Synthesis of Discrete Alkyl-Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes

Deliang Yi,[a] Chenglong Xu,[b,c] Ruidie Tang,[a] Xuehua Zhang,[c] Frank Caruso[b] and Yajun Wang*[a]

Abstract: The assembly of particulate building blocks into macroscopic architectures with well-defined properties and functionalities provides opportunities to create complex and functional materials for various applications. Here, we report the synthesis of highly flexible and mechanically robust hybrid silica nanowires (NWs) that can be used as novel building blocks to construct superhydrophobic functional materials with three-dimensional (3D) macroporous networks. The hybrid silica NWs, with an average diameter of 80 nm and tunable length of up to 12 μm, are prepared via anisotropic deposition of the hydrolyzed tetraethylorthosilicate in water/n-pentanol emulsions. A mechanistic investigation reveals that the trimethoxy(octadecyl)silane introduced to the water-oil interface in the synthesis plays key roles in stabilizing the water droplets to sub-100 nm and also growing a layer of octadecyl groups on the NW surface. This work opens a solution-based route for one-pot preparation of monodisperse, hydrophobic silica NWs and represents an important step toward the bottom-up construction of 3D superhydrophobic materials and macroporous membranes.

Nanostructured silica materials have been widely used as substrates or templates for the preparation of functional materials because of their high specific surface area, tunable porosity and morphology, high biocompatibility, good chemical and thermal stability, and facile surface modification via silane chemistry.[1-4] For example, silica particles with uniform spherical morphology have been used as building blocks to construct colloidal crystals[2] and supraparticles,[3] and higher order particle-assembled structures have been used as templates to prepare inverse opals or three-dimensionally ordered macroporous (3DOM) materials.[4]

Recently, high aspect ratio particles (e.g., carbon nanotubes, metal and metal oxide nanowires) have been employed as building blocks to prepare nanowire (NW) membranes with diverse functionalities (e.g., catalysis, sensing, and molecular separation).[5] However, to the best of our knowledge, NW membranes based on the assembly of silica NWs has not been reported. This is probably due to the challenges of synthesizing high quality silica NWs, which are required as the building blocks. Although silica particles with high aspect ratios have been prepared by various synthetic techniques, such as vapor-liquid-solid deposition,[6] casting,[7] flame-brushing,[8] electrospinning,[9] and sol-gel template synthesis,[10] these methods usually require special equipment, can be difficult to scale up, or do not provide well dispersed particles in solution. Therefore, developing a robust technique that is capable of producing discrete, high quality silica NWs that can be used as building blocks is of particular importance, both for fundamental studies and technological applications.

Herein, we report the preparation of discrete silica NWs with a hydrophobic surface via anisotropic sol-gel growth in a water/oil emulsion. Alkyl-capped silica NWs, with a diameter of approximately 80 nm and tunable aspect ratios (1-150), are obtained using a one-pot wet chemistry synthetic approach. The prepared hybrid silica NWs are mechanically robust and flexible, enabling them to be used as building blocks in assembling novel three-dimensional (3D) materials, such as superhydrophobic NW coatings, self-supported NW membranes and NW monoliths. Superhydrophobic surfaces, with a water contact angle (CA) higher than 150°, have attracted attention in both fundamental research and practical applications ranging from anti-fouling, self-cleaning, and oil/water separation to microfluidic devices.[11-15] Compared with various other techniques such as lithography,[12] electrospinning,[13] chemical vapor deposition,[14] electroless galvanic deposition,[15] anodic oxidation and electrochemical deposition[16] used to create a superhydrophobic surface, the bottom-up construction of a 3D superhydrophobic surface via the assembly of lipophilic silica NWs is simple, inexpensive and requires no special equipment or chemical post-treatment.

The synthesis of silica NWs is inspired by the work of Kuijk et al.,[17] who introduced the preparation of rod-like silica colloids with a diameter of 200-300 nm via an anisotropic growth method in water/n-pentanol emulsions. The present work, however, led to a new concept to prepare ultrathin silica NWs through introducing the “surfactant alike” hydrosilicate of trimethoxy(octadecyl)silane (C18TMOS) to the water-oil interface to stabilize the water droplets to sub-100 nm. Meanwhile, a layer of octadecyl (C18) groups is simultaneously grown on the NW surface to endow it with hydrophobicity (Figure 1g), which allows good dispersion of the high aspect ratio NWs in the organic synthesis solvent (n-pentanol).

Evolution of the silica NWs is studied through tracking morphology variations of the intermediate products by transmission electron microscopy (TEM), and a postulated growth mechanism is illustrated in Figure 1f. Silica nanoparticles with a “bullet-like” shape (Figure 1a) are nucleated in 30 min due to the anisotropic deposition of hydrolyzed TEOS inside the water droplet at basic pH conditions (Figure 1f-1), as reported in previous literature.[17] To reduce its surface energy, the nucleated silica nanoparticles deposit at the interface of the droplets, resulting in anisotropic droplets. As one side of the silica nanoparticle is contacted with the oil phase, the sol-gel growth of the silica can only occur in...
the opposite direction (i.e., in the water phase of the droplet). Sodium citrate in the water droplets has the function of stabilizing the hydrolyzed TEOS, and transporting it to the existing nucleus in the droplet (Figure S1). Meanwhile, the C18TMOS dissolved in the oil phase (n-pentanol) hydrolyzes into C18-Si(O-)3 when it encounters basic water droplets. Importantly, the C18-Si(O-)3 possesses amphiphilic properties and thus arranges on the droplet surface with its hydrophilic -Si(O-)3 ion side facing internally to the water phase, and the C18 tail faced outside to the n-pentanol solvent (Figure 1f-2). Playing a similar role to a surfactant, the interfacially arranged C18-Si(O-)3 reduces the surface tension of the water droplet, which is attached to the nucleated silica nanoparticle. Under lower surface tension, the initial water droplet is deformed into a more elongated “cone-like” structure (Figure 1f-3, 1g), and then forms into a “tadpole-like” silica nanorod as particle growth progresses (Figure 1c). With the continuous hydrolysis/condensation reaction of TEOS (Figure 1f-4, 1f-5), a silica NW is eventually developed (Figure 1d), and grows to its full length when the added TEOS is consumed.

![Picture of TEM images](image1.png)

The fully grown silica NW has a diameter of approximately 80 nm (Figure 2a), and resembles a “snake-like” shape with a short head and slim body, whose aspect ratio can reach as high as 150 (Figure 2b). The silica NWs remain intact (Figure 2c) after 1 h of vigorous sonication (50 kHz, 240 W) in water, demonstrating high flexibility and mechanical robustness of the NWs. The “curvy” shape of the NWs observed in the TEM image is likely caused by the lipophilic interaction of the NW when it is vigorously sonicated in water solution. The hybrid silica NW has a Young’s modulus of ~14.4 ± 2.5 GPa (Figure S2), measured by atomic force microscope (AFM) using a similar method reported earlier. This value is approximately two-fold higher than the Young’s modulus obtained from the calcined silica NW (~7.1 ± 2.1 GPa), which agrees with previous reports that hybrid materials can exhibit enhanced mechanical properties due to the interfacial bonding between organic and inorganic phases.

![Picture of SEM images and FTIR spectra](image2.png)

The hybrid silica NWs can be well dispersed in alcohol (e.g., ethanol, propanol and pentanol), forming stable colloidal solutions without apparent sediments for up to two weeks (Figure 2d). However, foam-like flocculation is formed once the NWs are transferred into water (Figure 2d), which highlights the hydrophobic feature of the silica NWs. This feature is a result of the silica NW being capped with a layer of C18 alkyl groups, as corroborated by the Fourier transform infrared (FTIR) spectra (Figure 2e). The peaks at 2850 cm⁻¹ and 2925 cm⁻¹ in the spectra of the as-synthesized silica NW are symmetric and asymmetric stretching vibrations of -CH₂-, respectively, while the peaks at 1465 cm⁻¹ and 1380 cm⁻¹ can be ascribed to the symmetric bending vibrations of -CH₂- and -CH₃, respectively. The strong band at 1100 cm⁻¹ can be assigned to the asymmetric stretching vibration of Si-O-Si, and the peaks at 470 cm⁻¹ and 800 cm⁻¹ correspond to the symmetric stretching and deformation modes of Si-O-Si.
analysis yields a quantitative organic content of ca. 9 wt% in the hybrid silica NWs, which is determined from the weight loss of the hybrid NWs at the temperature range of 200-450 °C. This value is close to the 8.6 wt% (compared with TEOS) of C18TMOS added in the NW synthesis. Notably, the C18 alkyl groups are distributed across the whole length of the NW, as revealed from the carbon elemental mapping profiles shown in Figure 2g-2i.

Due to their monodispersity and colloidal stability in solvent, hybrid silica NWs meet the key criteria for use as assembly building blocks. When a liquid film made of the NW colloidal solution is dip-coated on a substrate (e.g., stainless steel wire mesh, glass slide or silicon wafer), the NWs will be driven to the substrate under capillary force action during the drying process, thereby forming a porous NW film that is tightly attached to the substrate (Figure 3a). High magnification SEM images reveal that the silica NWs are self-woven into a porous network (Figure 3b, Figure S3). The adhesive property of the hybrid NWs is primarily attributed to their high aspect ratio and flexibility, which enables the NWs to form a 3D network over the substrate. Furthermore, the hydrophobic interaction among the C18 alkyl groups capped on the silica NW could enhance the adhesion of the assembled NW networks, which mimics gecko-inspired fibrillar adhesives as lipids that were also found in the gecko setae surface.[21]

Free-standing silica NW membranes can be assembled via a vacuum filtration method (Figure S4), which has been used in assembling membranes composed of other NWs.[5a] The diameter of the silica NW membranes is determined by the size of the suction funnel, while the thickness of the membranes can be adjusted through changing the amount of NWs used in membrane assembly. It is noted that multiple silica NW membranes or monoliths with various morphologies (Figure 3e) can be produced in one preparation by mounting a multi-hole plate inside the funnel (Figure S5).

A filter paper-like silica NW membrane with a diameter of 4 cm and thickness of 40 μm is shown in Figure 3c. The silica NW membrane has high flexibility, and can endure bending multiple times without apparent damage (Figure 3d). This membrane possesses a tensile strength of 7.21 ± 0.73 MPa, demonstrating its high mechanical robustness. SEM images taken from both the membrane cross-section (Figure 3f,g) and surface (Figure 3h,i) reveal that the NW membrane has a network architecture formed by NWs in 3D. Notably, the NW networks lead to homogeneously distributed structural macropores across the membrane, which is seen from high resolution SEM images (Figure 3g,i). Although it is difficult to observe the individual NWs, no apparent breakage of the NWs can be observed from the cross-section (Figure 3g). Further, the assembled NW membrane can be disassembled in organic solvent (e.g., ethanol, pentanol) under sonication without breaking the NWs, demonstrating the robustness and flexibility of the hybrid silica NWs. The NW membrane has a low bulk density of ca. 0.3 g cm⁻³ and a high porosity of ca. 80% measured via Archimedes’ method. The permeability of the macropores inside the membrane was also investigated by filtering colloidal particles of two different sizes (300 and 500 nm, Figure 3k) through the NW membrane (Figure S6). The separation result shows that only the 300 nm silica nanoparticles can penetrate through the membrane (Figure 3l), indicating the macropores in the NW membrane are relatively uniform.

The wettability of the NW membrane was studied by measuring the water contact angles (CA) of the surface. The NW membrane has a static water CA of ca. 162° (Figure 4a, Movie S1) and a water sliding angle of less than 1° (Figure 4b, Movie S2), revealing a superhydrophobic surface. The superhydrophobicity of the membrane is primarily attributed to the C18 alkyl groups covering the silica NW building blocks. After removal of the C18 alkyl groups (via calcination), water droplets applied on the NW membrane surface are quickly spread and infiltrated into the membrane (Movie S3).
Furthermore, the hierarchical network in the membrane also contributes significantly to the superhydrophobicity. In a control experiment, the smooth surface of a glass slide after C18-TMOS modification has a significantly lower water CA of ca. 118° (Figure S7). The networks with an ultrafine NW diameter (ca. 80 nm) and high surface area (70 m² g⁻¹, BET method) have built a high energy barrier for water droplets to create a liquid-solid interface on the surface. Additionally, the abundant macropores in the NW networks can trap air inside, which provides an air cushion on which to suspend the water droplets.²²

Figure 4. Shape of water droplet on the silica NW membrane (a), and rolling of water droplet on the membrane with a sliding angle of 1° (b); variation of water CA on the silica NW membrane at different pH values (c) and after immersing the membrane in water for different periods of time (d); shape of the water droplet on the silica NW membrane polished with fine sand paper (600 mesh) to remove the outer layers (e); digital photographs of cleaning graphite scrap dust on the membrane with a rolling water droplet (f) (The green arrow indicates the motion path of the water droplet); photo of a silica NW membrane after a drop (500 µL) of water and hexane (colored with Oil Red O) mixture was applied on the surface (g); digital photographs of hexane (colored with Oil Red O) contaminated water (h), and the water after the contaminated hexane was removed by the NW membrane (i).

The water CAs on the NW membrane are almost identical (~160°) across a wide pH range, from 0 to 14 (Figure 4c). The stability of the NW membrane under water was also investigated through immersing the membrane in a water bath for different times. The water CAs slightly decrease as the soaking time increases (Figure 4d), but the superhydrophobicity of the membrane is still maintained (CA, ~152°) after being immersed in water for four weeks. This demonstrates that the C18 alkyl groups on the silica NW surface can effectively maintain the superhydrophobic properties of the membrane in a wet environment. Of particular significance is that the NW membrane displays superhydrophobicity across its entire thickness as the whole membrane is assembled of lipophilic NWs. To investigate the membrane internal properties, the NW membrane was polished with fine sand paper to remove the outer NW layers. Interestingly, the water CA on the polished membrane increased slightly to ca. 164° (Figure 4e). The higher CA is likely a result of increased surface roughness in regional areas of the sand paper-treated membrane (Figure 3j), as the increase of the surface roughness can lead to the enhanced superhydrophobicity.²³ These results suggest that surfaces with wearable superhydrophobicity could be readily obtained by coating the material surface with 3D lipophilic NW networks.

The self-cleaning properties of the membrane were investigated through clearing contaminants, such as dust, off of the membrane. Results show that graphite scrap dust on the membrane can be efficiently removed along the pathway of the rolled water droplet (Figure 4f). Due to the unique architecture with abundant macropores and superhydrophobic networks in 3D, the NW membrane can act as an absorber for oil/water separation. When a drop of a water/oil (hexane) mixture was applied to the membrane surface, the oil (colored with Oil Red O for visualization) was quickly absorbed by the NW membrane, while the water remained as a droplet on the membrane surface (Figure 4g). The NW membrane was further applied to clean leaked oil on water surface. Through dragging the NW membrane around the surface of oil contaminated water (colored with Oil Red O, Figure 4h), the oil that floated on the water was completely absorbed by the membrane in less than 10 s, leaving clean water behind in the container (Figure 4i).

The efficiency in oil/water separation can be attributed to the two distinguishing properties of the membrane: high porosity (~80%) with readily accessible macropores, and 3D superhydrophobic networks. It is envisioned that the hybrid silica NWs and their assemblies can also be used as novel substrates or templates, which provide excellent opportunities in creating new materials with rationally designed properties and functionalities for diverse applications.

In summary, discrete hybrid silica NWs with an average diameter of 80 nm and length up to 12 µm were synthesized via an anisotropic sol-gel growth route. C18-TMOS has key roles in controlling the NW diameter below 100 nm and conferring hydrophobicity to the NW surface. The robustness, high colloidal stability and flexibility of the silica NWs were exploited to assemble superhydrophobic coatings, free-standing macroporous membranes and monoliths. Access to such NW superstructures provides unprecedented opportunities in developing materials with hierarchical structures and multi-functionalities. Detailed studies on using the silica NWs and their 3D assemblies as substrates or sacrificial templates for preparing multifunctional materials for nanocatalysis, nanosensing and biomedical applications are currently being explored.

Experimental Section

Preparation of C18 Alkyl-Silica NWs: In a typical synthesis, 1.0 g of polyvinylpyrrolidone (Mw, 40 kDa) was dissolved in 10.0 mL of n-pentanol in a 15 mL centrifugation tube. Then, 1.0 mL of ethanol, 0.28 mL of deionized water, 0.67 mL of sodium citrate solution (0.18 M in water) and 0.20 mL of ammonia solution (NH₃ content 25 wt%) were
added sequentially, and the mixture was shaken by hand for 2 min after each chemical was added. Then, a mixture of 100 μL of TEOS and 10 μL of C$_4$TMOS was added to the above solution and shaken immediately for 5 min. The solution was left static for 24 h at 25 °C. The NWs produced were then separated via centrifugation and washed with ethanol three times, and finally dispersed in ethanol to form a suspension with a silica concentration of 20 mg mL$^{-1}$.

Silica NW Assembly: The dip-coating method was applied to assemble substrate supported NW films. Taking the stainless steel wire cm × 1 cm was soaked in the silica NW (with a growth time of 24 h) support from the National 1000 Youth Talents Program of Research Council (ARC) Centre of Excellence in Convergent Materials Science and Technology (project number CE140100036) and by the ARC under the Australian Laureate Fellowship (F.C., FL120100030) scheme. Y.W. acknowledges support from the National 1000 Youth Talents Program of China.

Keywords: nanowire • assembly • membrane • superhydrophobic • silica nanomaterial

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21373059), the Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology (project number CE140100036) and by the ARC under the Australian Laureate Fellowship (F.C., FL120100030) scheme. Y.W. acknowledges support from the National 1000 Youth Talents Program of China.

References

Discrete alkyl-silica hybrid nanowires surface capped with a layer of octadecylsilane are synthesized via an anisotropic sol-gel growth method. The alkyl-silica nanowires disperse well in ethanol and pentanol, and are used as building blocks to construct three-dimensional, superhydrophobic nanowire membranes by a simple vacuum-filtration method.