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Optimal Energy Allocation for Kalman Filtering
over Packet Dropping Links with Imperfect
Acknowledgments and Energy Harvesting

Constraints
Mojtaba Nourian, Alex S. Leong and Subhrakanti Dey

Abstract—This paper presents a design methodology for op-
timal transmission energy allocation at a sensor equipped with
energy harvesting technology for remote state estimation of linear
stochastic dynamical systems. In this framework, the sensor
measurements as noisy versions of the system states are sent to
the receiver over a packet dropping communication channel. The
packet dropout probabilities of the channel depend on both the
sensor’s transmission energies and time varying wireless fading
channel gains. The sensor has access to an energy harvesting
source which is an everlasting but unreliable energy source
compared to conventional batteries with fixed energy storages.
The receiver performs optimal state estimation with random
packet dropouts to minimize the estimation error covariances
based on received measurements. The receiver also sends packet
receipt acknowledgments to the sensor via an erroneous feedback
communication channel which is itself packet dropping.

The objective is to design optimal transmission energy al-
location at the energy harvesting sensor to minimize either
a finite-time horizon sum or a long term average (infinite-
time horizon) of the trace of the expected estimation error
covariance of the receiver’s Kalman filter. These problems are
formulated as Markov decision processes with imperfect state
information. The optimal transmission energy allocation policies
are obtained by the use of dynamic programming techniques.
Using the concept of submodularity, the structure of the optimal
transmission energy policies are studied. Suboptimal solutions are
also discussed which are far less computationally intensive than
optimal solutions. Numerical simulation results are presented
illustrating the performance of the energy allocation algorithms.

Index Terms—Sensor networks, state estimation with packet
dropouts, energy/power control, energy harvesting, Markov de-
cision processes with imperfect state information, dynamic pro-
gramming.

I. INTRODUCTION

W IRELESS sensor network (WSN) technologies arise
in a wide range of applications such as environmental

data gathering [1], [2], mobile robots and autonomous vehicles
[3], [4], and monitoring of smart electricity grids [5], [6],
among many others. In these applications one of the important
challenges is to improve system performance and reliability
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under resource (e.g., energy/power, computation and commu-
nication) constraints.

A considerable amount of research has recently been de-
voted to the concept of energy harvesting [7] (see also [8]–[13]
among other papers). This is motivated by energy limited WSN
applications where sensors may need to operate continuously
for years on a single battery. In the energy harvesting paradigm
the sensors can recharge their batteries by collecting energy
from the environment, e.g. solar, wind, water, thermal or me-
chanical vibrations. However, the amount of energy harvested
is random as most renewable energy sources are unreliable.
In this work we will consider the remote Kalman filtering
problem with random packet dropouts and imperfect receipt
acknowledgments when the sensors are equipped with energy
harvesting technology, and as a result, are subject to energy
harvesting constraints.

Since the seminal work of [14], the problem of state
estimation or Kalman filtering over packet dropping communi-
cation channels has been studied extensively (see for example
[15]–[21] among others). The reader is also referred to the
comprehensive survey [22] for some of the research on the area
of control and estimation over lossy networks up to 2007. In
these problems sensor measurements (or state estimates in the
case of [16]) are grouped into packets which are transmitted
over a packet dropping link such that either the entire packet
is received or lost in a random manner. The focus in these
works is on deriving conditions on the packet arrival rate in
order to guarantee the stability of the Kalman filter.

There are other works which are concerned with estimation
performance (e.g. minimizing the expected estimation error
covariance) rather than just stability. For instance, power
allocation techniques1 (without energy harvesting constraints)
have been applied to the Kalman filtering problem in [23]–[25]
in order to improve the estimation performance. In these works
energy allocation can be used to improve system performance
and reliability. Another related line of investigation is based
on event-triggered communication where the communication
cost of sending information is combined with the estimation
error and optimal communication policies are designed, such
as in [26].

In conventional wireless communication systems, the sen-

1We measure energy on a per channel use basis and we will refer to energy
and power interchangeably.
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sors have access either to a fixed energy supply or have batter-
ies that may be easily rechargeable/replaceable. Therefore, the
sum of energy/power constraint is used to model the energy
limitations of the battery-powered devices (see [24]). However,
in the context of WSNs the use of energy harvesting is more
practical, e.g., in remote locations with restricted access to
an energy supply, and even essential where it is dangerous
or impossible to change the batteries [11], [27]. In these
situations it is possible to have communication devices with
on-board energy harvesting capability which may recharge
their batteries by collecting energy from the environment
including solar, thermal or mechanical vibrations.

Typically, the harvested energy is stored in an energy
storage such as a rechargeable battery which then is used
for communications or other processing. Even though the
energy harvesters provide an everlasting energy source for
the communication devices, the amount of energy expenditure
at every time slot is constrained by the amount of stored
energy currently available. This is unlike the conventional
communication devices that are subject only to a sum energy
constraint. Therefore, a causality constraint is imposed on the
use of the harvested energy [11]. Communication schemes for
optimizing throughput for transmitters with energy harvesting
capability have been studied in [10], [11], while a remote
estimation problem with an energy harvesting sensor was
considered in [13] which minimized a cost consisting of both
the distortion and number of sensor transmissions.

In this paper we study the problem of optimal transmission
energy allocation at an energy harvesting sensor for remote
state estimation of linear stochastic dynamical systems. In
this model, sensor’s measurements as noisy versions of the
system’s states are sent to the receiver over a packet dropping
communication channel. Similar to the channel models in [21],
the packet dropout probabilities depend on both the sensor’s
transmission energies and time varying wireless fading channel
gains. The sensor has access to an energy harvesting source
which is an everlasting but unreliable energy source compared
to conventional batteries with fixed energy storages. The
receiver performs a Kalman filtering optimal state estimation
with random packet dropouts to minimize the estimation
error covariances based on received measurements. In general,
knowledge at the sensor of whether its transmissions have
been received at the receiver is usually achieved via some
feedback mechanism. Here, in contrast to the models in
[24], [28] the feedback channel from receiver to sensor is
also a packet dropping erroneous channel leading to a more
realistic formulation. The energy consumed in transmission of
a packet is assumed to be much larger than that for sensing or
processing at the sensor and thus energy consumed in sensing
and processing is not taken into account in our formulation.

The objective of this work is to design optimal transmission
energy allocation (per packet) at the energy harvesting sensor
to minimize either a finite-time horizon sum or a long term
average (infinite-time horizon) of the trace of the expected
estimation error covariance of the receiver’s Kalman filter. The
important issue in this problem formulation is to address the
trade-off between the use of available stored energy to improve
the current transmission reliability and thus state estimation

accuracy, or storing of energy for future transmissions which
may be affected by higher packet loss probabilities due to
severe fading.

These optimization problems are formulated as Markov de-
cision processes with imperfect state information. The optimal
transmission energy allocation policies are obtained by the use
of dynamic programming techniques. Using the concept of
submodularity [29], the structure of the optimal transmission
energy policies are studied. Suboptimal solutions which are
far less computationally intensive than optimal solutions are
also discussed. Numerical simulation results are presented il-
lustrating the performance of the energy allocation algorithms.

Previous presentation of the model considered in this paper
includes [28] which investigates the case with perfect acknowl-
edgments at the sensor. Here, we address the more difficult
problem where the feedback channel from receiver to sensor is
an imperfect erroneous channel modelled as an erasure channel
with errors.

In summary, the main contributions of this paper are as
follows:

i) Unlike a large number of papers focusing on the stability
for Kalman filtering with packet loss, e.g. [15]–[21], we
focus on the somewhat neglected issue of estimation
error performance (noting that stability only guarantees
bounded estimation error) in the presence of packet loss
and how to optimize it via power/energy allocation at
the sensor transmitter. Note that it is quite common
to study optimal power allocation in the context of a
random stationary source estimation in fading wireless
sensor networks [30], but this issue has received much
less attention in the context of Kalman filtering over
packet dropping links which are randomly time-varying.
In particular, we consider minimization of a long-term
average of error covariance minimization for the Kalman
filter by optimally allocating energy for individual packet
transmissions over packet dropping links with randomly
varying packet loss probability due to fading. While a
version of this problem was considered in our earlier
conference paper [24], we extend the problem setting and
the analysis along multiple directions as described below.

ii) Unlike [24], we consider an energy harvesting sensor that
is not constrained by a fixed initial battery energy, but
rather the randomness of the harvested energy pattern.
Energy harvesting is a promising solution to the impor-
tant problem of energy management in wireless sensor
networks. Furthermore, recent advances in hardware have
made energy harvesting technology a practical reality [7].

iii) We provide a new sufficient stability condition for
bounded long term average estimation error, which de-
pends on the packet loss probability (which is a function
of the channel gain, harvested energy and the maximum
battery storage capacity) and the statistics of the channel
gain and harvested energy process. Although difficult
to verify in general, we provide simpler forms of this
condition in when the channel gains and harvested en-
ergy processes follow familiar statistical models such as
independent and identically distributed processes or finite
state Markov chains.
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Fig. 1: System model

iv) We consider the case of imperfect feedback acknowledge-
ments, which is more realistic but more difficult to study
than the case of perfect feedback acknowledgements. We
model the feedback channel by a general erasure channel
with errors.

v) It is well known that the optimal solution obtained by a
stationary control policy minimizing the infinite horizon
control cost is computationally prohibitive. Thus moti-
vated, we provide structural results on the optimal energy
allocation policy which lead to threshold policies which
are optimal and yet very simple to implement in some
practical cases, e.g. when the sensor is equipped with
binary transmission energy levels. Note that most sensors
usually have a finite number of transmission energy/power
levels and for simplicity, sensors can be programmed to
only have two levels.

vi) Finally, also motivated by the computational burden for
the optimal control solution in the general case of imper-
fect acknowledgments, we provide a sub-optimal solution
based on an estimate of the error covariance at the
receiver. Numerical results are presented to illustrate the
performance gaps between the optimal and sub-optimal
solutions.

The organization of the paper is as follows. The system
model is given in Section II. The optimal energy allocation
problems subject to energy harvesting constraints are formu-
lated in Section III. In Section IV the optimal transmission
energy allocation policies are derived by the use of dynamic
programming techniques. Section V presents suboptimal poli-
cies which are less computationally demanding. The structure
of the optimal transmission energy allocation policies are
studied in Section VI. Section VII presents the numerical
simulation results. Finally, concluding remarks are stated in
Section VIII.

II. SYSTEM MODEL

A diagram of the system architecture is shown in Fig. 1.
The description of each part of the system is given in detail
below.

A. Process Dynamics and Sensor Measurements
We consider a linear time-invariant stochastic dynamical

process

xk+1 = Axk + wk, k ≥ 0

where xk ∈ Rn is the process state at time k ≥ 0, A ∈
Rn×n, and {wk, k ≥ 0} is a sequence of independent and
identically distributed (i.i.d.) Gaussian noises with zero mean
and positive definite covariance matrix Q > 0. The initial state
of the process x0 is a Gaussian random vector, independent of
the process noise sequence {wk, k ≥ 0}, with mean x̄0 := Ex0

and covariance matrix Px0 .
The sensor measurements are obtained in the form

yk = Cxk + vk, k ≥ 0

where yk ∈ Rm is the observation at time k ≥ 0, C ∈ Rm×n,
and {vk, k ≥ 0} is a sequence of i.i.d. Gaussian noises,
independent of both the initial state x0 and the process noise
sequence {wk, k ≥ 0}, with zero mean and a positive semi-
definite covariance matrix R ≥ 0.

We enunciate the following assumption:
(A1) We assume that (A,Q1/2) is stabilizable and (A,C)

is detectable.

B. Forward Communication Channel

The measurement yk is then sent to a receiver over a packet
dropping communication channel such that yk (considered as
a packet) is either exactly received or the packet gets lost due
to corrupted data or substantial delay. The packet dropping
channel is modelled by

zk = γkyk, k ≥ 0

where zk is the observation obtained by the receiver at time
k, and γk = 1 denotes that the measurement packet is
received, while γk = 0 denotes that the packet containing
the measurement yk is lost.

Similar to [21], we adopt a model for the packet loss
process {γk} that is governed by the time-varying wireless
fading channel gains {gk} and sensor transmission energy
allocation (per packet) {uk} over this channel. In this model,
the conditional packet reception probabilities are given by

P(γk = 1|gk, uk) , h(gkuk) (1)

where h(·) : [0,∞) → [0, 1] is a monotonically increasing
continuous function. The form of h(·) will depend on the
particular digital modulation scheme being used [31].

We consider the case where the set of fading channel gains
{gk} is a first-order stationary and homogeneous Markov
fading process (see [32]) where the channel remains constant
over a fading block (representing the coherence time of the
channel [33]). Note that the stationary first-order Markovian
modelling includes the case of independent and identically
distributed (i.i.d.) processes as a special case.

We assume that channel state information is available at
the transmitter such that it knows the values of the channel
gains gk at time k. In practice, this can be achieved by chan-
nel reciprocity between the sensor-to-receiver and receiver-
to-sensor channels (such as in typical time-division-duplex
(TDD) based transmissions). In this scenario, the sensor can
estimate the channel gain based on pilot signals transmitted
from the remote receiver at the beginning of each fading
block. Another possibility (if channel reciprocity does not
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hold) is to estimate the channel at the receiver based on pilot
transmissions from the sensor and send it back to the sensor
by channel state feedback. However, transmitting pilot signals
consumes energy which should then be taken into account. To
conform with our problem formulation, we therefore assume
that channel reciprocity holds.

C. Energy Harvester and Battery Dynamics

Let the unpredictable energy harvesting process be denoted
by {Hk} which is also modelled as a stationary first-order
homogeneous Markov process, and which is independent of
the fading process {gk}. This modelling for the harvested
energy process is justified by empirical measurements in the
case of solar energy [27].

We assume that the dynamics of the stored battery energy
B(·) is given by the following first-order Markov model

Bk+1 = min{Bk − uk +Hk+1, Bmax}, k ≥ 0 (2)

with given 0 ≤ B0 ≤ Bmax, where Bmax is the maximum
stored energy in the battery.

D. Kalman Filter at Receiver

The receiver performs the optimal state estimation by
the use of Kalman filtering based on the history Fk :=
σ(zt, γt, 0 ≤ t ≤ k) which is the σ-field generated by the
available information at the receiver up to time k. We use the
convention F0 = {Ø,Ω}.

The optimal Kalman filtering and prediction estimates of the
process state xk are given by x̂k|k = E[xk|Fk] and x̂k+1|k =
E[xk+1|Fk], respectively. The corresponding Kalman filter
error covariances are defined as

Pk|k = E[(xk−x̂k|k)(xk−x̂k|k)T |Fk]

Pk+1 := Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |Fk].

The Kalman recursion equations for x̂k|k and x̂k+1|k are
given in [14]. In this paper we focus on the estimation error
covariance Pk which satisfies the random Riccati equation

Pk+1 =APkA
T +Q−γkAPkCT (CPkC

T +R)−1CPkA
T (3)

for k ≥ 0 where P0 = E[(x0 − x̄0)(x0 − x̄0)T ] = Px0 (see
[14]). Note that γk appears as a random coefficient in the
Riccati equation (3). Note that (i) the derivation in [14] allows
for time-varying packet reception probabilities, and (ii) in the
model of this paper the energy allocation uk, computed based
on the estimation error variance (not the state), only affects
the probability of packet reception via (1) and not the process
dynamics, the estimation error covariance recursion is of the
form (3) as given in [14]. This is in contrast to the work [34]
where the control signal can affect the states at future times
which leads to a dual effect.

E. Erroneous Feedback Communication Channel

In the case of unreliable acknowledgments, the packet loss
process {γk, k ≥ 0} is not known to the sensor, instead,
the sensor receives an imperfect acknowledgment process
{γ̂k, k ≥ 0} from the receiver. It is assumed that after the

transmission of yk and before transmitting yk+1 the sensor
has access to the ternary process γ̂k ∈ {0, 1, 2} where

γ̂k =

{
0 or 1 if βk = 1

2 if βk = 0

with given dropout probability η ∈ [0, 1] for the binary process
{βk : k ≥ 0}, i.e., P(βk = 0) = η ∈ [0, 1] for all k ≥ 0.
In case βk = 0 (i.e., γ̂k = 2), no signal is received on the
feedback link and this results in an erasure. In case βk = 1, a
transmission error may occur, independent of all other random
processes, with probability ε ∈ [0, 1]. This transmission error
results in the reception of γ̂k = 0 when γk = 1, and γ̂k = 1
when γk = 0. We may write the transition probability matrix
of the erroneous feedback channel as a homogeneous Markov
process with a 2× 3 transition probability matrix

A = (aij) =

[
(1− ε)(1− η) ε(1− η) η
ε(1− η) (1− ε)(1− η) η

]
where aij := P(γ̂ = j − 1|γ = i − 1) for i ∈ {1, 2} and
j ∈ {1, 2, 3}. This channel model refers to a generalized
erasure channel, namely, a binary erasure channel with errors
(see Exercise 7.13 in [35]). This model is general in the
sense that if we let η = 0 then the ternary acknowledgement
process reduces to a binary process with the possibility of
only transmission errors, and a standard erasure channel when
we set ε = 0. Finally, the case of perfect packet receipt
acknowledgments studied in [28] is a special case when η
and ε above are both set to zero.

The present situation encompasses, as special cases, situ-
ations where no acknowledgments are available (UDP-case)
and also cases where acknowledgments are always available
(TCP-case), see also [36] for a discussion in the context of
closed loop control with packet dropouts.

III. OPTIMAL TRANSMISSION ENERGY ALLOCATION
PROBLEMS SUBJECT TO ENERGY HARVESTING

CONSTRAINTS

In this section we formulate optimal transmission energy
allocation problems in order to minimize the trace of the
receiver’s expected estimation error covariances (3) subject to
energy harvesting constraints. Unlike the problem formulation
in [24], in the model of this paper the optimal energy policies
are computed at the sensor which has perfect information
about the energy harvesting and instantaneous battery levels
but has imperfect state information about the packet receipt
acknowledgments.

We consider the realistic scenario of causal information case
where the unpredictable future wireless fading channel gains
and energy harvesting information are not a priori known to
the transmitter. More precisely, the information available at
the sensor at any time k ≥ 1 is given by

Ik = {st := (γ̂t−1, gt, Ht, Bt) : 1 ≤ t ≤ k} ∪ I0

where I0 := {g0, H0, B0, P0} is the initial condition.
The information Ik is used at the sensor to decide the

amount of transmission energy uk for the packet loss process.
A policy uk for k ≥ 1 is feasible if the energy harvesting
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constraint 0 ≤ uk ≤ Bk = min{Bk−1 − uk−1 + Hk, Bmax}
is satisfied. The admissible control set is then given by
U :=

{
u(·) : uk is adapted to sigma-field σ(Ik) and 0 ≤

uk ≤ Bk (a.s.)
}
.

The optimization problems are now formulated as Markov
decision processes with imperfect state information for the
following two cases:

(i) Finite-time horizon:

min
{uk:0≤k≤T−1}

T−1∑
k=0

E[tr(Pk+1)]

s.t. 0 ≤ uk ≤ Bk (a.s.) 0 ≤ k ≤ T − 1

(4)

and (ii) Long term average (infinite-time horizon):

min
{uk:k≥0}

lim sup
T→∞

1

T

T−1∑
k=0

E[tr(Pk+1)]

s.t. 0 ≤ uk ≤ Bk (a.s.) k ≥ 0

(5)

where Bk is the stored battery energy available at time k
which satisfies the battery dynamics (2). It is evident that the
transmission energy at time k, uk, affects the amount of stored
energy Bk+1 available at time k + 1 which in turn affects
the transmission energy uk+1 since 0 ≤ uk+1 ≤ Bk+1 =
min{Bk − uk + Hk+1, Bmax} by (2). In the special case
of perfect packet receipt acknowledgments from receiver to
sensor, the reader is referred to [24] for a similar long term
average cost formulation under an average transmission power
constraint which is a soft constraint unlike the energy harvest-
ing constraint considered here, which is a hard constraint in
an almost sure sense.

We note that the expectations in (4) and (5) are computed
over random variables {gk}, {Hk} and {γ̂k} for given initial
condition I0. Since these expectations are conditioned on the
transmission success process of the feedback channel {γ̂k}
instead of the packet loss process of the forward channel
{γk}, these formulations fall within the general framework of
stochastic control problems with imperfect state information.

It is known that Kalman filtering with packet losses may
have unbounded expected estimation error covariances in
certain situations (see [14]). We now aim to provide sufficient
conditions under which the infinite horizon stochastic control
problem (5) is well-posed in the sense that an exponential
boundedness condition for the expected estimation error co-
variance is satisfied. The reader is referred to [21] for the
problem of determining the minimum average energy required
for guaranteeing the stability of the Kalman filtering with the
packet reception probabilities (1) subject to an average sum
energy constraint.

Let G and H be the time-invariant probability transition
laws of the Markovian channel fading process {gk} and the
Markovian harvested energy process {Hk}, respectively.

We introduce the following assumption:
(A2) The channel fading process {gk}, harvested energy

process {Hk} and the maximum battery storage Bmax satisfy

the following:

sup
(g,H)

∫
gk

∫
Hk

(1−h(gk min{Hk, Bmax}))P(gk|gk−1 =g)

× P(Hk|Hk−1 =H)dgkdHk ≤
ρ

||A||2
, k ≥ 0 (6)

for some ρ ∈ [0, 1).
Theorem 3.1: Assume (A2) holds. Then there exist en-

ergy allocations {uk} such that {Pk} in (3) is exponentially
bounded in norm, i.e.,

E‖Pk‖ ≤ αρk + β, k ≥ 0 (7)

for some non-negative scalars α and β. As a result, the
stochastic optimal control problem (5) is well-posed.

Proof : Based on Theorem 1 in [32], a sufficient condition
for exponential stability in the sense of (7) is that

sup
(g,H)

P(γk = 0|gk−1 = g,Hk−1 = H)

= sup
(g,H)

∫
gk

∫
Hk

P(γk=0|gk=g′,Hk=H ′,gk−1 =g,Hk−1 =H)

× P(gk, Hk|gk−1 =g,Hk−1 =H)dgkdHk

= sup
(g,H)

∫
gk

∫
Hk

P(γk=0|gk=g′,Hk=H ′,gk−1 =g,Hk−1 =H)

× P(gk|gk−1 =g)P(Hk|Hk−1 =H)dgkdHk

= sup
(g,H)

∫
gk

∫
Hk

(1− h(gkuk))P(gk|gk−1 = g)

× P(Hk|Hk−1 = H)dgkdHk ≤
ρ

‖A‖2

for some ρ ∈ [0, 1). We now consider a suboptimal solution
scheme to the stochastic optimal control problem (5) where the
full amount of energy harvested at each time step is used, i.e.,
u0 = B0 and uk = min{Hk, Bmax} for k ≥ 1. Then (6) will
be a sufficient condition in terms of the channel fading process,
harvested energy process and the maximum battery storage.
Therefore, Assumption (A2) provides a sufficient condition
for the exponential boundedness (7) of the expected estimation
error covariance.

Remark 3.1: The condition (6) given by Assumption (A2)
may not be easy to verify for all values of g, H and k. If we
assume that the channel fading and harvested energy processes
are stationary then it won’t be necessary to verify the condition
for all k. Furthermore, in the two most commonly used models
of i.i.d. processes and finite state Markov chains, the condition
can be simplified as follows:

(i) If {gk} and {Hk} are i.i.d., (6) yields∫
gk

∫
Hk

(1− h(gk min{(Hk, Bmax}))P(gk)P(Hk)dgkdHk

≤ ρ

||A||2
.

(ii) If {gk} and {Hk} are stationary finite state Markov
chains with M and N states respectively, (6) yields

max
(i,j)

M∑
i′=1

N∑
j′=1

(1− h(imin{j, Bmax}))P(gk = i′|gk−1 = i)

× P(Hk = j′|Hk−1 = j) ≤ ρ

‖A‖2
.
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IV. SOLUTIONS TO THE OPTIMAL TRANSMISSION ENERGY
ALLOCATION PROBLEMS VIA DYNAMIC PROGRAMMING

The stochastic control problems (4) and (5) can be regarded
as Markov Decision Process (MDP) [37] problems with im-
perfect state information [38], [39]. In these formulations the
energy harvesting sensor does not have perfect knowledge
about whether its transmissions have been received at the
receiver or not due to the existence of an imperfect feedback
communication channel. Hence, at time k the sensor has only
“imperfect state information” about {Pt : 1 ≤ t ≤ k} via the
acknowledgment process {γ̂t, 0 ≤ t ≤ k − 1}. In this section
we reduce the stochastic control problems with imperfect state
information (4) and (5) to ones with perfect state information
by using the notion of information-state [38].

A. Information-State Dynamics

For k ≥ 0 denote

zk := {P0, γ̂0, . . . , γ̂k, g0, . . . , gk−1, . . . , u0, . . . , uk−1}

as all observations about the receiver’s Kalman filtering state
estimation error covariance at the sensor after the transmission
of yk and before transmitting yk+1. We set z−1 := {P0}. The
so-called information-state is defined by

fk+1(Pk+1|zk, gk, uk) = P(Pk+1|zk, gk, uk), k ≥ 0 (8)

which is the conditional probability of estimation error
covariance Pk+1 given zk, gk and uk. The following
lemma shows how fk+1(·|zk, gk, uk) can be determined from
fk(·|zk−1, gk−1, uk−1) together with γ̂k, gk and uk.

Lemma 4.1: The information-state f(·) satisfies the follow-
ing dynamics

fk+1(Pk+1|zk, gk, uk) =
∑

γk∈{0,1}

[ ∫
Pk

(
P(Pk+1|Pk, γk)

× fk(Pk|zk−1, gk−1, uk−1)
)
dPk

× P(γ̂k|γk)× P(γk|gk, uk)∑
γk∈{0,1} P(γ̂k|γk)× P(γk|gk, uk)

]
, k ≥ 0 (9)

with f0(P0|z−1) = δ(P0) where δ is the Dirac delta function.
Proof: See the Appendix.
It is important to note that the information-state dynamics

(9) depends on the fading channel gains {gk} and sensor
transmission energy allocation policies {uk} via the packet
reception probabilities (1). Hence, we may write (9) as

fk+1(Pk+1|zk, gk, uk)

= Φk
[
fk(·|zk−1, gk−1, uk−1), γ̂k, gk, uk

]
(Pk+1) (10)

for k ≥ 0. Note that Φk in (10) depends on the entire function
fk(·|zk−1) and not just its value at any particular Pk.

In the following sections the stochastic control problems
with imperfect state information (4) and (5) are reduced to
problems with perfect state information where the state is
given by the information-state f(·). The resulting stochastic

problems with perfect information are approached via the
dynamic programming principle.

We establish some notation. Let the binary random variable
γ be defined akin to γk in (3), then for a given P denote

L(P, γ) :=APAT+Q−γAPCT(CPCT +R)−1CPAT (11)

as the random Riccati equation operator. Let Sn+ be the set of
all (n×n) nonnegative definite matrices. Then, we denote the
space of all probability density functions on Sn+ as Π where∫
Sn+
π(P )dP = 1 for any π ∈ Π. Let the ternary random

variable γ̂ be defined akin to γ̂k in Section II-E. Then, based
on the information-state recursion (10) denote

π̃ = Φ
[
π, γ̂, g, u

]
:=
∑

γ∈{0,1}

[ ∫
P

P
(
L(P, γ)

∣∣P, γ)π(P )dP

× P(γ̂|γ)× P(γ|g, u)∑
γ∈{0,1} P(γ̂|γ)× P(γ|g, u)

]
(12)

for given π ∈ Π, fading channel gain g and sensor transmission
energy allocation u.

Remark 4.1: In the special case of perfect packet receipt
acknowledgments, where η and ε in Section II-E are set to
zero, the problems (4) and (5) become stochastic control
problems with perfect state information. In this case the
probability density functions π and π̃ in the information-state
recursion (12) become Dirac delta functions.

B. Dynamic Programming Principle

In this section, the transmission energy allocation policy
is computed offline from the Bellman dynamic programming
equations given below.

Some notation is now presented. Given the fading channel
gain g and the harvested energy H at time k ≥ 0 we denote the
corresponding fading channel gain and the harvested energy
at time k + 1 by g̃ and H̃ , respectively. We recall that both
fading channel gains {gk} and harvested energies {Hk} are
modelled as first-order homogeneous Markov processes (see
Section II).

1) Finite-Time Horizon Bellman Equation: The imperfect
state information stochastic control problem (4) is solved in
the following Theorem.

Theorem 4.1: For given initial condition I0 =
{g0, H0, B0, P0} the value of the finite-time horizon
minimization problem (4) is given by V0(I0) which can be
computed recursively from the backward Bellman dynamic
programming equation

Vk(π, g,H,B) = min
0≤u≤B

{
E
[

tr
(
L(P, γ)

)∣∣π, g, u]
+ E

[
Vk+1

(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]}, 0 ≤ k ≤ T − 1 (13)

where π ∈ Π. The terminal condition is given as

VT (π, g,H,B) := min
0≤u≤B

E
[

tr
(
L(P, γ)

)∣∣π, g, u]
= E

[
tr
(
L(P, γ)

)∣∣π, g,B]
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where all available energy is used for transmission in the final
time T .

Proof : The proof follows from the dynamic programming
principle for stochastic control problems with imperfect state
information (see Theorem 7.1 in [38]).

Based on Remark 4.1, it is important to note that in the
special case of perfect packet receipt acknowledgments, where
η and ε in Section II-E are set to zero, the Bellman equation
(13) is written with respect to Dirac delta functions in space
Π, i.e., π(·) = δ(·) ∈ Π (see Section 4 in [28]).

The solution to the imperfect state information stochastic
control problem (4) is then given by

uok(π, g,H,B) = arg min
0≤u≤B

{
E
[

tr
(
L(P, γ)

)∣∣π, g, u]
+ E

[
Vk+1

(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]}, 0 ≤ k ≤ T − 1 (14)

with uoT (π, g,H,B) = B, where Vk+1(·) is the solution to the
Bellman equation (13).

For computational purposes, we now simplify the terms in
(13). First, we have

E
[

tr
(
L(P, γ)

)∣∣π, g, u] =

∫
P

tr
(
APAT +Q

)
π(P )dP

− h(gu)×
∫
P

tr
(
APCT [CPCT +R]−1CPAT

)
π(P )dP

with the constraint that 0 ≤ u ≤ B. Since the mutually
independent processes {gk} and {Hk} are independent of
other processes and random variables, we may write

E
[
Vk+1

(
Φ
[
π, γ̂, g, u

]
, g̃, H̃, B̃

)∣∣π, g,H, u]}
=

∫
g̃,H̃

Vk+1

(
Φ[π, γ̂, g, u], g̃, H̃, B̃

)
×G(g̃|g) H(H̃|H)dg̃dH̃ (15)

where B̃ := min{B − u + H̃, Bmax}, and G and H are the
probability transition laws of the Markovian processes {gk}
and {Hk}, respectively, and where the function Φ is defined
in (12).

Remark 4.2: The expression (15) can be simplified further
in the two following cases:
(i) If {gk} and {Hk} are i.i.d., then the right hand side term
in (15) becomes∫

g̃,H̃

Vk+1

(
Φ[π, γ̂, g, u], g̃, H̃, B̃

)
P(g̃)P(H̃)dg̃dH̃

where B̃ = min{B − u+ H̃, Bmax}.
(ii) If {gk} and {Hk} are finite state Markov chains with M
and N states respectively, then the right term in (15) becomes

M∑
i=1

N∑
j=1

Vk+1

(
Φ[π, γ̂, g, u], i, j, B̃(j)

)
× (P(g)G)i(P(H)H)j

where B̃(j) := min{B − u + j, Bmax}, P(g) := [P(g =
1) . . . P(g = M)], P(H) := [P(H = 1) . . . P(H = N)],

G and H are the probability transition matrices for {gk} and
{Hk}, respectively, and (P(g)G)i denotes the i-th component
of the vector P(g)G.

Note that the solution to the dynamic programming equation
can only be obtained numerically and there is no closed form
solution. In fact, even for a horizon 2 problem with causal
information and perfect feedback acknowledgment, it can be
shown that the optimal solution cannot be obtained in closed
form. It can be observed however that for a fixed battery level,
the energy allocation generally increases with the channel gain
and when the channel gain is above some threshold, all of the
available battery energy is used for transmission. Similarly,
when the channel gain is kept fixed, the energy allocation is
equal to the available energy and increases with increasing
battery energy level. Although after some point, the energy
allocated for transmission becomes less than the available
energy and some energy is saved for future transmissions.

2) Long Term Average (Infinite-Time Horizon) Bellman
Equation: We present the solution to the imperfect state
information stochastic control problem (5) in the following
Theorem.

Theorem 4.2: Independent of the initial condition I0 =
{g0, H0, B0, P0}, the value of the infinite-time horizon min-
imization problem (5) is given by ρ which is the solution of
the average-cost optimality (Bellman) equation

ρ+ V (π, g,H,B) = min
0≤u≤B

{
E
[

tr
(
L(P, γ)

)∣∣π, g, u]
+ E

[
V
(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]}, (16)

where π ∈ Π, and V is called the relative value function.
Proof : See the Appendix.
The stationary solution to the imperfect state information

stochastic control problem (5) is then given by

uo(π, g,H,B) = arg min
0≤u≤B

{
E
[

tr
(
L(P, γ)

)∣∣π, g, u]
+ E

[
V
(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]} (17)

where V (·) is the solution to the average cost Bellman
equation (16).

Remark 4.3: Equation (16) together with the control policy
uo defined in (17) is known as the average cost optimality
equations. If a control uo, a measurable function V , and a
constant ρ exist which solve equations (16)-(17), then the
control uo is optimal, and ρ is the optimal cost in the sense
that

lim sup
T→∞

1

T

T−1∑
k=0

E[tr(Pk+1)|uo] = ρ

and for any other control policy {uk : k ≥ 0} such that 0 ≤
uk ≤ Bk, a.s., we have

lim sup
T→∞

1

T

T−1∑
k=0

E[tr(Pk+1)|u] ≥ ρ.
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The reader is referred to [40] for a proof of the average cost
optimality equations and related results.

We note that discretized versions of the Bellman equations
(13) or (16), which in particular includes the discretization
of the space of probability density functions Π, is used for
the numerical computation to find suboptimal solutions to
the stochastic control problems (4) and (5). As the number
of discretization levels increases, it is expected that these
discretized (suboptimal) solutions converge to the optimal
solutions [41]. We solve the Bellman equations (13) and (16)
by the use of value iteration and relative value iteration
algorithms, respectively (see Chapter 7 in [39]).

Remark 4.4: The causal information pattern is clearly
relevant to the most practical scenario. However, it is also
instructive to consider the non-causal information scenario
where the sensor has a priori information about the energy
harvesting {Hk} process and the fading channel gains {gk} for
all time periods including the future ones. This may be feasible
in the situation of known environment where the wireless
channel fading gains and the harvested energies are predictable
[11]. More importantly, the performance of the non-causal
information case can serve as a benchmark (a lower bound)
for the causal case. Indeed, we present some performance
comparison between the performances in the causal and the
non-causal case in the Numerical Examples section. Note that
the energy allocation problems for the non-causal case can
be solved using similar techniques to Section IV-B, and the
details are omitted for brevity.

V. SUBOPTIMAL TRANSMISSION ENERGY ALLOCATION
PROBLEMS AND THEIR SOLUTIONS

The optimal solutions presented in Section III require us
to compute the solution of Bellman equations in the space of
probability densities Π. In this section we consider the design
of suboptimal policies which are computationally much less
intensive than the optimal solutions of Section IV.

Here, we only present suboptimal solutions to the finite-time
horizon stochastic control problem (4). Following the same
arguments one can design similar suboptimal solutions to the
infinite-time horizon problem.

In this case we formulate the problem of minimizing the
expected estimation error covariance as

min
{uk:0≤k≤T}

T−1∑
k=0

E
[
tr
(
P̂k+1)

∣∣{γ̂l}k−1
l=0 , {ul}

k
l=0, P0

]
≡ min
{uk:0≤k≤T}

T−1∑
k=0

E
[
tr
(
P̂k+1)

∣∣P̂k, uk]
s.t. 0 ≤ uk ≤ Bk (a.s.) 0 ≤ k ≤ T − 1

(18)

where P̂(·) is an estimate of P(·) computed by the sensor based
on the following recursive equations (with P̂0 = P0):

(i) In the case γ̂k = 0 we have

P̂k+1 :=
(
AP̂kA

T +Q
)
× P(γ̂k = 0|γk = 0)× P(γk = 0)∑

γk∈{0,1} P(γ̂k = 0|γk)× P(γk)

+
(
AP̂kA

T +Q−AP̂kCT [CP̂kC
T +R]−1CP̂kA

T
)

× P(γ̂k = 0|γk = 1)× P(γk = 1)∑
γk∈{0,1} P(γ̂k = 0|γk)× P(γk)

.

(ii) in the case γ̂k = 1 we have

P̂k+1 :=
(
AP̂kA

T +Q
)
× P(γ̂k = 1|γk = 0)× P(γk = 0)∑

γk∈{0,1} P(γ̂k = 1|γk)× P(γk)

+
(
AP̂kA

T +Q−AP̂kCT [CP̂kC
T +R]−1CP̂kA

T
)

× P(γ̂k = 1|γk = 1)× P(γk = 1)∑
γk∈{0,1} P(γ̂k = 1|γk)× P(γk)

.

(iii) In the case γ̂k = 2 we have

P̂k+1 := AP̂kA
T +Q− P(γk = 1)

×AP̂kCT [CP̂kC
T +R]−1CP̂kA

T .

The reason that the solution to the stochastic control prob-
lem (18) is called suboptimal is that the true estimation
error covariance matrix P(·) in (3) is replaced by its estimate
P̂(·). The intuition behind these recursive equations can be
explained as follows. Note that in the case of perfect feed-
back acknowledgements, the error covariance is updated as
Pk+1 = APkA

T +Q in case γk = 0, and Pk+1 = APkA
T +

Q−APkCT (CPkC
T +R)−1CPkA

T in case γk = 1. In our
imperfect acknowledgement model, even when it is received,
errors can occur such that γ̂k = 0 is received when γk = 1, and
γ̂k = 1 is received when γk = 0. Thus the recursions given in
(i) and (ii) are the weighted (by the corresponding error event
probabilities) combinations of the error covariance recursions
in the case of perfect feedback acknowledgements. In the case
γ̂k = 2 where an erasure occurs, taking the average of the error
covariances in the cases γk = 0 and γk = 1 is intuitively a
reasonable thing to do, which motivates the recursion in (iii).

Note that P(γ̂k) =
∑
γk∈{0,1} P(γ̂k|γk)P(γk) where the

conditional probabilities are given in Section II-E. This to-
gether with the recursive equations of P̂(·) yields

E[P̂k+1|P̂k, gk, uk] = AP̂kA
T +Q− h(gkuk)

×
(
AP̂kA

T +Q−AP̂kCT [CP̂kC
T +R]−1CP̂kA

T
)

(19)

Since the expression E[P̂k+1|P̂k, gk, uk] is of the same form
as E[Pk+1|Pk, gk, uk] when Pk is replaced by P̂k, the Bellman
equation for problem (18) is given by a similar equation to the
case of perfect feedback communication channel considered in
[28] which is presented in the following theorem.

Theorem 5.1: For given initial condition I0 =
{g0, H0, B0, P0} the value of the finite-time horizon
minimization problem (18) is given by V0(I0) which can be
computed recursively from the backward Bellman dynamic
programming equation

Vk(P̂ , g,H,B) = min
0≤u≤B

{
E
[

tr
(
L(P̂ , γ)

)∣∣P̂ , g, u]
+ E

[
Vk+1

(
L(P̂ , γ), g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣P̂ , g,H, u]}, 0 ≤ k ≤ T − 1 (20)
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with terminal condition

VT (P̂ , g,H,B) := min
0≤u≤B

E
[

tr
(
L(P̂ , γ)

)∣∣P̂ , g, u]
= E

[
tr
(
L(P̂ , γ)

)∣∣P̂ , g, B]
where all available energy is used for transmission in the final
time T .

The solution to the stochastic control problem (18) which
is a suboptimal solution to (4) is given by

uok(P̂ , g,H,B) = arg min
0≤u≤B

{
E
[

tr
(
L(P̂ , γ)

)∣∣P̂ , g, u]
+ E

[
Vk+1

(
L(P̂ , γ), g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)∣∣
P̂ , g,H, u

]}
, 0 ≤ k ≤ T − 1

with uoT (P̂ , g,H,B) = B, where Vk+1(·) is the solution to
the Bellman equation (20).

VI. SOME STRUCTURAL RESULTS ON THE OPTIMAL
ENERGY ALLOCATION POLICIES

In this section the structure of the optimal transmission
energy allocation policies (14) is studied for the case of the
finite-time horizon stochastic control problem (4). Following
the same arguments one can show similar structural results for
the infinite-time horizon problem (5).

Lemma 6.1: Assume h(·) in (1) is a concave function
in u given g. Then, given π, g and H , the value function
Vk(π, g,H,B) in (13) is convex in B for 0 ≤ k ≤ T . As
a result,

V0(P0, g0, H0, B0) = min
{0≤uk≤Bk}T−1

k=0

T−1∑
k=0

E[tr(Pk+1)]

is convex in B0.
Proof : We let s := (π, g,H,B). First, note that, for given

π, g and H , the final time value function

VT (s) = min
0≤u≤B

E
[

tr
(
L(P, γ)

)∣∣π, g, u]
= E

[
tr
(
L(P, γ)

)∣∣π, g,B]
is a convex function in B due to the fact that h(·) is a concave
function in u given g (see Lemma 2 in [24]). Now assume that
Vk+1(s) is convex in B for given π, g and H . Then, for given
H and u, the function

Vk+1(π, g,H,min{B − u+H,Bmax})

is convex in B, since it is the minimum of Vk+1(π, g,H,Bmax)
which is a constant independent of B, and by the induction
hypothesis the convex function Vk+1(π, g,H,B − u + H) in
B. Since the expectation operator preserves convexity,

E
[
Vk+1

(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]

given in (15) is a convex function in B. But, Vk(s) in (13)
is the infimal convolution of two convex functions in B for
given π, g and H and hence is convex in B (see the proof of
Theorem 1 in [11]).

We now present the main Theorem of this section which
gives structural results on the optimal energy allocation poli-
cies (14).

Theorem 6.1: Assume h(·) in (1) is a concave function in
u given g. Then, given π, g and H , the optimal transmission
energy allocation policy uok(π, g,H,B) given in (14) is non-
decreasing in B for 0 ≤ k ≤ T .

Proof : Assume π, g and H are fixed. We define

L(B, u) = E
[

tr
(
L(P, γ)

)∣∣π, g, u]
+ E

[
Vk+1

(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]

from (13). We aim to show that L(B, u) is submodular in
(B, u), i.e., for every u′ ≥ u and B′ ≥ B,

L(B′, u′)− L(B, u′) ≤ L(B′, u)− L(B, u). (21)

It is evident that E
[

tr
(
L(P, γ)

)∣∣π, g, u] is submodular in
(B, u) since it is independent of B. Denote

Z(x) := E
[
Vk+1

(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{x+ H̃, Bmax}

)
∣∣π, g,H, u].

Since Z(x) is convex in x (by Lemma 6.1) we have

Z(x+ ε)− Z(x) ≤ Z(y + ε)− Z(y), x ≤ y, ε ≥ 0

(see Proposition 2.2.6 in [42]). Now let x = B−u′, y = B−u
and ε = B′ − B. Then, we have the submodularity condition
(21) for Z(B − u) [11]. Therefore, L(B, u) is submodular in
(B, u). Note that submodularity is a sufficient condition for
optimality of monotone increasing policies, i.e., since L(B, u)
is submodular in (B, u) then uo(B) = arg minu L(B, u) is
non-decreasing in B (see [29]).

For fixed π, g and H , let u∗k be the unique solution to the
convex unconstrained minimization problem

u∗k(π, g,H,B) = arg min
u

{
E
[

tr
(
L(P, γ)

)∣∣π, g, u]
+ E

[
Vk+1

(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]}

which can be easily solved using numerical techniques such
as a bisection search. Then, the structural result of Theorem
6.1 implies that the solution to the constrained problem (14)
where 0 ≤ u ≤ B will be of the form

uok(π, g,H,B) =

 0, if u∗k ≤ 0
u∗k, if 0 < u∗k < B
B, if u∗k ≥ B.

This also helps to reduce the search space by restricting the
search to be in one direction for different B (see the discussion
in Section III.C of [11]).
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A. Threshold Policy for Binary Energy Allocation Levels

Note that while solving for the optimal energy allocation
level in the Bellman equation requires not only discretization
of the state space, but also that of the action space. However,
the discretization of the action space to a finite number of
energy allocation levels is not often an issue as in practice, a
sensor transmitter can be programmed to have a finite number
of transmission power/energy levels only. In fact, for simplicity
of implementation, often a sensor can be equipped with only
two power/energy levels for transmission. Thus it is perfectly
natural to consider the scenario where the energy allocation
space is binary. In this section therefore we consider the
optimal solution of Section IV with the assumption that the
transmission energy allocation control uk belongs to a two
element set {E0, E1} where E0 < E1. The monotonicity of
Theorem 6.1 yields a threshold structure such that the optimal
transmission energy allocation policy is of the form

u∗k(π, g,H,B) =

{
E0, if B ≤ B∗(π, g,H,B)
E1, otherwise (22)

for B ≥ E0, where B∗(π, g,H,B) is the battery storage
threshold depending on π, g, H and B. This threshold
structure simplifies the implementation of the optimal energy
allocation significantly. However, it requires the knowledge of
the optimal battery energy threshold B∗ above. In general,
there is no closed form expression for B∗, but it can be found
via iterative search algorithms. Here we present a gradient
estimate based algorithm based on Algorithm 1 in [43] (after
[44]) to find the threshold in the case of the infinite-time
horizon formulation (5) with perfect packet receipt acknowl-
edgments where η and ε in Section II-E are set to zero. A
similar algorithm can be devised for the imperfect feedback
case albeit with increased computational complexity.

First, we establish some notation. Let V (k) be the k-th
iteration of the relative value algorithm for solving Bellman
equation (16) in the case of perfect feedback. Then, for given
B∗ and fixed P , g, H and B denote

J (k)(B∗) := E
[

tr
(
L(P, γ)

)∣∣P, g, u∗]
+ E

[
V (k−1)

(
L(P, γ), ḡ, H̄,min{B − u∗ + H̄, Bmax}

)∣∣P, g,H, u∗], k = 1, 2, · · · (23)

where the threshold policy u∗ is defined as

u∗ =

{
E0, if B ≤ B∗
E1, otherwise.

For n ∈ N, 0.5 < κ ≤ 1 and ω, ς > 0 we denote ωn := ω
(n+1)κ

and ςn := ς
(n+1)κ . The term J (k) in (23) is the right hand

side expression of (16) without the minimization, where the
threshold policy u∗, depending on the threshold policy B∗, is
used in the relative value iteration.

Gradient algorithm for computing the threshold. For fixed
P , g, H and B in the k-th iteration of the relative value
algorithm the following steps are carried out:

Step 1) Choose the initial battery storage threshold B(0).
Step 2) For iterations n = 0, 1, · · ·

Fig. 2: Perfect feedback case: Infinite-time horizon average
error covariance versus the maximum battery storage (mWh)

• Compute the gradient:

∂BJ
(k)
n :=

J (k)(B(n) + ωn)− J (k)(B(n) − ωn)

2ωn
. (24)

• Update the battery storage threshold via

B(n+1) = B(n) − ςn∂BJ (k)
n

which gives

u(n+1)(P, g,H,B) =

{
E0, if B ≤ B(n+1)

E1, otherwise.

The above algorithm is a gradient-estimate based algorithm
(see [44]) for estimating the optimal threshold B∗ where only
measurements of the loss function is available (i.e., no gradient
information). We note that (24) evaluates an approximation to
the gradient. This algorithm generates a sequence of estimates
for the threshold policy B∗ which converges to a local
minimum with corresponding energy allocation u∗. The reader
is referred to [44] for associated convergence analysis of this
and other related algorithms (see e.g., Theorem 7.1 in [44]).
Note that gradient-estimate based algorithms are sensitive to
initial conditions and should be evaluated for several distinct
initial conditions to find the best local minimum.

VII. NUMERICAL EXAMPLES

We present here numerical results for a scalar process with
following parameters A = 1.2, C = 1, Q = 1, R = 1 and
Px0

= 1 defined in Section II-A.
In this model we assume that the sensor uses a binary phase

shift keying (BPSK) transmission scheme [31] with b bits per
packet. Therefore, (1) in Section II-B is of the from

P(γk = 1|gk, uk) = h(gkuk) =
( √gkuk∫
−∞

1√
2π
e−t

2/2dt
)b

where we use b = 4 in the simulations. This model for the
packet loss probabilities is studied in [21].
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Fig. 3: Perfect feedback case: Infinite-time horizon average
energy versus the maximum battery storage (mWh)

Fig. 4: Perfect feedback case: The sum of finite-time horizon
expected error covariance versus the maximum battery storage
(mWh)

For simplicity, the fading channel is taken to be Rayleigh
[33] so that {gk} is i.i.d. exponentially distributed with
probability density function (p.d.f) of the form P(gk) =
1
ḡ exp(−gk/ḡ) with ḡ being its mean. We also assume that
the harvested energy process {Hk} is i.i.d. and exponentially
distributed with p.d.f. P(Hk) = 1

H̄
exp(−Hk/H̄) with H̄

being its mean.
For the following simulation results we use 50 discretization

points for each of the quantities of Bellman equations.

A. Simulation Results for the Perfect Feedback Communica-
tion Channel Case

We first consider the case of perfect packet receipt ac-
knowledgments by setting η and ε in Section II-E to zero.
We first fix the mean of the fading channel gains to ḡ = 1
decibel (dB) and the mean of harvested energy to H̄ = 1
milliwatt hour (mWh). Then, we plot the average expected

Fig. 5: Perfect feedback case: Infinite-time horizon average
error covariance versus the mean of fading channel gains

error covariance versus the maximum battery storage energy
for the infinite-time horizon formulation (5) in Fig. 2 where
both cases of causal and non-causal fading channel gains
and energy harvesting information are shown. We note that
the performance gets better as the maximum battery storage
energy increases in both cases. Fig. 2 also shows that in this
setting the performance for the non-causal information case is
generally better than the performance of system with causal
information.

In Fig. 3 the corresponding average transmission energy
versus the maximum battery storage is shown for the infinite-
time horizon formulation (5) of both cases of causal and non-
causal fading channel gains and energy harvesting information.
The reader is also referred to Fig. 2 in [24] that shows
the average transmission power versus the expected error
covariance trade-off in the case of an average transmission
power constraint instead of the energy harvesting constraint
considered here.

For the finite-time horizon case (4) when K = 4 and 5
the sum of expected error covariance versus the maximum
battery storage energy is shown in Fig. 2 in the case of
causal information. As expected the sum of expected error
covariances increases when K increases. Similar to graphs of
Fig. 2 the performance gets better as the maximum battery
storage energy increases.

We now fix the mean of harvested energy to H̄ = 1 (mWh)
and the maximum battery storage energy to 2 (mWh). For
the infinite-time horizon formulation (5) the average expected
error covariance versus the mean of the fading channel gains
is plotted in Fig 5 for both cases of causal and non-causal
information. As shown in Fig 5 the performance gets better as
the mean of the fading channel gains increases in both cases.

In Fig. 6 we further plot a single simulation run of {Pk}
with the packet loss process {γk} where H̄ = 1 (mWh), ḡ = 1
(dB) and Bmax = 2 (mWh). The battery storage {Bk} and
corresponding optimal energy allocations {uk} are also shown.

We can see that in the optimal energy allocation scheme,
the allocated energy values will depend not only on the current
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Fig. 6: Optimal energy allocations

channel gain g and error covariance P but also on the energy
harvesting H through the battery storage B. The allocated
energy u tends to be higher when the error covariance P
is larger, provided the corresponding channel gain h and the
battery storage B are not too small.

Threshold Policy: We now consider the case that the trans-
mission energy allocation control belongs to a two element
set {0, 1} in the infinite-time horizon formulation (5) with
parameters H̄ = 1 (mWh), ḡ = 1 (dB) and Bmax = 2 (mWh).
As explained at the end of Section VI the optimal transmission
energy allocation policy is threshold of the form

u∗(P, g,H,B) =

{
0, if B ≤ B∗(P, g,H,B)
1, otherwise

where B∗(·, ·, ·, ·) is the corresponding battery storage thresh-
old. Applying the stochastic gradient algorithm of Section
VI with parameters ω = 0.1, ς = 0.5 and κ = 1 to our
model yields a set of threshold policies which gives u∗. Fig. 7
shows the simulation results where the relative value iteration
algorithm and the threshold policy based algorithm are used.
It can be seen that there is a small gap between the simulation
results obtained via the two methods. This can be attributed
to the fact that the optimal threshold is not exactly calculated
by the stochastic gradient algorithm which only converges to

Fig. 7: Performance of threshold policy using: (i) relative value
iteration algorithm, and (ii) stochastic gradient algorithm.

Fig. 8: Imperfect feedback case (optimal and suboptimal
solutions for parameters: (i) η = 0.4 and ε = 0.2, and (ii)
η = 0.1 and ε = 0.01): Infinite-time horizon average error
covariance versus the maximum battery storage (mWh)

a local minimum.

B. Simulation Results for the Imperfect Feedback Communi-
cation Channel Case

We now consider the case of imperfect packet receipt
acknowledgments as given in Section II-E with two sets of
parameters: (i) η = 0.4 and ε = 0.2, and (ii) η = 0.1 and
ε = 0.01. In this simulation we fix the mean of the fading
channel gains to ḡ = 1 (dB) and the mean of harvested energy
to H̄ = 1 (mWh). Then, we plot in Fig. 8 both optimal and
suboptimal results of the average expected error covariance
versus the maximum battery storage energy for the infinite-
time horizon formulation (5). Similar to Fig. 2 the performance
gets better as the maximum battery storage energy increases.
Fig. 8 also shows that, as expected, the performance for the
optimal solution (see Section IV) is generally better than the
performance of the suboptimal solution (see Section V). But,
for small packet loss and error probabilities of the feedback
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communication channel, η and ε, the performance for the
suboptimal solution, which is easier to implement, is close
to the performance of optimal solution. Note that optimal
solutions are computationally demanding since it is required
to solve Bellman equations on a discretized subset of the space
of probability densities.

VIII. CONCLUSIONS

We have studied the problem of optimal transmission energy
allocation for estimation error covariance minimization in
Kalman filtering with random packet losses over a fading
channel when the sensor is equipped with energy harvesting
technology. The feedback channel from receiver to sensor is
an erroneous packet dropping link which models an imperfect
receipt acknowledgments channel. In this problem formulation
either a sum over a finite-time horizon or a long term average
(infinite-time horizon) of the trace of the expected estimation
error covariance of the Kalman filter is minimized, subject to
energy harvesting constraints. The resulting Markov decision
process problems with imperfect state information are solved
by the use of the dynamic programming principle. Using
the concept of submodularity, some structural results on the
optimal transmission energy allocation policy are obtained.
Suboptimal solutions are also discussed which are far less
computationally intensive than optimal solutions.

APPENDIX

Proof of Lemma 4.1: The total probability formula2 and the
chain rule give

P(Pk+1, z
k, gk, uk)=

∑
γk

∫
Pk

P(Pk+1, Pk, γk, z
k, gk, uk)dPk

=
∑
γk

∫
Pk

P(Pk+1|Pk, γk, zk, gk, uk)P(Pk, γk, z
k, gk, uk)dPk

=
∑
γk

∫
Pk

P(Pk+1|Pk, γk)P(Pk, γk, z
k, gk, uk)dPk (A.1)

where the last equality is because Pk+1 is a function of Pk
and γk by (3). But, the chain rule implies that

P(Pk, γk, z
k, gk, uk)=P(Pk, γk, z

k−1, γ̂k, gk−1, uk−1, gk, uk)

= P(γ̂k|Pk, γk, zk−1, gk−1, uk−1, gk, uk)

× P(γk|Pk, zk−1, gk−1, uk−1, gk, uk)

× P(gk|Pk, zk−1, gk−1, uk−1, uk)

× P(Pk|zk−1, gk−1, uk−1, uk)P(zk−1, gk−1, uk−1, uk)

= P(γ̂k|γk)P(γk|gk, uk)P(gk|gk−1)P(Pk|zk−1, gk−1, uk−1)

× P(zk−1, gk−1, uk−1, uk). (A.2)

Substituting (A.2) in (A.1) yields

P(Pk+1, z
k, gk, uk) =

∑
γk

∫
Pk

(
P(Pk+1|Pk, γk)P(γ̂k|γk)

× P(γk|gk, uk)P(gk|gk−1)P(Pk|zk−1, gk−1, uk−1)

× P(zk−1, gk−1, uk−1, uk)
)
dPk. (A.3)

2P(A |B) =
∑

i P(A,Ci |B)

On the other hand,

P(Pk+1|zk, gk, uk) = α× P(Pk+1, z
k, gk, uk) (A.4)

where α is a normalizing constant. In-
tegrating (A.4) with respect to Pk+1

gives α =
( ∫

Pk+1
P(Pk+1, z

k, gk, uk)dPk+1

)−1
. But,∫

Pk+1

P(Pk+1, z
k, gk, uk)dPk+1

=

∫
Pk+1

[∑
γk

∫
Pk

(
P(Pk+1|Pk, γk)P(γ̂k|γk)P(γk|gk, uk)

× P(gk|gk−1)P(Pk|zk−1, gk−1, uk−1)

× P(zk−1, gk−1, uk−1, uk)
)
dPk

]
dPk+1. (A.5)

By changing the order of integration, we may simplify (A.5)
as∫

Pk+1

P(Pk+1, z
k, gk, uk)dPk+1

= P(gk|gk−1)P(zk−1, gk−1, uk−1, uk)

×
∑
γk

∫
Pk

(( ∫
Pk+1

P(Pk+1|Pk, γk)dPk+1

)
P(γ̂k|γk)

× P(γk|gk, uk)P(Pk|zk−1, gk−1, uk−1)
)
dPk

= P(gk|gk−1)P(zk−1, gk−1, uk−1, uk)
∑
γk

(
P(γ̂k|γk)

× P(γk|gk, uk)
( ∫

Pk

P(Pk|zk−1, gk−1, uk−1)dPk
))

= P(gk|gk−1)P(zk−1, gk−1, uk−1, uk)

×
∑
γk

P(γ̂k|γk)P(γk|gk, uk) (A.6)

where we used the fact that
∫
Pk+1

P(Pk+1|Pk, γk)dPk+1 = 1

and
∫
Pk

P(Pk|zk−1, gk−1, uk−1)dPk = 1. Hence, we have

α =
(
P(gk|gk−1)P(zk−1, gk−1, uk−1, uk)

×
∑
γk

P(γ̂k|γk)P(γk|gk, uk)
)−1

. (A.7)

Finally, substituting (A.3) and (A.7) in (A.4) gives

P(Pk+1|zk, gk, uk)

=
∑
γk

[ ∫
Pk

(
P(Pk+1|Pk, γk)× P(Pk|zk−1, gk−1, uk−1)

)
dPk

× P(γ̂k|γk)P(γk|gk, uk)∑
γk

P(γ̂k|γk)P(γk|gk, uk)

]
as the information-state recursion given in (9).

Proof of Theorem 4.2: We first show the inequality

ρ+ V (π, g,H,B) ≥ min
0≤u≤B

{
E
[

tr
(
L(P, γ)

)∣∣π, g, u]
+ E

[
V
(
Φ
[
π, γ̂, g, u

]
, g̃, H̃,min{B − u+ H̃, Bmax}

)
∣∣π, g,H, u]} (A.8)
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by verifying conditions (W) and (B) of [45] that guarantee
the existence of solutions to (A.8) for MDPs with general
state space. Denote the state space S and action space A, i.e.
(πk, gk, Hk, Bk) ∈ S and uk ∈ A. Condition (W) of [45] in
our notation says that:
0) The state space S is locally compact.
1) Let U(·) be the mapping that assigns to each
(πk, gk, Hk, Bk) the nonempty set of available actions. Then
U(πk, gk, Hk, Bk) lies in a compact subset of A and U(·) is
upper semicontinuous.
2) The transition probabilities are weakly continuous.
3) E

[
tr
(
L(P, γ)

)∣∣π, g, u] is lower semicontinuous.
By our assumption that uk ≤ Bk ≤ Bmax, 0) and 1) of (W)
can be easily verified. The condition 2) follows from (12),
while condition 3) follows from the definition (11).

We define wδ(π0, g0, H0, B0) = vδ(π0, g0, H0, B0) − mδ

where

vδ(π0, g0, H0, B0) = inf
{uk:k≥0}

E[
∞∑
k=0

δkE
[

tr
(
L(Pk, γk)

)
∣∣πk, gk, uk]|π0, g0, H0, B0]

and mδ = inf(π0,g0,H0,B0) vδ(π0, g0, H0, B0), then Condition
(B) of [45] in our notation implies that

sup
δ<1

wδ(π0, g0, H0, B0) <∞, ∀ (π0, g0, H0, B0).

Following Section 4 of [45], we define the stopping time
τ = inf{k ≥ 0 : vδ(πk, gk, Hk, Bk) ≤ mδ + ς} for some ς ≥
0. Given ς > 0 and an arbitrary (π0, g0, H0, B0), consider a
suboptimal power allocation policy where the sensor transmits
based on the same policy as the one that achieves mδ (with a
different initial condition) until vδ(πN , gN , HN , BN ) ≤ mδ +
ς is satisfied at some time N . By the exponential forgetting
property of initial conditions for Kalman filtering, we have
N <∞ with probability 1 and E[N ] <∞. Since τ ≤ N , we
have E[τ ] <∞. Then by Lemma 4.1 of [45],

wδ(π0, g0, H0, B0) ≤ ς

+ inf
{γk}

E[

τ−1∑
k=0

E
[

tr
(
L(Pk, γk)

)∣∣πk, gk, uk]|π0, g0, H0, B0]

≤ ς + E[τ ]× Z <∞ (A.9)

where the second inequality uses Wald’s equation, with Z
being an upper to the expected error covariance that exists
by Theorem 3.1. Hence condition (B) of [45] is satisfied and
a solution to (A.8) exists.

To show equality in (A.8), we will require a further equicon-
tinuity property to be satisfied. This can be shown by a similar
argument as in the proof of Proposition 3.2 of [46]. The
assumptions in Sections 5.4 and 5.5 of [47] may then be
verified to conclude the existence of a solution to the average
cost optimality equation (16).
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