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Abstract 

This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problems with 

re-entrant jobs. The objectives of this research are to minimize the weighted tardiness and makespan. The 

proposed model considers that the jobs with non-identical due dates are processed on the machines in the 

same order.  Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the 

flow shop. The tardiness weight is adjusted once the jobs re-enter to the shop. The performance of the 

proposed GA model is verified by a number of numerical experiments where the data  come from the case 

company. The results show the proposed method has a higher order satisfaction rate than the current 

industrial practices. 
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1. Introduction 

The Flow Shop Scheduling Problem (FSP) has an extensive background in industrial applications and has 

attracted many researchers’ attention since it was proposed by Johnson (1954). Most research papers assume 

that the jobs will not re-enter the processing line once they are finished. While this assumption simplifies the 

analysis or represents only certain industrial applications, it does not consider the condition that perhaps 

some fault jobs need to be reworked after quality control in real environment.  

In a manufacturing environment, production problems that are related to the re-entrant jobs can be divided 

into two important categories: (1) quality problem (2) specification requirement. For example, at a repair 

facility where coating is needed, a rework job is incurred for blasting the part again whenever a new crack is 

found. Regardless of the job category, once the jobs are reworked, delivery schedule is tighter. 

To tackle the complexity and uncertainty in this situation, analytic models are proposed but the model may 

be over-simplified, otherwise heavy  computational effort is  required. Therefore, simulation can overcome 

this shortcoming and be used in FSP solution. As a test and validation tool, simulation model can only 

evaluate a given design instead of providing more general  decision making function. However, combining 

the simulation thread and the genetic algorithm optimization instead of using rudimentary optimization 

techniques, not only the intelligent decision making of the simulation is enhanced, but also the complex 

system model would have broader applicability (Paul and Chanev, 1998). Therefore, simulation method for 

flow shop scheduling problems is proposed in this paper. 

In this paper, a genetic algorithm is suggested to solve a flow shop with stochastic jobs reenter for the bi-

objective of minimizing the weighted tardiness and makespan. As this kind of problems deprived (?) from 

the real manufacturing line with special due-date requirement, the experiment data are  adopted from real 

case as well. The paper is organized as follows. Section 2 presents a brief overview of the extend model and 

related literature. Section 3 introduces the problem formulation. The proposed hybrid GA is developed in 

Section 4.  The performance of the method is reported in Section 5, and finally Section 6 covers the 

conclusion. 

2. Literature review 

After the publication of Johnson’s classical paper on the flow shop scheduling problems, few optimization 

techniques are available in the early decades. The techniques are mainly mathematical programming 
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(S.Manne, 1960, Wagner, 1959), combinatorial approaches (N.D.Gupta, 1969, N.D.Gupta, 1979, 

Z.A.Lomnicki, 1965) because of the lack of computer power and efficient computer programs. And most of 

the objective functions are limited to minimize the makespan. Only after the emergence of the theory of NP-

hardness (Garey and S.Johnson, 1979) and the high-speed computational programming, the research of flow 

shop problem began to develop faster. It does not only broaden scope such as multi-machine consideration, 

multi-criteria in objective function, or relaxation in the assumption of setup time and etc., but also adopts  

new techniques like meta-heuristics and artificial intelligence based techniques. Among all these techniques, 

Genetic Algorithm (GA) has promising performance for optimization (Zhang et al., 2006, Zhu et al., 2008, 

Yang et al., 2008, Lin-Yu and Ya-Tai, 2009). The GA can be used alone or combined with other methods 

like local search or features that are embedded within other methods like the work of  Nearchou (2004). 

However, no matter how the GA is used, the majority of the papers that used GA for flow shop problems 

only  consider a single objective like makespan  (Caraffa et al., 2001, Iyer and Saxena, 2004, Marimuthu and 

Ponnambalam, 2005, Nagano et al., 2008, Rajkumar and Shahabudeen, 2009, Shih Hsin et al., 2009) or 

tardiness (Iima and Sannomiya, 1995, Al-Anzi and Al-Fares, 2001, Swaminathan et al., 2004). Even though 

some researchers considered the  bi-criteria or multiple criteria, they simply converted several objectives 

into a single one by using the weighted allocation. Framinan (2009) proposed two new weighting schemes to 

aggregate two objectives (makespan and tardiness) into a scalar function for the flow shop scheduling. In an  

extensive ANOVA test, local search is embedded for all offsprings that belong to the current population and 

all the data are analyzed  under various parameter setting. The results indicated that the proposed method 

outperforms other weighted mechanism to produce  more homogeneous set of solution to the problem. 

Mahadvi et al.(2008) also used weighted sum to tackle the s-stage flow shop with serial batch production at 

the last stage, where multiple objectives are addressed for minimizing the total weighted earliness, the total 

weighted tardiness and the total weighted waiting time. Other related finding can be found from (Ruiz and 

Allahverdi, 2009, Ishibashi et al., 2000, Yandra and Tamura, 2007).  

Traditionally , the bi-criteria or multiple criteria are treated one by one, namely , problems are first solved 

for the first criterion by ignoring others, and then solved the second criterion under the first constraint space. 

This method is developed  by Neppalli et al.(1996) whoproposed two GA-based approaches to solve a two-

stage flow shop with the objective of minimizing the total flow time subject so as to obtain the optimal 
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makespan. In our paper, we will use this method as  reference to take both makespan and tardiness into 

consideration.  

Relaxing or adding some of the assumed constraints can bring the FSP research direction into a completely  

new domain, such as no-wait flowshop, batch/lot flowshop, or bottleneck flowshop. One particular type of 

flow shop is the re-entrant flowshop, wherein some jobs will enter the manufacturing line more than once, 

and this situation is common in real industrial environment. To solve this problem, two methods are 

proposed  so far: one is to transfer the re-entrant problem into the non-re-entrant one  (Jing et al. 2008). As 

the sub-jobs of the original  job do not need to be processed successively, when every sub-job (?) has the 

same time of entering the manufacturing line (say, L level), re-entrant problems with n sub-jobs(?) is 

changed into non-re-entrant problem with nL sub-jobs. The other method is adding one no-passing constraint 

which means no job is allowed to pass any former job.  Improved heuristic methods can also be developed to 

deal with the re-entrant problem (Choi and Kim, 2008, Choi and Kim, 2009, Chu et al., 2009). Pan and Chen 

(2003) proposed three extended mixed Binary Integer Programming formulations and six extended effective 

heuristics to tackle this problem with the aim of minimizing the makespan. Chen et al.(2008) applied hybrid 

tabu search to solve the problem in order to minimize makespan. However,  both of these methods assumed 

that all the jobs visit certain machine more than once. In addition, they only pay attention to one objective, 

mostly aiming at minimizing the makespan. However, in the real situation, the production engineers need to 

consider more than one objective. Therefore, bi-objective model is proposed in this paper to represent the 

real situation where the two objectives are interrelated. As the probability of the re-entrant is not fixed for 

each job and the no-passing constraint is loosen, the proposed method is the extension of the model of Pan 

and Chen(2003). 

 

3. Problem formulation 

Suppose there are 𝑛𝑛 jobs, 𝐽𝐽1, 𝐽𝐽2,… 𝐽𝐽𝑛𝑛  and 𝑚𝑚 machines, 𝑀𝑀1, 𝑀𝑀2,… 𝑀𝑀𝑚𝑚 in the shop. Job 𝑖𝑖 has 𝑁𝑁𝑖𝑖  operations 

and the processing time of its 𝑗𝑗𝑡𝑡ℎ operation  𝑃𝑃𝑖𝑖𝑖𝑖  is deterministic and prescribed in advance. For job 𝑖𝑖, its 

𝑃𝑃𝑖𝑖𝑖𝑖+1 must be initiated right after the completion of 𝑃𝑃𝑖𝑖𝑖𝑖 . Normally in many cases customers want to receive 

their orders on time. In a case of any delay, there is no benefit for customers that may result in unsatisfaction 

and  loss of customers. Indeed, the tardiness is an important attribute of service quality, and a customer’s 
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dissatisfaction tends to increase quadratically with the tardiness, as proposed in the loss function of Taguchi 

(2005). From the industrial point of view, tardiness means rush shipping costs, lost sales and loss goodwill. 

Thus it is necessary to deliver the orders on the right day at the right volume. The minimization of the total 

tardiness is considered as the main objective in the scheduling problems. In addition, minimizing the 

makespan is commonly studied  in scheduling problems by researchers as it leads to the reduction in the 

total Work-In-Process (WIP) inventories, and the minimization of irregularities and inordinate shop flow 

crowding due to uncompleted jobs. This paper proposes a novel bi-objective model that minimizes the 

tardiness and makespan at the same time.  

a. Problem assumptions 

Except the normal assumptions that concern the jobs, machines and processing policy as  shown in the work 

of Gupta and Stafford Jr (2006),  specific  assumptions would be chosen throughout this paper: 

Even though each operation is independent of  each other in the same job, we assume that the operations of 

the same job are processed successively. The current jobs cannot be interrupted by operations of  other jobs. 

This condition, which is more related to the real world, can greatly reduce the WIP and the operators do not 

need to frequently shift work. The jobs follow the same sequence but they do not pass all the machines.  

b.  Proposed programming model 

The variables are introduced and defined as following. 

Problem parameters: 

𝑁𝑁: the set of all jobs 

𝑛𝑛: the number of jobs 

𝑖𝑖, 𝑗𝑗: job index (j is operation index on page 5?) 

𝑚𝑚: machine index (m is the number of machines on page 5?) 

Mi: the set of machines to process job 𝑖𝑖  

Em: the set of jobs that might be processed on machine 𝑚𝑚 

B: the set of pairs of jobs which have precedence relationship  

pi: processing time of job 𝑖𝑖  

Decision variables: 

xim = 1, if operation of job 𝑖𝑖 is assigned to machine m; 0, otherwise; 
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yijm = 1, if operation of job 𝑖𝑖 and 𝑗𝑗 are assigned to the same machine 𝑚𝑚; 0, otherwise; 

zijm = 1, if operation of job 𝑖𝑖 immediately precedes 𝑗𝑗 on machine 𝑚𝑚; 

ti is the starting time of job 𝑖𝑖 ; 

Cmax is the completion time of the last job. 

i. Model for phase 1 

In the first phase, model is set to minimize the total tardiness which is calculated as the sum of the product 

of the tardiness weight Wi and the tardy time Ti. The tardiness weight is related to  the tardy time. If tardy 

time is within half a month, then the tardiness weight is considered as tight, given a value of 4. If tardy time 

is within 30 days or within 45 days, the tardiness weight is recognized as moderate or  loose, given the value 

of 2 or  1 respectively.  

Following is a model for Phase 1 

Min∑ 𝑊𝑊𝑖𝑖𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1                                                                                                                                                     (1) 

s.t. ∑ xim = 1m∈Mi ,∀i ∈ N                                                                                                                               (2) 

ti ≥ 0,∀i ∈ N                                                                                                                                                  (3)   

ti + pi ≤ ti+1, ∀i ∈ N                                                                                                                                      (4) 

yijm = yjim,∀i, j ∈ Em,∀m ∈ Mi                                                                                                                     (5) 

yijm ≤ 0.5�xim + xjm� ≤ yijm + 0.5, ∀i, j ∈ Em,∀m ∈ Mi                                                                          (6) 

∑ Zj∈Em ijm
≤ 1,∀i, j ∈ Em,∀m ∈ Mi                                                                                                               (7) 

∑ Zj∈Em jim
≤ 1,∀i, j ∈ Em,∀m ∈ Mi                                                                                                               (8) 

zijm + zjim ≤ 1,∀i, j ∈ Em,∀m ∈ Mi                                                                                                              (9) 

ti ≤ tj,∀i, j ∈ B                                                                                                                                              (10) 

xim, yijm, zijm = 0 or 1,∀i, j ∈ N,∀m ∈ Mi                                                                                                   (11) 

                                    Where              𝑇𝑇𝑖𝑖 = max (0,𝐹𝐹𝑖𝑖 − 𝐷𝐷𝑖𝑖) 

                                                              𝑊𝑊𝑖𝑖 = [1,2,4] 

                                                              𝐹𝐹𝑖𝑖=Finish date of final job (date) 

                                                              𝐷𝐷𝑖𝑖=Due date of final job (date) 
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Eq. (1) minimizes the main objective, the total tardiness of jobs. Constraints (2) ensure that each operation 

must be processed by exactly one machine. Constraints (3) ensure that each operation begins after time zero. 

Constraints (4) ensure that the order of operation of each job is respected. Constraints (5) and (6) ensure that 

yijm = yjim = 1 when xijm = xjim = 1. Constraints (7) and (8) ensure that each operation has at most one 

predecessor and successor on machine 𝑚𝑚 . Constraint (9) ensures that zijm  and zjim  cannot equal to 1 

simultaneously. Constraint (10) determines the set of pairs of jobs between which there is a precedence 

relationship. Constraint (11) ensures xim, yijm, zijm are binary constraints. 

ii. Model for phase 2 

After solving the model for the first phase, the optimal solution obtained by  minimizing the total tardiness is 

considered  as an additional constraint to the second phase that is to  minimizing makespan. It is also 

assumed that 𝑇𝑇 is a solution that minimizes the tardiness. Following is a model for Phase 2. 

Min𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max𝑖𝑖(𝑡𝑡𝑖𝑖 + 𝑝𝑝𝑖𝑖)                                                                                                                              (12) 

s.t.  Constraints 2-11, 

∑ 𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑁𝑁
𝑖𝑖=1                                                                                                                                                     (13) 

Eq. (12) minimizes the total makespan of jobs. Constraint (13) guarantees that the tardiness obtained at the 

first phase remains at its optimum amount. The solution obtained in  the second phase is the final solution 

for the minimization of jobs tardiness and  total makespan. 

4. A hybrid genetic algorithm 

Genetic Algorithm (GA) is an adaptive method that can be used to solve optimization problems. GA is based 

on the genetic process of biological organism, in which the fitness of individual determines its ability to 

survive and reproduce. The term was first used by Holland (1992) in his book “Adaptation in natural and 

artificial systems”. GA mechanism starts by encoding the problem to produce a list of genes, which are then 

randomly combined to produce a population of chromosomes. Each chromosome represents a possible 

solution. Genetic operations  work on the chromosomes to produce offspring. The fitness of these 

chromosomes is then measured and the probability of their survival is determined by their fitness 

(Pongcharoen et al., 2002). 

The pseudo-code is listed as below: 

BEGIN 
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  Generate initial population; 

  Compute fitness of each individual; 

  REPEAT /* New generation /*  

    FOR population_size / 2  

      Select two parents from old generation; 

       /* biased to the  ones with higher fitness */  

      Recombine parents for two offspring; 

      Compute fitness of offspring; 

      Insert offspring in new generation 

    END FOR 

  UNTIL population has converged 

END  

a. Chromosome representation 

The job sequences are used as chromosomes. For example, if there are 4 jobs waiting in line, they are 

denoted as 1,2,3,4. Then the chromosome is expressed as [4, 1, 3, 2], which means that job 4 is processed 

first and then followed by job 1 and so on.  

b. Initial population 

Usually the population is randomly generated at a constant amount. Obviously, a constant population size is 

not suitable for problems with different sizes.  The convergence is too slow for  a large population while the 

optimal solution is very difficult to obtain for  a small population. Then it is assumed  that the population 

size is  a function relates to the number n of jobs, Pop_size=inte [1000 ∗ (1 − 𝑒𝑒−0.001𝑛𝑛)] + 40,where inte[.] 

is an operator that rounds a real number to the nearest integer. For example, Pop_size is 60 if 𝑛𝑛 is 20, while 

Pop_size is 80 if 𝑛𝑛 is 40. 

c. Selection 

According to Holland (1992), selection is made to obtain the parents for the processing of all genetic 

operator. A chromosome with a higher fitness value will have a higher probability of being reproduced. A 

heuristic method is adopted to improve the iteration where one parent is chosen as per a parameter, 

selection_rate (the probability of a chromosome being selected is in proportion to its ranking within the 

population), and another  parent is randomly generated. If the offspring are better than their parents, the 

worst parents would be replaced.   

d. Crossover and mutation 
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The purpose of crossover is to exchange information between randomly selected parent chromosomes to 

produce offspring for the next generation which retains the good properties of the parent (Chang et al., 2007). 

Usually there are three kinds of crossover operators, named one-point, two-point, and uniform crossover. 

The one-point and two-point crossover operators are the same at randomly selected points of the two parent 

parameter sets but differ by the number of cuts made on the parent chromosomes as shown in Figure 1, 

while the uniform crossover operates on randomly selected individual genes instead of parts of the 

chromosome. In this research, the two-point crossover operator with a fixed crossover rate of 𝑃𝑃𝑐𝑐(say 0.8) is 

employed for reproducing the offspring during each iteration.  

(Insert Figure 1 about here) 

The mutation operator is used to prevent the crossover from getting stuck in a local optimum. During the 

mutation process, the mutation rate increases as the diversity of the population decreases in order to broaden 

the search space. The mutation rate is calculated by multiplying the initial_mutation_rate (set less than 5%, 

say 3%) with a factor 𝐹𝐹 (ranging from 1 to 5) if the measured diversity is less than an acceptable level (say 

10%). The measure of diversity is defined as  fmax−fmin
𝑓𝑓̅

 , where fmax,  fmin,  𝑓𝑓 ̅are the largest, smallest and 

average fitness values respectively. 

e. Stopping criteria 

According to previous experiment, the model will converge to the optimal solution within 200 iterations, 

thus the offspring generation is set to terminate when the maximum number of iteration reaches 200.  

f. Simulator 

In the hybrid algorithm, the heuristic is implemented via a simulation operator. As each job is denoted with 

an index, the operator is designed to check whether a j0b is a re-entered one  by its index before each 

computational permutation. If it is imperative, the weight of that job would be increased because of the tight 

due date level. The overall process is  showed in the following Figures 2 and 3. 

(Insert Figure 2 and 3 about here) 

 

5. Performance of the hybrid genetic algorithm 

In this section, the effectiveness of the hybrid algorithm is evaluated using real case data.  

a. An illustrative example 
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In order to evaluate the performances of the proposed heuristics, based on the example of an energy service 

company with typical flow shop, experiments on randomly generated problems with  20, 30, and 40 jobs are 

conducted. (Even though the experiment with larger size problems can be dealt with, there is no real case 

data available for comparison) This case company repairs the heavy machines based on the customer’s order. 

One repair job has several operations, but the main process order is the same, only with some exceptions in 

the difference in the processing time in a particular stage and in that some jobs do not pass all the machines.  

Thus the processing times are taken as randomly distributed in the ranges [0, 15].Even though each job has 

an exact due date, a period is given around the exact due date. It is necessary to judiciously design the due 

date distribution as the tightness level of the due date is important to determine the hardness of the problem 

(Baker, 1974). According to Pinedo and Singer(1999), 20% of customers are very important; 60% are 

average and the remaining 20% are of less important. Hence, for weighted tardiness problems, three levels 

of due-date tightness are classified: tight (20%), moderate (60%) and loose (20%) with a weight of 4, 2 and 

1 respectively (Zhou et al., 2009). Therefore the due dates are also uniformly distributed on three different 

ranges as  [5, 15], [16, 30] and [31, 45]. As GA is a stochastic searching heuristics, the result of every test 

instance is unlikely to be the same. In order to compare the average performance, for each job size, 10 runs 

are performed. The experiment results are  shown in Table 1. According to the results of the proposed 

method, the mean of the total makespan of each problem size is decreased as job increases but the proposed 

model always performs better than the industrial practice. The proposed method  outperforms not only in  

terms of average deviation of makespan, but also in the order of satisfaction rate which means the percentage 

of jobs being  fulfilled on time. But with the increase of the problem size, the decrease rate of order 

satisfaction in practical situation is steeper compared with the proposed model. With regard to the practical 

maximum deviation of makespan, it almost increases doubly. It is difficult to calculate manually with the 

large number of jobs. However, it is noticed that even though the proposed method is better than the current 

approach , 5% (23%-18%) (it is difficult to understand “5% (23%-18%)”) of order satisfaction can be 

reached. If 5% is multiplied by the revenue of each project, the amount shall be prominent 

(Insert Table 1 about here) 
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Table 2 considers the condition of re-entrant jobs. Once detecting the re-entrant jobs, the system would 

adjust them to a higher weight and join the scheduling line. To simplify the flow shop scheduling problem, 

the original weight of the re-entrant is always  set as “1”.  In the real world, rework is usually  not taken into 

consideration. However, once the re-entrant jobs come, the schedulers will postpone all the current jobs and 

deal with the re-entrant jobs. This way may help to satisfy the due date tightness of the re-entrant jobs, but it 

would lead to delay for the subsequent jobs. For the data of 20 jobs, there is not  much performance 

difference between the practical approach  and the proposed method. However, if  only 10 more jobs are 

added, the mean deviation of makespan of the practical method increased sharply. When more re-entrant 

jobs come in, the fluctuation is more serious. It  can be realized from the column of the practical method in 

Table 2. To the opposite, in the proposed method, even with the increase of re-entrant jobs, the order 

satisfaction rate is kept at an acceptable level above 10%. 

(Insert Table 2 about here) 

 

According to the historical records, the re-entrant jobs are about 5% of total task. Take the problem size of 

20 jobs as example. If re-entrant does not happens, the total order satisfaction rate is 23%. If one re-entrant 

(3%) does come, the order satisfaction rate for 19 jobs is 21%, and two re-entrant (2%) come with order 

satisfaction rate of  21%. Then the total satisfaction rate is 3%*21%+2%*21%+(1-3%-2%)*23%=22.90%. 

Similarly the distribution is showed in  Table 3. 

(Insert Table 3 about here) 

 

6. Conclusions  

In this paper, a genetic algorithm was applied to  flow shop scheduling with re-entrant jobs to minimize the 

tardiness and makespan. For minimizing the tardiness, the key is to set different due date tightness levels, 

especially for  the re-entrant jobs; the tightness level is adjusted to the highest automatically. The scheduling 

permutation is dependent on the tardiness, while the heuristics approach depends on due date. Real world 

case was studied conducted to examine the  effectiveness of the algorithm with respect to different levels of 

due date tightness. The results obtained by the proposed method are better than the practical method. This 

study reveals that even a small advancement can bring in significant revenue in the real life. The future work 
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may lie in the parameter setting such as crossover method, mutation rate, stopping criteria to improve the 

performance of the genetic algorithm to achieve  higher order satisfaction rate.  The study of problems with 

multiple objectives is also an important direction. In addition, because of the  extensive application in the 

manufacturing environment, more company cases with less assumptions and constraints may be considered. 

The significance of this study is to pay the way for multi-objective functions in production scheduling, 

thereby allow production engineers to realize the tradeoff for re-entrant flow shop scheduling.  
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Table 1 Comparison of the heuristics with the practical solution  

Problem size Performance measure   Practical Proposed  
20 jobs  Average deviation  59.68  28.13  
  Maximum deviation  61.9  40.45  
  Order satisfaction rate  18%  23%  
          
30 jobs  Average deviation  72.24  61.32  
  Maximum deviation  78.2  57.6  
  Order satisfaction rate  11.33%  15.67%  
          
40 jobs  Average deviation  129.8  62.05  
  Maximum deviation  152.56  41.55  
  Order satisfaction rate  8%  11.75%  
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Table 2 Comparison of the heuristics with the practical solution with different re-entrant jobs 

Problem size With Re-entrant 
job no. 

Performance measure Practical   Proposed 

20 jobs   1 jobs  Average deviation of makespan 29.28  32.76 
    Order on-time rate  20%  21% 
  2 jobs  Average deviation of makespan 27.96  34.84 
    Order on-time rate  19%  21% 
30 jobs  1 jobs  Average deviation of makespan 65.72  47.26 
    Order on-time rate  10.60%  13.67% 
  2 jobs  Average deviation of makespan 67.68  35.03 
    Order on-time rate  9.33%  14.67% 
  3 jobs  Average deviation of makespan 74.68  41.67 
    Order on-time rate  10%  12.67% 
40 jobs  1 jobs  Average deviation of makespan 49.25  38.75 
    Order on-time rate  7.50%  11.25% 
  2 jobs  Average deviation of makespan 70.48  46.35 
    Order on-time rate  8%  9.50% 
  3 jobs  Average deviation of makespan 74.917  46.15 
    Order on-time rate  7.50%  10.75% 
  4 jobs  Average deviation of makespan 94.667  56.75 
    Order on-time rate  9%  10.25% 
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Table 3 Comparison of the heuristics with the practical solution with different the re-entrant job probability 

Problem 
size 

Re-
entrant 
no. 

Percentage Order satisfaction rate   

        With re-entrant Without re-entrant 
20 jobs  1 jobs 3%  22.900%  23%  
 2 jobs 2%      
30 jobs 1 jobs 3%  15.5700%  15.67%  
 2 jobs 1%      
 3 jobs 1%      
40 jobs 1 jobs 3%  11.935500%  11.75%  
 2 jobs 1%      
 3 jobs 0.60%      
 4 jobs 0.40%      
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Fig.1.Crossover operators 
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Fig.2. Framework of the optimization of flow shop scheduling. 
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Fig.3. Framework of GA optimization. 
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