Abstract:

Background; Cognitive deficits are predictors of functional outcome in patients with psychosis. While conventional antipsychotics are relatively effective on positive symptoms, their impact on negative and cognitive symptoms is limited. Recent studies have established a link between oxidative stress and neurocognitive deficits in psychosis. N-acetylcysteine (NAC), a glutathione precursor with glutamatergic properties, has shown efficacy on negative symptoms and functioning in patients with schizophrenia and bipolar disorder respectively. However, there are few evidence based approaches for managing cognitive impairment in psychosis. The present study aims to examine the cognitive effects of adjunctive NAC treatment in a pooled subgroup of participants with psychosis who completed neuropsychological assessment in two trials of both schizophrenia and bipolar disorder.

Methods; A sample of 58 participants were randomized in a double fashion to receive 2g/day of NAC (N=27) or placebo (N=31) for 24-weeks. Attention, working memory and executive function domains were assessed. Differences between cognitive performance at baseline and end-point were examined using Wilcoxon test. Mann-Whitney test was used to examine the differences between NAC and placebo groups at end-point.

Results; Participants treated with NAC had significantly higher working memory
performance at week-24 compared to placebo (U=98.5; \(p=0.027 \)).

Conclusions; NAC may impact on cognitive performance in psychosis, as a significant improvement in working memory was observed in the NAC treated group compared to placebo; however these preliminary data require replication. Glutamatergic compounds such as NAC may constitute a step towards the development of useful therapies for cognitive impairment in psychosis.
COGNITIVE EFFECTS OF ADJUNCTIVE N-ACETYL CYSTEINE IN PSYCHOSIS

Running title: Cognitive effects of N-acetyl cysteine in psychosis

Marta Rapado-Castro¹,²,³, Seetal Dodd⁴,⁵, Ashley I. Bush⁵, Gin S. Malhi⁶,⁷,⁸ David R. Skvarc⁴ Zhi Xiang On⁹, *Michael Berk³,⁴,⁵,¹⁰ and *Olivia M. Dean⁴,⁵,¹⁰

*Equally contributing authors

Affiliations:
1 Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain.
2 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia.
3 Orygen, The National Centre of Excellence in Youth Mental Health, Victoria, Australia.
4 Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia.
5 University of Melbourne, Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville, 3052, Australia.
6 Academic Department of Psychiatry, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065 Australia.
7 Sydney Medical School Northern, University of Sydney, NSW 2006 Australia.
8 CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065 Australia.
9 Melbourne School of Psychological Sciences, University of Melbourne, Level 12, Redmond Barry Building 115, Parkville, 3052, Australia.
10 Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, 3052, Parkville, Australia.

Corresponding Author:
Prof Michael Berk, Deakin University, PO Box 281, Geelong 3220, Australia, Tel: +61 3 5260 3088. Fax +61 3 5246 5165. Email: mikebe@barwonhealth.org.au

Financial support: This work was supported by a grant from the Stanley Medical Research Institute, as well as the Mental Health Research Institute of Victoria (Bipolar disorder trial registration: Australian Clinical Trials Registry 12605000362695) and by a grant from the Stanley Medical Research Institute (Schizophrenia trial registration: Australian Clinical Trials Registry, Protocol 12605000363684, www.actr.org.au).

Word count:
Abstract (240). Text body (3340). Tables (2)
Abstract

Background; Cognitive deficits are predictors of functional outcome in patients with psychosis. While conventional antipsychotics are relatively effective on positive symptoms, their impact on negative and cognitive symptoms is limited. Recent studies have established a link between oxidative stress and neurocognitive deficits in psychosis. N-acetylcysteine (NAC), a glutathione precursor with glutamatergic properties, has shown efficacy on negative symptoms and functioning in patients with schizophrenia and bipolar disorder respectively. However, there are few evidence based approaches for managing cognitive impairment in psychosis. The present study aims to examine the cognitive effects of adjunctive NAC treatment in a pooled subgroup of participants with psychosis who completed neuropsychological assessment in two trials of both schizophrenia and bipolar disorder.

Methods; A sample of 58 participants were randomized in a double fashion to receive 2g/day of NAC (N=27) or placebo (N=31) for 24-weeks. Attention, working memory and executive function domains were assessed. Differences between cognitive performance at baseline and end-point were examined using Wilcoxon test. Mann-Whitney test was used to examine the differences between NAC and placebo groups at end-point.

Results; Participants treated with NAC had significantly higher working memory performance at week-24 compared to placebo (U=98.5;p=0.027).

Conclusions; NAC may impact on cognitive performance in psychosis, as a significant improvement in working memory was observed in the NAC treated group compared to placebo; however these preliminary data require replication. Glutamatergic compounds such as NAC may constitute a step towards the development of useful therapies for cognitive impairment in psychosis.

Keywords: N-acetyl cysteine, psychosis, cognition, working memory, oxidative stress, glutathione
Introduction

Psychotic disorders (both affective and non-affective disorders) are severe and disabling mental conditions characterized traditionally by positive symptoms (hallucinations and delusions) and negative symptoms (avolition or amotivation) alongside changes in mood (depression, mania) and alterations in information processing (cognitive deficits) (Arango et al., 2014, van Os and Kapur, 2009). Cognitive impairment has been shown to present from early in psychotic disorders (Bora and Pantelis, 2015, Daglas et al., 2015, Zabala et al., 2010) and to a lesser extent from the outset (Reichenberg et al., 2010) and in at risk mental states (Fusar-Poli et al., 2012) thereby contributing to ongoing cognitive impairment over time (Bombin et al., 2013, Reichenberg et al., 2010). These changes in cognitive processing can be broadly partitioned into those that are trait related and those that are affected by mental state (Kozicky et al., 2014, Lopez-Jaramillo et al., 2010). Cognitive function serves as a proxy of the severity of psychosis and is associated with poor social, vocational and functional outcome (Fett et al., 2011, Martinez-Aran et al., 2002), and is also an important prognostic variable (Fett et al., 2011, Malhi et al., 2007) providing a meaningful target for interventions.

While conventional antipsychotics are relatively effective in alleviating psychosis, their impact on cognitive function is minimal largely because pharmacotherapy has mainly targeted dopamine dysfunction. Regulation of the putative ‘hyperdopaminergic state’ with antipsychotic drugs effectively counters the positive symptoms of psychosis but their effects on negative and cognitive symptoms, are modest (Kahn and Sommer, 2015). Thus, the development of novel treatments for cognitive dysfunction in psychotic disorders is of great importance. Along those lines, drug discovery for psychotic disorders has moved in recent decades beyond the ‘dopamine hypothesis’ towards approaches derived from pathophysiological investigations in this field (Davis et al., 2014, Debnath et al., 2015, Howes et al., 2015).

One such example is the role of glutamate transmission in the development and maintenance of cognitive and negative symptoms, which has been investigated extensively (Rajasekaran et al., 2015). Specifically, glutamate is thought to have a critical role in cognitive and negative symptoms through the activation of N-Metyl-D-Aspartate (NMDA) glutamatergic receptors. The NMDA glutamate receptor (NMDA-R), in particular, has received much attention since the effects of antagonists of this receptor mimic many of the cognitive symptoms of schizophrenia (Javitt et al., 2012, Kantrowitz and Javitt, 2010b). The NMDA-R, is involved in synaptic plasticity, auditory information processing and cognitive functions, such as inhibitory control, working memory (Morgan et al., 2004), learning and memory (Riedel et al., 2003), cognitive flexibility and information processing (Banks et al., 2014).

Altered glutamate levels have been linked to the cortical response during executive functioning tasks in people at high risk for developing psychosis (Fusar-Poli et al., 2011). This altered top-down processing of
sensory information has been proposed to mediate cognitive processes such as altered attribution of salience or misattribution of meaningful emotion leading to cognitive bias (Hoffman et al., 2007, Kapur, 2003). In this regard, studies including key evoked sensory-related potentials such as mismatch negativity (MMN), a physiological indicator of the activity of NMDA receptors and a short term memory paradigm in relation to sensory/auditory processing, describe a severe sensory auditory dysfunction both in schizophrenia (Gunduz-Bruce et al., 2012, Javitt et al., 2012) and in people at risk to develop psychosis (Shaikh et al., 2012).

In parallel, free radical scavenging in both psychotic bipolar disorder and schizophrenia is unable to keep up with free radical production, leading to cumulative oxidative damage in critical brain regions, which eventuates in cognitive and behavioral symptoms (Ng et al., 2008). Glutathione (GSH) is one of the main cellular non-protein redox regulators and free radical scavenger in the brain. Dysregulation of the glutathione system reduces activity of NMDA glutamatergic receptors (Kantrowitz and Javitt, 2010a, Stone et al., 2010). An association between the observed glutathione deficit during the first psychotic episode with global changes in cognition is noted (Martinez-Cengotitabengoa et al., 2014), particularly with high-order executive functions (Martinez-Cengotitabengoa et al., 2012), indicating that changes in GSH and cognitive function are closely linked and suggesting that oxidative damage may contribute to cognitive impairment. Furthermore, inflammatory mediators such as cytokines have also been associated with cognitive dysfunction in patients with a first episode of psychosis (Bauer et al., 2014, Martinez-Cengotitabengoa et al., 2012). In this regard, altered proinflammatory cytokines provoke glutamate hyperactivity leading to NMDA glutamate receptors activation, altered redox balance and oxidative stress accumulation (Hanson and Gottesman, 2005, Saetre et al., 2007) which can modify cognitive function (Kahn and Sommer, 2015, Wilson et al., 2002). Thus, an increase of reactive oxygen species and immuno-inflammatory processes appears to mediate damage to key brain cells/circuits leading to decline in specific aspects of cognitive functioning (Kahn and Sommer, 2015).

N-Acetylcysteine (NAC) is emerging as a useful agent in the treatment of a wide range of psychiatric disorders (Deepmala et al., 2015). It acts at least in part as a modulator of synaptic glutamate through the cysteine-glutamate exchanger. NAC has additionally been shown to potently impact oxidative biology, both by increasing GSH levels and directly scavenging free radicals (Choy et al., 2010, Holmay et al., 2013). NAC also decreases pro-inflammatory cytokines and enhances neurogenesis, mitochondrial function and regulates apoptosis (Berk et al., 2008c, Samuni et al., 2013). NAC has been shown to attenuate the cognitive and behavioral effects of NMDA-R antagonists in rodents (Gunduz-Bruce, 2009). By rescuing depleted levels of GSH in the brain, NAC restores cognitive deficits such as short term spatial memory deficits in rats (Choy et al., 2010). In human studies, NAC improves core negative symptoms of schizophrenia (Berk et al., 2008a, Bulut et al., 2009), depressive symptoms in bipolar disorder (Berk et al., 2008b) and functioning in both (Berk et al., 2008a, Berk et al., 2008b), as
well as improving mismatch negativity (MMN) in psychosis (Carmeli et al., 2012, Gunduz-Bruce et al., 2012, Lavoie et al., 2008).

To date, studies on global neurocognitive effects of NAC in humans have demonstrated inconsistent results which may reflect variance in study design (Deepmala et al., 2015). For example, the addition of NAC to standard treatment produced specific improvements in verbal abilities/executive control cognitive tasks in Alzheimer’s disease in comparison to treatment-as-usual controls (Adair et al., 2001). A significant improvement in processing speed was also observed in the NAC-treated group with regards to placebo in elderly subjects, although the differences in cognitive change between the two treatment arms were not statistically significant (Hauer et al., 2003). More recently, adjunctive NAC administration provided significant gains in executive function in mild traumatic brain injury relative to controls (Hoffer et al., 2013). In contrast, NAC pretreatment did not reduced the effect of ketamine on cognitive performance in healthy subjects with ketamine induced psychosis (Gunduz-Bruce et al., 2012). A subsample of participants with bipolar disorder was examined by our own group and failed to show differences between NAC and placebo on a selection of cognitive tests (Dean et al., 2012), however the sample size in both studies was inadequate to detect small or moderate effect sizes. To our knowledge, no previous study has addressed this issue in individuals with psychosis (Deepmala et al., 2015).

The present study aims to assess the cognitive effects of adjunctive NAC treatment in participants with psychosis who underwent cognitive assessments in the context of two double blind, randomised, placebo controlled clinical trials in schizophrenia (Berk et al., 2008a) and bipolar disorder (Berk et al., 2008b). It was hypothesised that treatment with NAC would enhance cognitive functioning in participants with psychotic features. We anticipated a more specific improvement in superior cognitive functions (i.e. working memory, executive functioning and processing speed/attention) where there is a signal from preclinical and clinical studies and where other agents have shown promise (Miskowiak et al., 2014).
Methods

Study participants and procedure

The overall pooled cohort consisted of individuals who participated in two multicentre, double-blind, randomised, placebo controlled NAC trials. A detailed description of the methodology, efficacy and outcome measures of the main studies has been provided elsewhere (Berk et al., 2008a, Berk et al., 2008b, Berk et al., 2011). In brief, a sample of 140 participants diagnosed with schizophrenia and 75 individuals with bipolar disorder (DSM-IV criteria) were recruited from private and public psychiatry outpatient facilities in Victoria, Australia and one public clinic in Lausanne, Switzerland (where cognitive assessments were not done; hence they were excluded from the current analyses). The trials were approved by each participating research and ethics committee. After providing written informed consent, all randomized participants received adjunctive 2000 mg of NAC (1000 mg twice daily) or matching placebo, in addition to usual treatment, in a double-blind fashion over 24 weeks. Adherence was monitored by pill counts of returned medication packs (Berk et al., 2008a, Berk et al., 2008b).

Participants had to meet the following criteria for the respective studies; DSM-IV criteria for schizophrenia with a Positive and Negative Symptoms Scale score (PANSS) of ≥ 55 or at least two of the positive and/or negative items being > 3, or have a Clinical Global Impression –Severity (CGI-S) score ≥ 3 (Berk et al., 2008a); or criteria for bipolar disorder I or II with at least one documented episode of illness (depressive, manic or mixed) in the past 6 months (Berk et al., 2008b). We then further selected out those with psychotic bipolar symptoms based on the DSM-IV criteria for meeting psychotic features. General exclusions for both studies included; those with abnormal haematological findings, a systemic medical disorder or a history of anaphylaxis with NAC, those taking therapeutic amounts of NAC, selenium and/or vitamin C, pregnant or lactating. Individuals on other psychoactive medications were required to be on stable treatment of ≥ 1 month prior to commencing the study. The studies were registered on the Australian and New Zealand Clinical Trials Registry (schizophrenia trial ACTRN12605000363684; bipolar trial I #12605000362695) prior to enrollment.

Diagnosis was established at baseline using a structured clinical interview (Mini International Neuropsychiatric Interview [MINI DSM-IV]). The study design was broadly equivalent for both clinical trials. Clinical and functional outcome measures were assessed through a comprehensive set of rating scales that were included in the larger trials (Berk et al., 2008a). Assessments were performed by formally trained clinical practitioners or researchers who underwent inter-rater reliability assessments.

The present study examines cognitive outcome measures in participants with psychosis at endpoint (24 weeks). Cognitive impairments have shown to be present across psychotic disorders(Reilly and Sweeney, 2014) with schizophrenia and bipolar disorder with psychosis presenting more severe
cognitive deficits (Hill et al., 2013). Therefore, only those patients who fulfilled DSM-IV criteria for schizophrenia (SZ, N=32) and bipolar disorder with psychotic features (BP, N=26) that undertook the neuropsychological assessment were included in the analyses. A comparison of the two diagnostic groups to determine potential differences that may impact results was done before pooling the samples. Participants with SZ and psychotic BP did not differ in terms of duration of illness or cognitive performance at the time of the study entry (i.e. baseline). Of those, 31 participants (SZ N=17; BP N=14) were randomized to placebo and 27 participants (SZ N=15; BP N=12) received NAC. There were no differences in baseline characteristics between those patients participants who completed and the ones who did not completed the cognitive testing (data not shown).

Clinical assessments

Clinical status at the time of baseline assessment was determined using the PANSS (Kay et al., 1987) (data available for SZ participants only) and the Montgomery Asberg Depression Rating Scale (MADRS) (Williams and Kobak, 2008) together with the Young Mania Rating Scale (YMRS) (Young et al., 1978) (available for the BP subsample only). Level of social, occupational and psychological functioning was measured using the Global Assessment of Functioning Scale (GAF) (Hall, 1995) and the Social and Occupational Functioning Assessment Scale, SOFAS (Goldman et al., 1992) in both participant subgroups (SZ and BP).

Cognitive assessment

Cognitive measures were obtained at baseline and at the end of the 24-weeks treatment phase. Each individual underwent a brief neuropsychological battery assessing attention (Digits forward from Wechsler intelligence scale for adults, WAIS-III); working memory (Digits backwards from WAIS-III); and executive function (Trail Making Test, TMT derived scores – i.e. TMT A:B ratio, TMTB minus TMTA; and Controlled Oral Word Association Test, COWAT) as cognitive functions previously described as being affected in both in schizophrenia and psychosis psychotic bipolar disorder (Bora et al., 2009, Heinrichs and Zakzanis, 1998, Mesholam-Gately et al., 2009). Raw scores were used in the statistical analyses because age-scaled scores have small variance.

Data analysis

An intention-to-treat analysis was conducted on all participants who had available cognitive data. SZ and psychotic BP participants were pooled for the comparative analysis of treatment groups (NAC vs. placebo). Normal distribution of quantitative variables was assessed by means of Kolmogorov-Smirnov and Shapiro-Wilk tests. Continuous data are presented as mean ± standard deviation. Frequencies and percentages were used to describe discrete variables. Independent student t-test or Pearson’s chi-
square tests was used to compare demographic variables between participants on the NAC and on the placebo groups. For frequency data, chi-square tests were employed.

To test for longitudinal changes in cognitive performance from baseline to the end of treatment (6 month time-point) within each treatment group, Wilcoxon tests were used. Mann-Whitney tests were used to examine average treatment group differences (NAC vs. placebo) at the end-point. To rule out potential effects of age, sex or antipsychotic medication on cognitive performance, Spearman's rank-order correlation analyses were performed to examine associations between those possible confounders and cognitive outcome variables. All variables were tested for collinearity assumptions. No autocorrelation or collinearity was observed in the a priori specified independent variables. Thus, corrections for multiple comparisons was not done because all comparison analyses were independent, they were specified 'a priori' and collinearity assumptions were met (Gelman et al., 2009).

All statistical analyses were performed using IBM SPSS v21 (Statistical Package for the Social Sciences, IBM Corporation). Statistical significance was set at $\alpha < 0.05$.
Results

Sociodemographic and clinical characteristics

Participants on the NAC and placebo group did not differ significantly in terms of age, gender, duration of the illness, antipsychotic treatment, severity of symptoms or functioning at the study entry (i.e. baseline visit, see table 1). There were no significant between-group differences on any of the cognitive measures at baseline.

Cognitive Function

A Wilcoxon signed-rank test showed that 24 weeks treatment with NAC significantly improved working memory performance in adults with psychosis [digit span backwards ($Z = -2.13, p = 0.033$)] (table 2). When testing for overall between-group differences, Mann-Whitney tests revealed that participants treated with NAC had significantly higher working memory performance at the end of 24 weeks of treatment than the placebo group [digit span backwards ($U = 98.5, p = 0.027$)], as shown in table 2. No significant differences were found either within or between the NAC and placebo groups following 24 weeks of treatment on measures of attention, or executive function.

These results were independent of age, sex or medication status.
Discussion

Our results suggest that NAC impacts cognitive function in psychosis. A significant improvement in working memory performance was observed in participants treated with NAC following 6 months (24 weeks) of adjunctive treatment (2000mg/day), although other measures of attention, as well as executive function remained unchanged. In particular, working memory deficits constitute a core feature and one of the most important prognostic variables that is not adequately treated by currently available pharmacological therapies (Miskowiak et al., 2014). These results indicate the potential of glutamatergic compounds such as NAC in the development of novel therapies for cognitive dysfunction, specifically focusing on psychotic disorders such as schizophrenia and/or psychotic bipolar disorder.

Improvements in working memory have also been observed in studies in clinical samples such Alzheimer’s disease (Chan et al., 2008) and traumatic brain injury (Amen et al., 2011) with strategies that use NAC within a nutraceutical formulation. These former positive results were replicated in healthy individuals (Amen et al., 2013, Chan et al., 2010), although the formulated brain enhancement supplement included a combination of nutrients like NAC and other compounds (i.e. folic acid, B12, Vitamin E, S-adenosylmethionine or Acetyl-L-carnitine) and as such these reported cognitive effects cannot be attributable to NAC alone. As previously reviewed, comparable studies examining the use of adjunctive NAC in Alzheimer’s disease (Adair et al., 2001) and brain traumatic injury (Hoffer et al., 2013) have likewise suggested the efficacy of NAC as a cognitive modulator, though working memory was not directly assessed.

The strongest evidence to date for the use of NAC for cognitive impairment in psychiatric disorders comes from preclinical studies where NAC supplementation has shown to improve induced changes in spatial (Otte et al., 2011) and working memory and to concurrently decrease oxidative stress damage in rats (Jayalakshmi et al., 2007). Moreover, working memory deficits in rodents have shown to be restored with treatment with NAC in a dose-dependent manner (Choy et al., 2010). Impairments in working memory have been proposed as a shared endophenotype of genetic vulnerability to schizophrenia and bipolar disorder (Kim et al., 2015) and described as a neurocognitive predictor of transition to psychosis in individuals at ultra-high risk (Bang et al., 2015). We postulate that improvements in working memory, related to glutamatergic function (Driesen et al., 2013), may be further mediated by the effects NAC has on free-radical mediated neurotoxicity, inflammation, apoptotic pathways, mitochondrial dysfunction or neurogenesis in neuropsychiatric disorders (Morris and Berk, 2015, Reus et al., 2015). NAC reverses oxidative damage through the synthesis of GSH and directly scavenging free radicals (Dean et al., 2011). NAC also decreases pro-inflammatory cytokines, reverses multiple models of mitochondrial toxicity, reduces apoptosis and enhances neurogenesis, factors also pertinent to the cognitive dysfunction observed in psychotic disorders (Berk et al., 2008c, Dodd et al., 2013, Shungu, 2012). In this regard, our results are consistent with those studies in psychosis that have demonstrated an association
between oxidative stress (Martinez-Cengotitabengoa et al., 2014) and peripheral inflammatory markers and cognitive impairment (Martinez-Cengotitabengoa et al., 2012), as targets of NAC (Berk et al., 2013). However, more research on specific markers for neurotoxicity associated with cognitive impairment in psychosis would be needed to shed light on this issue.

These results need to be interpreted in the context of the methodological features of the study. The current findings are seated in the context of two larger clinical trials and the primary outcomes were based on symptom changes, not cognition. As such, cognitive functioning was not completed by all participants, which restricts our findings and requires replication. A specifically designed cognitive trial aimed to assess the effects of NAC on cognition should be implemented using a comprehensive neuropsychological battery, including different working memory domains (verbal, object and spatial), and a detailed exploration of superior learning, memory, and executive function abilities. The heterogeneity of the sample due to the differences in clinical diagnoses is another confounder. Although the literature provides evidence of a similar cognitive profile across psychotic disorders (Martinez-Aran and Vieta, 2015), particularly related to working memory (Kim et al., 2015), the characteristics of the sample (established/chronic schizophrenia or bipolar disorder with psychotic features) together with the small sample size, prevented us from exploring the differences between early stages or diagnostic subgroups in detail. As we have previously suggested, NAC may possibly be more effective on the later stages (Rapado-Castro et al., 2015). Although it is well established that cognitive dysfunction is one of the characteristics of psychosis, the evolution and course of the cognitive deficits is still controversial. Most evidence suggests that cognitive deficits in psychosis appear stable (Gelman et al., 2009). However, a number of studies have also provided evidence indicating that some aspects of cognitive function might deteriorate over time as the disorder evolves (Kozicky et al., 2014, Lopez-Jaramillo et al., 2010, Rosa et al., 2014). Examining the effect of NAC on cognition at the time of a person’s first psychotic episode or among individuals at ultra-high risk for psychosis, would be informative of the potential benefits of NAC reversing plausible deleterious effects of biochemical processes on cognitive function triggered by redox imbalance.

Notwithstanding the aforementioned limitations, the current study suggests an avenue for further exploration in a field that is critically lacking effective treatments. Cognitive impairment is a poorly treated and highly relevant dimension of psychosis that goes beyond traditional diagnostic boundaries (Millan et al., 2012). As outlined above, both schizophrenia and bipolar disorder are associated with a similar pattern of neurocognitive deficits that persist in remission and may even worsen over time (Bora and Pantelis, 2015, Bora et al., 2009, Daban et al., 2006, Krabbendam et al., 2005, Pantelis et al., 2015). Working memory has been associated with the presence of depressive (Potvin et al., 2008) negative symptoms and functional outcome in psychosis (Frydecka et al., 2014, Gonzalez-Ortega et al., 2013). Further, our results are consistent with the primarily outcomes of the main clinical trials, where adjunctive NAC treatment improved not only measures of negative symptoms in schizophrenia (Berk et al., 2008a,
Bulut et al., 2009) and depressive symptoms in bipolar disorder (Berk et al., 2008b) but also functioning in both (Berk et al., 2008a, Berk et al., 2008b) and mismatched negativity (MMN) in schizophrenia (Lavoie et al., 2008). The direction of the relationship between clinical and cognitive change remains to be clarified however.

In order to further determine the mechanism of action of NAC on cognitive function in psychotic disorders, future studies should include a biological component to determine levels of GSH, changes in glutamate pathways (i.e. cysteine/glutamate exchanger), inflammatory cytokines and other peripheral markers. Moreover, employing direct measurements of the brain would be of relevance, for example linking peripheral markers to advanced functional imaging or magnetic resonance spectroscopy to disentangle the proposed mechanism of NAC. GSH measurements were collected only in a subgroup of participants (Lavoie et al., 2008) and were unable to be explored in the context of cognitive function. No other biological data was obtained, which limits the interpretation of the plausible biological mechanisms that may be operating with adjunctive administration of NAC. Identifying the specific mechanisms underlying cognitive effects of NAC administration could lead to a new therapeutic target, thus supplementing psycho/therapeutic approaches that have been used to date (Gray and Roth, 2007, Vreeker et al., 2015). The results derived from this study have the potential to improve the core cognitive impairment of schizophrenia and psychotic bipolar disorder with a novel, safe and relatively inexpensive therapeutic approach. Data on the long-term/maintenance effects of the intervention are also necessary. These results suggest that NAC may be a promising agent to treat cognitive dysfunction in psychotic disorders.
Acknowledgments: MR-C is a Research Fellow and was supported by a Sara Borrell Health Research Fellowship from the Institute of Health Carlos III, Spanish Ministry of Economy and Competitiveness, an Alicia Koplowitz Research Grant, an Alicia Koplowitz Short-Term Visiting Fellowship from the Alicia Koplowitz Foundation and an IiSGM Fellowship Award for Short-Term Placements from the Health Research Institute from the Hospital Gregorio Marañon (IiSGM) (Madrid, Spain). GSM is funded by a NHMRC Program Grant. (Application ID: APP1073041). DRS is supported by the Sydney Parker Smith scholarship, and the CRC for Mental Health. MB is supported by a NHMRC Senior Principal Research Fellowship 1059660. OMD is a Research Fellow and has received grant support from the Brain and Behavior Foundation, Simons Autism Foundation, Australian Rotary Health, Stanley Medical Research Institute, Deakin University, Brazilian Society Mobility Program Lilly, NHMRC and an ASBD/Servier grant.

Financial support: This work was supported by a grant from the Stanley Medical Research Institute, as well as the Mental Health Research Institute of Victoria (Bipolar disorder trial registration: Australian Clinical Trials Registry 12605000362695) and by a grant from the Stanley Medical Research Institute (Schizophrenia trial registration: Australian Clinical Trials Registry, Protocol 12605000363684, www.actr.org.au). AIB is a shareholder in Costate Pty Ltd, Prana Biotechnology Pty Ltd, Mesoblast Pty Ltd and Nextvet Pty Ltd, he is a paid consultant for Collaborative Medicinal Development Pty Ltd and Brighton Biotech LLC. In the past 3 years, GSM has served on a number of international and national pharmaceutical advisory boards, received funding for research and has been in receipt of honoraria for talks at sponsored meetings worldwide involving the following companies: Lundbeck, Servier and Janssen-Cilag. MB has received Grant/Research Support from Bristol Myers Squibb, Eli Lilly, Glaxo SmithKline, Meat and Livestock Board, Organon, Novartis, Mayne Pharma, Servier and Woolworths, has been a speaker for Astra Zeneca, Bristol Myers Squibb, Eli Lily, Glaxo SmithKline, Janssen Cilag, Lundbeck, Merck, Pfizer, Sanofi Synthelabo, Servier, Solvay and Wyeth, and served as a consultant to Astra Zeneca, Biodvantage, Bristol Myers Squibb, Eli Lilly, Glaxo SmithKline, Janssen Cilag, Lundbeck Merck and Servier. OD has received in kind support from BioMedica Nutraceuticals, NutritionCare and Biocuticals. All other authors declare no conflict of interest in relation to the subject of this study.

Conflict of interest: None

Ethical standards: The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.
References

Table 1. Characteristics of Participants at Baseline

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NAC N=27</th>
<th>Placebo N=31</th>
<th>Test*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age -mean years (SD)</td>
<td>38.6 (12.2)</td>
<td>41.0 (12.4)</td>
<td>t=-0.75 p=0.46</td>
</tr>
<tr>
<td>Gender –Male (%) / Female (%)</td>
<td>14 (52) / 13 (48)</td>
<td>20 (65) /11 (36)</td>
<td>X²=0.95 p=0.33</td>
</tr>
<tr>
<td>Duration of Illness - mean years (SD)</td>
<td>8.59 (7.4)</td>
<td>11.1 (10.0)</td>
<td>t=-1.08 p=0.29</td>
</tr>
<tr>
<td>Cumulative antipsychotic dosage (mg)§</td>
<td>540.5 (359.6)</td>
<td>470.5 (313.0)</td>
<td>t=0.65 p=0.52</td>
</tr>
<tr>
<td>PANSS Positive - mean score at baseline (SD)</td>
<td>13.7 (3.6)</td>
<td>14.3 (6.1)</td>
<td>t=0.35 p=0.73</td>
</tr>
<tr>
<td>PANSS Negative - mean score at baseline (SD)</td>
<td>16.1 (3.7)</td>
<td>16.1 (4.6)</td>
<td>t=-0.01 p=0.99</td>
</tr>
<tr>
<td>PANSS General - mean score at baseline (SD)</td>
<td>33.7 (7.5)</td>
<td>31.2 (6.7)</td>
<td>t=-1.02 p=0.32</td>
</tr>
<tr>
<td>PANSS Total - mean score at baseline (SD)</td>
<td>63.5 (11.4)</td>
<td>61.6 (15.0)</td>
<td>t=-0.41 p=0.69</td>
</tr>
<tr>
<td>YMRS♦</td>
<td>2.7 (2.7)</td>
<td>2.4 (1.8)</td>
<td>t=0.27 p=0.79</td>
</tr>
<tr>
<td>MADRS♦</td>
<td>13.8 (11.6)</td>
<td>10.1 (6.8)</td>
<td>t=0.99 p=0.33</td>
</tr>
<tr>
<td>GAF- mean score at baseline (SD)</td>
<td>55.8 (13.7)</td>
<td>59.1 (14.6)</td>
<td>t=-0.90 p=0.65</td>
</tr>
<tr>
<td>SOFAS - mean score at baseline (SD)</td>
<td>58.7 (11.9)</td>
<td>60.2 (14.0)</td>
<td>t=-0.46 p=0.37</td>
</tr>
</tbody>
</table>

* Differences between the NAC and placebo groups based on two sample t test (equal variance) or Pearson’s chi-square test. Significance set at (p<.05)

§ Chlorpromazine equivalents were used to derive the antipsychotic dosage and to calculate the cumulative doses taken at baseline.

♦ Data available for the Bipolar Disorder with Psychotic Features subgroup only: NAC N=12, Placebo N=14

PANSS, Positive and Negative Symptoms Scale; YMRS, Young Mania Rating Scale; MADRS, Montgomery-Asberg Depression Rating Scale; GAF, Global Assessment of Functioning; SOFAS, Social and Occupational Functioning Assessment Scale.
Table 2. Cognitive Outcome Measures for participants on the NAC and Placebo groups at baseline and end-point.

<table>
<thead>
<tr>
<th>Outcome Measures</th>
<th>Baseline</th>
<th>End-point</th>
<th>NAC vs PLACEBO†</th>
<th>P Value*</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digit span forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC – n = 27</td>
<td>9.78 (2.52)</td>
<td>9.47 (3.06)</td>
<td>p=0.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLACEBO – n = 31</td>
<td>9.68 (2.36)</td>
<td>10.10 (1.83)</td>
<td>p=0.519</td>
<td>p=0.568</td>
<td></td>
</tr>
<tr>
<td>Working Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digit span backwards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC – n = 27</td>
<td>5.78 (2.31)</td>
<td>7.06 (1.90)</td>
<td>p=0.033*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLACEBO – n = 31</td>
<td>5.74 (2.31)</td>
<td>5.55 (2.46)</td>
<td>p=0.464</td>
<td>p=0.027*</td>
<td></td>
</tr>
<tr>
<td>Executive Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trail Making Ratio (B - A) : A§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC – n = 27</td>
<td>1.53 (1.01)</td>
<td>1.45 (0.89)</td>
<td>p=0.937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLACEBO – n = 27</td>
<td>1.32 (0.90)</td>
<td>1.62 (0.81)</td>
<td>p=0.211</td>
<td>p=0.438</td>
<td></td>
</tr>
<tr>
<td>Trail Making B–A§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC – n = 27</td>
<td>37.59 (21.74)</td>
<td>35.24 (24.37)</td>
<td>p=0.638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLACEBO – n = 27</td>
<td>36.11 (39.50)</td>
<td>38.21 (26.81)</td>
<td>p=0.589</td>
<td>p=0.739</td>
<td></td>
</tr>
<tr>
<td>Verbal Fluency – total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC – n = 26</td>
<td>34.50 (12.44)</td>
<td>33.24 (11.70)</td>
<td>p=1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLACEBO – n = 30</td>
<td>35.87 (15.13)</td>
<td>36.85 (18.75)</td>
<td>p=0.139</td>
<td>p=0.855</td>
<td></td>
</tr>
</tbody>
</table>

* Differences between cognitive performance at baseline and end-point based on Wilcoxon test.
† Differences between NAC and placebo groups in cognitive performance at end-point based on Mann-Whitney test.
§ Time to complete the Trail Making Test (version A or B) is considered on this formulae.

There is no association of cognitive performance with age; sex; or antipsychotic medication
Significance set at (p<.05)*

NAC, N-acetyl cysteine
Dear Prof. Murray:

Please find enclosed the original article “Cognitive effects of adjunctive N-acetyl cysteine in psychosis” which we are submitting to your journal for review.

Cognitive symptoms in psychosis represent a major unmet clinical need. This paper reports results on the cognitive effects of adjunctive N-acetyl cysteine (NAC) treatment in participants with psychosis in the context of two multicenter 24-weeks double-blind, randomised, placebo controlled trials in schizophrenia and bipolar disorder conducted in Victoria, Australia. We examined the cognitive changes in a pooled subgroup of participants with psychosis who completed neuropsychological assessment. A sample of 58 participants were randomized in a double fashion to receive 2g/day of NAC (N=27) or placebo (N=31) for 24-weeks. To the best of our knowledge, no previous study has addressed this issue in individuals with psychosis.

Results from the study suggest NAC impacts cognitive function in psychosis. A significant improvement in working memory performance was observed in participants treated with NAC following 6 months (24 weeks) of adjunctive treatment (2g/day), although other measures of attention, learning and memory, as well as executive function remained unchanged – this is a similar pattern to that seen with the very few other agents showing promise in the area such as EPO. Working memory deficits constitute a core feature and one of the most important prognostic variables that is not adequately treated by currently available pharmacological therapies. These results indicate the potential of glutamatergic compounds such as NAC in the development of novel therapies for cognitive dysfunction, specifically focusing on psychotic disorders such as schizophrenia.
and/or psychotic bipolar disorder. We believe that these results would be of interest to readers of Psychological Medicine.

I confirm that the manuscript has not been previously published, that it is not under consideration for publication elsewhere, and that my co-authors have approved its submission for publication. The study was conducted in accordance with the Declaration of Helsinki. Furthermore, the authors assert the manuscript represents original and honest work. The article is not currently being considered for publication by any other print or electronic journal.

The bipolar disorder trial was supported by a grant from the Stanley Medical Research Institute, as well as the Mental Health Research Institute of Victoria. Trial registration: Australian Clinical Trials Registry 12605000362695. The schizophrenia trial was supported by a grant from the Stanley Medical Research Institute. Trial registration: Australian Clinical Trials Registry, Protocol 12605000363684, www.actr.org.au.

Thank you for considering this letter.

Looking forward to hearing from you.

Yours sincerely,

Prof Michael Berk.
Deakin University, PO Box 281, Geelong 3220, Australia,
Tel: +61 3 5260 3088. Fax +61 3 5246 5165.
Email: mikebe@barwonhealth.org.au