states. More precisely, remote procedures are decomposed into two
signals. The first carries the outgoing parameters (in or inout) and the second the
return value of the procedure and all inout parameters. These signals are sent via
implicit channels and signalroutes. There are several problems with mapping IDL
operations to remote procedures. For example, they prohibit the raising of
exceptions – an essential feature in realistic distributed systems. Also, the client side
of the remote procedure call is blocked until the server side returns.

One point worth noting here regarding the mapping is the modelling of object types
through blocks in SDL. In SDL, it is not possible to create blocks dynamically,
although this is one extension to the language that may well be incorporated in the
next version of SDL (SDL-2000). Only processes can be created dynamically. As
we shall see however, it is possible to model the effect of the dynamic creation of
objects (blocks) in SDL through the structuring and definition of the associated
processes.

As with other IDL language mappings, client stubs and server skeletons are
generated. These act as templates whose behaviour is to be filled in through
inheritance. These stubs and skeletons are placed in two SDL packages
(Name_Interface and Name_Definition). The Name_Interface package contains the
interface specifications in the form of data types, signals, remote procedures,
signallists etc. The Name_Definition package contains the structure information that

is inherent in the IDL description in the form of modules, objects and interfaces, as
well as a system type representing the IDL description.
As an example of the kind of SDL, we focus on the user session managers (USM).
In particular those that might arise in a multimedia conferencing application. A
USM is modelled as a group that consists of both a service specific part (user
framework specific – UFS) and a generic part (not given here) which are themselves
groups. We note that the UFS group may be specialised whilst the generic part may
not. We shall consider the structure of the UFS group in more detail in section 5.
For brevity, we consider only the framework specific part of the USM. The
simplified ODL for the USM is:

group USM
{ components UFS, ...;
 manager UFSmgr;
 contracts i_UFSmgr, i_Callback, i_ControlWindowHandler ...;
};

We shall discuss the interfaces used to interact with the user application (i_Callback
and i_ControlWindowHandler) in more detail in section 6 when we consider the
specialisation of the USM. The UFSmgr object is responsible for controlling the
objects in the specialisable part of the USM. In reality this means that it should –
amongst other things - be able to terminate, suspend or resume existing all objects it
controls, or add new (named) objects3 to those it currently knows about. This
implies that all objects controlled by the UFSmgr support this basic lifecycle
functionality, i.e. upon reception of certain signals all objects can suspend, resume
or terminate themselves. To achieve this, all objects inherit from interface
i_CO_lifecycle. The IDL for this interface is:

interface i_CO_lifecycle
{ void initialiseObject(in PropertyList initInfo, in Object mgrRef);
 void suspendObject();
 void resumeObject(in Object mgrRef);
 void terminateObject();
};

When initialised or resumed, objects need to be made aware of the reference for
their managers. This allows for later checks on arriving invocations, i.e. to check
that they originated from their manager. As well as supporting this core
functionality, the interface to the UFSmgr (i_UFSmgr) supports other operations.
The default behaviour for the UFSmgr is that it allows a user to suspend and
terminate their participation in the current session. The UFSmgr may also be
specialised. We consider here the operation to specialise the start up of user
sessions. This operation and how it may be specialised are considered in more
detail in section 6. The IDL for the i_UFSmgr interface is:

3 Typically the object name (a string) and a null reference are passed in. The object name and the PId for
the created object (or null if it could not be created) is then returned.

interface i_UFSmgr : i_CO_lifecycle
{ void suspendSessionRequest(); //called by user to suspend their session
 void terminateSessionRequest();//called by user to terminate their session
 void suspendAll(); ... //called by SF to suspend USM and all associated
objects
 void requestObject(inout NamedObject obj); //called to create window
handlers
 oneway void ufsstart(); ... //used by paradigm tool for specialisation of USM
start
};

When mapped into SDL the packages that are generated contain block types for the
USM which itself contains block types for the UFS group and the generic part (not
shown here). The UFS block type contains block types for the UFSmgr (and other
objects as we shall see in section 5). Figure 2 gives a snapshot of the information in
package Name_Interface focusing on the i_UFSmgr signals.

Figure 2 Example of the Contents of the Name_Interface Package.

s i g n a l p C A L L _ i _ U F S m g r _ s u s p e n d S e s s i o n R e q u e s t ;
s i g n a l p C A L L _ i_ U F S m g r _ t e r m in a t e S e s s io n R e q u e s t ;
s i g n a l p C A L L _ i _ U F S m g r _ u f s s t a r t ;
s i g n a l p C A L L _ i _ U F S m g r _ s u s p e n d A l l ;
s i g n a l p C A L L _ i _ U F S m g r _ r e q u e s t O b j e c t (N a m e d O b j e c t) ;
/ / a n d a s s o c i a t e d p R E P L Y _ s i g n a l s – b u t n o t f o r u f s s t a r t (o n e w a y)
s i g n a l l i s t i _ U F S m g r _ IN V O C A T IO N S =
 p C A L L _ i _ U F S m g r _ s u s p e n d S e s s i o n R e q u e s t ,
 p C A L L _ i _ U F S m g r _ t e r m i n a t e S e s s i o n R e q u e s t , p C A L L _ i _ U F S m g r _ u f s s t a r t ,
 p C A L L _ i _ U F S m g r _ s u s p e n d A l l , p C A L L _ i _ U F S m g r _ r e q u e s t O b j e c t . . ;
s i g n a l l i s t i _ U F S m g r _ T E R M IN A T IO N S =
 p R E P L Y _ i _ U F S m g r _ s u s p e n d S e s s i o n R e q u e s t ,
 p R E P L Y _ i_ U F S m g r _ t e r m in a t e S e s s io n R e q u e s t ,
 p R E P L Y _ i _ U F S m g r _ s u s p e n d A l l , p R E P L Y _ i _ U F S m g r _ r e q u e s t O b j e c t . . . ;

P a c k a g e N a m e _ I n t e r f a c e

This package is then used in the definition of the Name_Definition package. Figure
3 gives an example of the kind of SDL generated focusing on the i_UFSmgr
interface of the UFSmgr object:

Figure 3 Example of the Contents of the Name_Definition Package.

process type <<package Name_Definition >> i_UFSmgr ;
inherits i_CO_lifecycle ;

virtual suspendSessionRequest virtual ufsstart

dcl ... ; other virtual procedures here

The virtual procedure for the ufsstart (and all oneway operations) consist of a virtual
start transition followed by an immediate exit. In non-oneway operations, the
generated procedures contain a pREPLY signal of the appropriate kind. Along with
the virtual procedure definitions, signals and states are also generated that result in
the procedures being called. An example of the format of the signals is given in
figure 4.

Figure 4 Example of Signals and Procedure Calls Generated.

 dcl ...;

 process type <<package Name_Definition >> i_UFSmgr ;
 inherits i_CO_lifecycle ;

 *

 ufsstart

 -

pCALL_i_UFSmgr_ufsstart

 similar format for other
 operations

As we shall see in section 5, this default behaviour of accepting all signals in all
states can be modified (restricted) through inheritance and redefinition.

Having a mapping from ODL/IDL to SDL is only a basis from which specifications
can be developed. Tool support is essential if frameworks and their specialisation
are to be developed. SDL has arguably the most developed toolsets of all formal
techniques used today.

TOOL SUPPORT FOR SPECIFICATIONS IN TOSCA

TOSCA has developed a tool chain that allows for both the development of
specification frameworks from ODL and IDL descriptions through to their
specialisation and the subsequent verification of the created service. Figure 5
highlights the current tool chain used in TOSCA.

Figure 5 The Tool Chain in TOSCA.

 input to

 input to

 results in

 execution of
 test cases

 specialising
 C++ code

 test case
 derivation

 produces
 specialising
 SD L code

 results in

 convert to SD L.G R and
 add and check behaviour O D L/ID L and

 textual behaviour
 description SD L.PR

 SD T

 SD L M odel
 of Fram ework

 Y .SCE

 Paradigm
 T ool

 SD L M odel
 of Service

 IT EX

 O rbix/C++
 im plementation
 of Fram ework

 Implementation
 of Service in C++
 on O rbix platform

Here the Y.SCE tool [16] allows (amongst other things) ODL and IDL descriptions
to be developed (or imported) and subsequently mapped to SDL in PR format.
These SDL fragments are then themselves imported into the Telelogic TAU toolset
[10]. This toolset consists of a collection of tools that allow SDL specifications to be
both specified, checked, e.g. simulated and validated (using SDT) and subsequently
tested (using ITEX). More information on the TOSCA tool chain with particular
emphasis on deriving tests to run against the (CORBA based) implementations of
the service can be found in [7]. The resulting SDL model of the framework is
represented as a package in SDL. This package is then used by associated paradigm
tools to develop complete models of services.

As stated previously, paradigm tools are used by potentially non-technical users to
develop services. TOSCA has implemented two paradigm tools that can be used to
produce intuitive (graphical) models of the services. We consider one in particular
here based on the functional block paradigm. This paradigm provides service
designers with a list of basic events at which the behaviour of the service can be
defined. These are the key points at which the designer can intervene and customise
how the service will behave. The basic events thus correspond to the framework
flexibility points. Numerous basic events have been identified, e.g. starting/stopping
the service, starting/stopping user sessions, etc. We focus on the start up of user
sessions in section 6, or more specifically, the specialisation of the IDL operation
ufsstart given earlier.

Once the service design is complete, the paradigm tool outputs both the specialising
C++ and SDL. The SDL is then imported into the SDL toolset SDT and used to
develop an SDL system from the model of the framework. The completed
specification of the service is then used as a basis for reasoning about and
subsequently verifying the C++ implementation of that service.

EXAMPLE OF FRAMEWORK DEVELOPMENT

As an example of framework development, we consider a multimedia conference
service based on the TINA service session components. As discussed, the USM
interacts with the user application (and vice versa) to allow users to participate in
service sessions. Since it is not known a priori what the functionality of the user
might be, e.g. if they are chairman of the conference then they may well have
different functionality4 than if they were merely observers in a conference, it is
necessary to define the interface to the components of the USM in such a way that
they can be extended. Thus, it should be possible to dynamically extend the user
application with new buttons (and associated callbacks) if the specialisation so
desires. The default functionality of the USMs are that they allow a user to
terminate and suspend their participation in a given service, i.e. the default user
application is such that they have a control window with two buttons: teminateMe
and suspendMe. This default behaviour for dealing with these termination and
suspension requests in the USM is included in a Control Window Handler.
Additional functionality is achieved through dynamically adding new objects and
associated callbacks to the USM (via the paradigm tool). A Role Event Handler
object is used as a placeholder for inserting this new behaviour. The structure of the
USM considering only the specialisable parts is shown in figure 6.

Figure 6 Simplified Structure of the USM.

 callback
 interface

UAP

 USM

 UFS
 UFSmgr

 Control
 Window
 Handler

 Role
 Event
 Handler

 other
handlers

 SSM

We note here that the dotted lines indicate that the objects do not initially exist, they
are created only when specialisation takes place. As stated, USMs are created by the
service factory. This occurs when either a request to start a service occurs or when
users wish to join into an already existing service. Since it is not (currently) possible
to dynamically create blocks in SDL, an alternative solution is to have process
instances existing in those blocks that exist at system start-up. As an example, at
system start-up, the UFS block contains a creator process used solely to create
instances of the UFSmgr which in turn creates all other processes it needs, e.g. the
necessary handler objects. Once the UFSmgr has created all necessary objects, it

4 and hence buttons on the window of their user application.

returns the reference to the procedure of the initial interface to that object. Figure 7
shows the simplified structure of this for the UFS object, i.e. showing only the
process instances.

Figure 7 Overcoming the Lack of Block Creation in SDL.

 createUFS(1,1):
 UFScreator

 aUFSmgr(0,):
 theUFSmgrImp

registerRef

 block type theUFS
 inherits ... ;

Typically, these creator processes (UFScreator) support a single exported procedure
which has to be imported into those blocks wishing to create instances of the
exporting block. For example, the service factory will import the exported remote
procedure for the UFSmgr (createUFS) and the UFSmgr will import the exported
remote procedures for the different window handlers etc. Through this approach, the
perception of dynamic block instantiation can be achieved.

As an example of the way in which the generated SDL server skeletons can have
their core behaviour inserted, i.e. the behaviour before they are specialised, we
consider the i_UFSmgr interface of the UFS object given previously. As stated, the
default behaviour for the UFSmgr is that it creates a control window handler only. A
simplified example of the structure of this object is given in figure 8.

Figure 8 Structure of Basic UFSmgr.

 dcl
 createdRefs objRefList,
 cwhRef objRef, ...;
 imported procedure
 createCWH fpar ...;

virtual process type theUFSmgrImp;
inherits <<package Name_Definition/block type USM/block type UFS>> i_UFSmgr
fpar in FSEPref objRef, ...;

 redefined

 createdRefs := empty, ...;

 cwhRef := call
 createCWH(FSEPref, self),
 createdRefs := createdRefs //
 MkString(cwhRef), ...

 WAIT

 WAIT

 ufsstart

 READY

pCALL_i_UFSmgr_ufsstart

[i_UFSmgr_Invocations]

 [i_UFSmgr_Terminations]

other signallists

This process type is parameterised with (amongst other things) the reference to the
user application5 (FSEPref). When an instance of this process type is created,
initialisation of local variables is done, e.g. the list of created references is set to
empty, and the default behaviour of creating a control window handler is made. As
discussed, this requires that the necessary exported remote procedure is imported.

5 This was passed in when the initial call to the service factory was made.

Following this default behaviour, the UFSmgr is ready to be specialised, i.e. it is in
a state where it can accept signal pCALL_i_UFSmgr_ufsstart.

As stated, the specialisable procedures have null behaviours, i.e. start and exit. This
allows for the behaviour of the framework as a whole to be checked without
necessarily having any specialisation taking place, e.g. the basic USM behaviour
(and SSM and SF) behaviours can be checked to ensure the framework as a whole
correctly represents the informal (textual) requirements. Once the core behaviour
has been specified and verified, the framework can be saved as a package and used
in defining services, i.e. SDL systems.

EXAMPLE OF FRAMEWORK SPECIALISATION

Both simple inheritance and virtual inheritance are used to specialise the
components in the framework. Simple inheritance was used at the upper block level,
e.g. the USM block level. Subsequent block types, e.g. the UFS block type as well
as process types and procedures were reused by virtual inheritance. Hence the
UFSmgr process type given above was declared as virtual. This was necessary since
virtual inheritance allows the commuication links, i.e. channels and signalroutes in
the framework to be reused (and possibly extended). Virtual inheritance does not,
however, allow for multiple redefinitions in one scope (e.g. different types of USM
at system level, for chairman or observer roles etc). As a result, it was not possible
to use virtual inheritance for the top-level block types: simple inheritance was used
instead.

As an example specialisation of the framework we specialised the USM (UFSmgrs)
so that three roles were given: chairman of the session, and participant and observer
in the session. Each role has a set of privileges or characteristics attached to it which
are defined by the paradigm tool. Each member in a session is assigned one of these
roles and hence may only perform the corresponding activities. We consider the
specialisation of the framework whereby the chairman role extends the basic USM
functionality by allowing for invitations to be sent out and for suspending other
users in the session.

The Control Window on the user application supports an interface that enables
widgets (buttons) to be added dynamically (i_DynamicWidgets) to the user
interface. In addition, the handler associated with this window (Control Window
Handler) supports an i_Callback interface which is used for receiving events from
the user application.

If a button is pressed on the user application, a specific signal is sent to the
corresponding i_Callback process instance. For the buttons common to all Control
Windows, the signal is sent to the i_Callback process instance within the Control
Window Handler block. The i_Callback process instances in the Role Event
Handler block are used for buttons specific to a particular member role. Figure 9
illustrates the relation between buttons and i_Callback process instances.

Figure 9 Buttons on the Control Window and associated i_Callback process type
instances.

 UAP

 Control Window

 TerminateMe

 SuspendMe

 SuspendUser

 InviteUser

 UFS

ControlWindowHandler

 i_Callback

Role Event Handler

 i_Callback

 i_Callback

Role dependent buttons are dynamically added to the window at system start-up. To
do this the addWidget procedure in the i_DynamicWidgets process of the handler is
called from the ufsstart procedure. In the addWidget procedure a new instance of an
i_Callback process type in a Role Event Handler is requested. Upon reception of
that process reference it calls the addWidget operation in the Control Window with
this reference as a parameter. To perform this specialisation, procedure ufsstart (in
the UFSmgr) and procedure eventRaised (in the i_Callback process of the handler
object) need to be specialised. This is shown in figure 10.

Figure 10 Specialised procedures ufsstart and eventRaised.

redefined procedure ufsstart

pREPLY_i_DynamicWidgets_addWidget

pREPLY_i_DynamicWidgets_addWidget

 redefined

pCALL_i_DynamicWidgets_addWidget(“InviteMem”)

 WaitWidget1

pCALL_i_DynamicWidgets_addWidget(“SuspendMem”)

WaitWidget2

redefined procedure eventRaised

 redefined

 pCALL_i_UFSmgr_requestObject(InvWH)

 pCALL_i_UFSmgr_requestObject(InputWH)

 event
 suspendButton

 inviteButton

dcl
InvWH, InputWH NamedObject;

;

Here the ufsstart procedure calls the addWidget procedure twice to create two
buttons on the Control Window, namely one to invite a member and the second to
suspend a member from the session. If one of these buttons are pushed then the
event is sent to the i_Callback process and handled in its eventRaised procedure.
Thus if the Invite Button is pressed an appropriate handler object and associated

window are created. This window can then be used for invitations (which are
processed by the created handler object). Similarly, if the suspend user button is
pressed, an appropriate handler object and associated window are created. The user
is then prompted for the name of the member to be suspended.

There are numerous other specialisations of the framework possible. These are not
only based around specialising different flavours of USMs but also include
specialising the SSM in order to implement specific policies for the service as
described in section 2. Most of these require only minimal work to specialise the
framework, e.g. a single procedure requires specialisation.

Once the framework has been specialised by the paradigm tool, in the first instance,
it is animated to give the service creator feedback on its functionality. As well as the
user interface creation being animated, e.g. new buttons being created on their
application, we have focused - amongst other things - on producing graphical
animations of the interface to the communication session, e.g. showing the
connections between users in the session and how they are modified when new
users join, or existing users suspend or resume their participation in sessions. It is
important to note that the objects performing the animation, i.e. the GUIs, are
themselves CORBA objects. Currently C++ wrappers are used to tie the C code
generated by the SDL tools (namely the SDT Simulator) to the CORBA world, i.e.
the GUIs. Another area of TOSCA work is investigating how the code generation of
the SDL tools can reflect the SDL system more closely. Thus rather than generate a
large C file for the whole system, collections of files are generated that reflect the
SDL system structure more closely, e.g. files for the blocks (SDL models of
CORBA objects). If successful, this would then allow the generation of CORBA
object implementations directly from their SDL models.

CONCLUSIONS

SDL is a formal specification language with an easily understandable graphical
syntax and considerable commercial tool support. As the language is reviewed and
updated every four years, it has incorporated many features that make development
and subsequent usage of frameworks straightforward. In particular, its support for
object-oriented concepts such as inheritance and its support for re-use through the
package construct.

Given the importance of IDL in the development of distributed systems, and ODL in
the development of telecommunication systems, mappings from ODL/IDL to SDL
have been given [1,2]. The mappings used [2] and implemented in TOSCA [16]
differ (and are improved) from others [1] in that, amongst other things, exceptions
are supported.

We have shown through an example how it is possible to develop realistic
(multimedia) telecommunication services in SDL using a framework and paradigm
based approach. Starting from an ODL/IDL description of the syntactic aspects of
the components in the framework, tool support was used to generate SDL stubs and
skeletons which were subsequently enriched with behaviour specifications. We have

also highlighted how the framework itself could be specialised to particular services
through paradigm tools.

As discussed, the development of frameworks is, by and large, a non-trivial activity.
As well as capturing a design that can be re-used, frameworks have to have well
defined points in which their behaviour can be modified or extended. Thus it is quite
possible to destroy the integrity of a framework through erroneous specialisations.
To address this issue, we have considered a small set of predefined flexibility points
(operations) associated with the framework components. We showed how one of
these (ufsstart) could be used to produce different flavours of USM.

Currently, our work has focused mainly on the simulation and graphical animation
of the created services. The next phase of our work will focus more on their
validation. This validation activity will consider both the validation of isolated
services, and the implementation of services interaction management techniques to
support the interworking of services in an environment where other services exist
that might adversely influence one another. Some of the issues associated with
service interaction in a TINA world are discussed in more detail in [4].

More information about the current status of the work in TOSCA can be found at:
http://www.teltec.dcu.ie/tosca/

Acknowledgements

The authors are indebted to the partners in the TOSCA project. The TOSCA
consortium consists of Teltec DCU, Silicon & Software Systems Ltd, British
Telecommunications, University of Strathclyde, Centro Studi e Laboratori di
Telecommunicazioni SpA, Telelogic, Lund Institute of Technology, GMD and
Ericsson.

References

[1] M. Björkander, Mapping IDL to SDL, Telelogic AB, 1997.

[2] M. Born, A. Hoffmann, M. Winkler, J. Fischer, N. Fischbeck, Towards a
Behavioural Description of ODL, Proceedings of TINA 97 Conference, Chile.

[3] The Common Object Request Broker Architecture and Specification: Revision
2.0, Object Management Group, Inc., Framingham MA., July 1995.

[4] M. Kolberg and E. Magill: Service and Feature Interactions in TINA, submitted
to Feature Interaction Workshop’98, Lund, Sweden 1998.

[5] R. Johnson and V. Russo, Reusing Object-Oriented Designs,Urbana, Ill., May
1991.

[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented
Modelling and Design, Prentice Hall 1991.

[7] I. Schieferdecker, M. Li, A. Hoffmann, Conformance Testing of TINA Service
Components - the TTCN/CORBA Gateway, Proceedings of the Intelligence in
Networks & Services Conference 1998, Antwerp, May 1998.

[8] International Consultative Committee on Telegraphy and Telephony - SDL -
Specification and Description Language, CCITT Z.100, International
Telecommunications Union, Geneva, Switzerland, 1992.

[9] R. Sinnott, Frameworks: The Future of Formal Software Development, to
appear in Semantics of Specifications, Journal of Computer Standards and
Interfaces, July 1998.

[10] Telelogic AB, Getting Started Part 1 - Tutorials on SDT Tools, Telelogic AB,
1997.

[11] TINA-C, Service Architecture, version 5.0, 16 June 1997.

[12] TINA-C, Network Resource Architecture, Version 3.0, February 1997.

[13] TINA-C, TINA Object Definition Language MANUAL, version 2.3, July
1996.

[14] TOSCA Consortium Deliverable 6, Initial Approaches to the Specification and
Validation of TINA Services, Internal Deliverable
AC237/GMD/WP3/DS/R/009/a1.

[15] Basic Reference Model of ODP -Part 2: Foundations, ISO/IEC International
Standard 10746-2, ITU-T Recommendation X.902, Geneva, Switzerland 1997.

[16] For more information see http://www.fokus.gmd.de/minos/y.sce.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
SINNOTT, RICHARD;Kolberg, Mario

Title:
Engineering telecommunication services with SDL

Date:
1999

Citation:
Sinnott, R., & Kolberg, M. (1999). Engineering telecommunication services with SDL.
In Formal methods for open object-based distributed systems: IFIP TC6/WG6.1 Third
International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS). IFIP Advances in information and communication technology (10), Florence,
Italy.

Publication Status:
Published

Persistent Link:
http://hdl.handle.net/11343/28821

http://hdl.handle.net/11343/28821

	INTRODUCTION
	THE TOSCA APPROACH TO SERVICE CREATION
	Frameworks based on the TINA Architecture
	TINA ODL

	FROM CORBA IDL/TINA ODL TO SDL
	TOOL SUPPORT FOR SPECIFICATIONS IN TOSCA
	EXAMPLE OF FRAMEWORK DEVELOPMENT
	EXAMPLE OF FRAMEWORK SPECIALISATION
	CONCLUSIONS
	Acknowledgements

	References

