RESEARCH LETTER

Association of Cerebrospinal Fluid Ferritin Level With Preclinical Cognitive Decline in APOE-ε4 Carriers

The ε4 allele of APOE confers the greatest genetic risk for Alzheimer disease (AD), and recent data implicate brain-iron load as a pathogenic mechanism because ε4 carriage elevates the level of cerebrospinal fluid (CSF) ferritin.1 Controlled for potential confounders like inflammation and bleeding, CSF ferritin level, although not elevated in AD, was associated with longitudinal cognitive performance and the risk of developing AD.1 Herein, we investigate whether CSF ferritin level combines with established AD risk variables in predicting cognitive decline over 7 years in the preclinical phase.

Methods | This study used data obtained from the Alzheimer Disease Neuroimaging Initiative (ADNI) database.2 The ADNI study and patient inclusion criteria have been reported.3 The ADNI study was launched in 2003 as a public-private partnership, led by principal investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging, positron emission tomography, other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early AD. The ADNI study was approved by institutional review boards of all participating institutions. Informed written consent was obtained from all participants at each site. There was no compensation.

Baseline CSF levels of Aβ1-42, tau, APOE, ferritin, factor H (an inflammation marker), and hemoglobin (a blood leakage marker) were analyzed as previously described.4 The scores for cognition using the longitudinal Rey Auditory-Visual Learning Task (RAVLT) (sensitive to early changes4) and the AD Assessment Scale–cognitive subset (ADAS-Cog13) were analyzed using linear mixed-effects models with R software (version 3.2.1). Normality and the absence of multicollinearity were confirmed. Data from individuals who left the study prematurely were included to the point of leaving. Statistical significance was set at $P = .05$ for all results.

Results | In participants who, at baseline, were cognitively normal or were categorized as having MCI, CSF ferritin level predicted cognition in a 4-way interaction with time, APOE-ε4, and diagnosis (RAVLT: $β [SE] = −1.45 [0.60], P = .02$; ADAS-Cog13: $β [SE] = 0.14 [0.07], P = .03$) (Table). In contrast, the tau/Aβ1-42 ratio interacted with time and not APOE-ε4, diagnosis, CSF ferritin levels, or APOE levels, to predict cognitive performance (RAVLT: $β [SE] = −0.39 [0.15]; P = .01$; ADAS-Cog13: $β [SE] = 0.06 [0.02]; P = .001$).

In separate modeling of cognitively normal individuals and those with MCI, the tau/Aβ1-42 ratio predicted cognitive deterioration for those with MCI (RAVLT: $β [SE] = −0.30 [0.17], P = .07$; ADAS-Cog13: $β [SE] = 0.05 [0.02], P = .03$) and those who are cognitively normal (RAVLT: $β [SE] = −0.68 [0.33], P = .04$; ADAS-Cog13: $β [SE] = 0.07 [0.03], P = .06$) (Figure, A and B), and this index did not interact with the other included variables. Ferritin level was associated with cognitive performance in those with MCI (RAVLT: $β [SE] = −2.24 [0.95], P = .02$; ADAS-Cog13: $0.17 [0.08], P = .04$), but it did not interact with time or the other included variables. For cognitively normal individuals, however, ferritin level was associated with cognitive deterioration in a 3-way interaction with time and ε4 (RAVLT: $β [SE] = −1.58 [0.54], P = .004$; ADAS-Cog13: $β [SE] = 0.11 [0.04], P = .01$) (Figure, C and D). Categorization of cognitively normal individuals according to ε4 revealed that ferritin level was strongly associated with cognitive decline in ε4 carriers (RAVLT: $β [SE] = −1.4 [0.4], P < .001$; ADAS-Cog13: $β [SE] = 0.09 [0.04], P = .02$). For ε4-negative individuals, lower ferritin levels predicted a modest deterioration in cognition (ADAS-Cog13: $β [S.E.] = −0.04 [0.016], P = .02$ but not RAVLT: $β [SE] = 0.16 [0.22], P = .48$), which might signify that abnormally low brain-iron could impair performance.

Finally, baseline CSF ferritin level was used to discriminate stable from declining (≥1 point/year worsening on RAVLT) cognitively normal ε4-positive individuals. The area under the receiver operating characteristic (ROC) curve was 0.96, at a threshold predictive value of 6.6 ng/mL of ferritin per milliliter (Figure, E).

Discussion | These findings demonstrate the potential for CSF ferritin as a biomarker, especially for ε4 carriers, and also provide new insight into the pathophysiological mechanisms of AD. Cerebrospinal ferritin level might potentially be affected by abnormal vascular permeability, which occurs early in AD.5 However, in our model of the relationship between paired CSF and plasma samples from this cohort, plasma ferritin levels accounted for only 4% of the variance of CSF ferritin levels, regardless of diagnosis.1 Thus, plasma ferritin permeating into CSF is unlikely to explain the adverse prognosis associated with higher CSF ferritin levels. Rather, CSF ferritin level probably reflects brain-iron burden (analogous to the periphery). Our observation that ferritin had a markedly divergent impact on ε4 carriers and noncarriers agrees with findings of prior genetic studies demonstrating an epistatic interaction between the APOE-ε4 allele and the iron-accumulating H63D variant of the hemochromatosis protein, HFE, leading to earlier onset of AD (by 5.5 years) (Ali-Rahmani et al6). Therefore, while CSF ferritin level is an indirect measure of ferritin level in the brain, our findings are consistent with a role for iron in the pathogenesis of AD.

Scott Ayton, PhD
Noel G. Faux, PhD
Ashley I. Bush, MBBS, PhD
### Table. Patient Demographics and Statistical Models

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Only CN ε4</th>
<th>All Patients</th>
<th>Those With MCI Only</th>
<th>Those Who Are CN Only</th>
<th>CN ε4 Negative</th>
<th>CN ε4 Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, No. (%)</td>
<td>234 (NA)</td>
<td>144 (NA)</td>
<td>90 (NA)</td>
<td>69 (NA)</td>
<td>21 (NA)</td>
<td>21 (NA)</td>
</tr>
<tr>
<td>APOE ε4-positive</td>
<td>96 (41)</td>
<td>75 (52)</td>
<td>21 (23)</td>
<td>0 (0)</td>
<td>21 (100)</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Female sex</td>
<td>93 (40)</td>
<td>47 (33)</td>
<td>46 (51)</td>
<td>38 (55)</td>
<td>8 (35)</td>
<td>8 (35)</td>
</tr>
</tbody>
</table>

**Patient characteristic, mean (SD)**

- **Age, y**: 75.2 (6.6) 74.9 (7.2) 75.7 (5.5) 75.6 (5.2) 76 (6.4)
- **Education, y**: 15.8 (3) 15.9 (3) 15.6 (3) 15.7 (2.8) 15.5 (3.4)
- **CSF ferritin level, ng/mL**: 6.72 (2.5) 6.95 (2.72) 6.36 (2.04) 6.1 (1.83) 7.19 (2.48)
- **Average annual decline in RAVLT**: −1.22 (1.04) −1.74 (0.78) −0.39 (0.83) −0.12 (0.19) −1.26 (1.39)
- **Average annual decline in ADAS-cog13**: 1.74 (1.22) 2.47 (0.94) 0.57 (0.47) 0.43 (0.23) 1.04 (0.7)

**RAVLT β (SE)**

- **Diagnosis**: −10.96 (1.45) <.001 NA NA NA NA NA NA NA NA
- **Sex**: 3.89 (1.12) <.001 2.45 (1.45) .10 6.89 (1.71) <.001 6.74 (1.88) <.001 9.01 (4.09) .04
- **Education, y**: 0.48 (0.18) .01 0.11 (0.23) .62 1.20 (0.29) <.001 1.30 (0.33) .002 1.00 (0.57) 0.10

**Testing variable/interaction**

- **Tau/Aβ1-42**: −0.67 (0.64) .30 −0.84 (0.70) .23 −0.34 (1.58) .83 1.21 (2.12) .57 −1.88 (2.53) .47
- **Ferritinb**: −0.27 (1.05) .80 −2.24 (0.95) .02 −0.14 (0.97) .83 −2.04 (2.36) .40

**ADAS-Cog13 variable**

- **Diagnosis**: 1.27 (0.12) <.001 NA NA NA NA NA NA NA NA
- **Sex**: −0.19 (0.09) .045 −0.07 (0.13) .60 −0.41 (0.13) .002 −0.43 (0.13) .002 −0.33 (0.34) .34
- **Education, y**: −0.04 (0.02) .02 −0.02 (0.02) .31 −0.07 (0.02) .003 −0.09 (0.02) <.001 −0.002 (0.05) .86

**Abbreviations**: ADAS-Cog13, Alzheimer’s Disease Assessment Scale–cognitive subset; CN, cognitively normal; CSF, cerebrospinal fluid; MCI, mild cognitive impairment; NA, not applicable; RAVLT, Rey Auditory-Visual Learning Task; SE, standard error.

*a Separate covariate-adjusted mixed effects linear models of longitudinal (7-year) cognitive performance (RAVLT, ADAS-Cog13) in CN individuals and patients with MCI. Variables initially included in modeling were age, sex, body-mass index, years of education, APOE-ε4 allele, baseline diagnosis, CSF tau/Aβ, CSF ApoE, CSF ferritin, CSF factor H (to control for inflammation), CSF hemoglobin level (to control for blood contamination), before minimal models were obtained using Akaike information criterion and Bayesian information criterion. CSF ApoE, CSF factor H, and CSF hemoglobin level were not predictive in any of the models.

*b CSF ferritin was natural log transformed.

*c This interaction variable was simplified to lower-order terms when the cohort was restricted according to the column titles (ie, the diagnosis interaction variable was removed when MCI and CN were modeled separately. The ε4 interaction variable was removed when performing separate modeling for ε4-positive and ε4-negative patients).

*d ADAS-Cog13 variable was square-root transformed.
Figure. Cognitive Decline in 90 Cognitively Normal Individuals at Baseline as Predicted by Baseline Cerebrospinal Fluid (CSF) Factors Stratified by APOE-ε4 Allelic Status

A and B, The association between the baseline CSF tau/Aβ1-42 ratio with annual change in (A) the Rey Auditory Visual Learning Test (RAVLT) score and (B) Alzheimer’s Disease Assessment Scale-cognition (ADAS-Cog13) score in 21 APOE-ε4 carriers and 69 noncarriers over 7 years. C and D, The association between baseline ferritin level with annual change in (C) RAVLT and (D) ADAS-Cog13 in APOE-ε4 carriers and noncarriers over 7 years. Means ± 95% CIs are shown. E, The receiver under the operating curve of baseline CSF ferritin level (indicated by the colors) for predicting stable or deteriorating (≥1 RAVLT unit decrease per year) cognition in cognitively normal ε4 carriers over 7 years. Area under the curve = 0.96.
Conflict of Interest Disclosures: Dr Bush is a shareholder in Prana Biotechnology Pty Ltd, Eucalyptus Pty Ltd, Mesoblast Pty Ltd, Brighton Biotech LLC, Nextvet Ltd, Grunbiotics Pty Ltd, and Collaborative Medicinal Development LLC, and a paid consultant for Collaborative Medicinal Development, Pty Ltd. Drs Ayton, Faux, and Bush have filed a provisional patent encompassing findings from these data. Drs Ayton and Bush have received funding relevant to this study from the Australian National Health and Medical Research Council (NHMRC), the Alzheimer’s Association, Alzheimer’s Research UK, the Michael J. Fox Foundation for Parkinson’s Research, the Weston Brain Institute, and the Perpetual-Salteri Foundation. No other disclosures are reported.

Funding/Support: Data collection and sharing for this project were funded by the Alzheimer Disease Neuroimaging Initiative (ADNI) (National Institutes of Health grant U01 AG024904) and the Department of Defense ADNI (award No. W81XWH-12-2-0012). The ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: the Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica Inc; Biogen Idec Inc; Bristol-Myers Squibb Company; Eisai Inc; Elan Pharmaceuticals Inc; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc; GE Healthcare; Innogenetics, NV; IXICO Ltd; Janssen Alzheimer Immunotherapy Research & Development LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Medpace Inc; Merck & Co Inc; Moso Scale Diagnostics LLC; NeuroRx Research; Novartis Pharmaceuticals Corp; Pfizer Inc; Piramal Imaging; Servier; Synarc Inc; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Analysis was supported by funds from the Australian Research Council, the NHMRC, the Cooperative Research Centre for Mental Health (an Australian Government Initiative), Alzheimer’s Australia, the Vulgilar Foundation, and Perpetual-Salteri Foundation. The Florey Institute of Neuroscience and Mental Health acknowledges support from the Victorian government, in particular funding from the Operational Infrastructure Support grant.

Role of the Funder/Sponsor: No funder of this study had any role in the design and conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Research involving human participants: All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). The NIH Office of Human Subjects Research Protection has determined that this type of research falls under exemption for institutional review board approval.

Statistical analysis: Only authors. Drafting of the manuscript: All authors. Critical revision of the manuscript for important intellectual content: All authors. Administrative, technical, or material support: Bush. Study supervision: Faux, Bush.

Author Contributions: Drs Ayton and Faux had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Faux and Ayton contributed equally to the manuscript. Concept and design: All authors. Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: All authors. Academic and editorial responsibility: All authors. Responsibility for the integrity of the data and the accuracy of the data analysis: All authors. Administrative, technical, or material support: Bush. Study supervision: Faux, Bush.

Conflict of Interest Disclosures: Dr Bush is a shareholder in Prana Biotechnology Pty Ltd, Eucalyptus Pty Ltd, Mesoblast Pty Ltd, Brighton Biotech LLC, Nextvet Ltd, Grunbiotics Pty Ltd, and Collaborative Medicinal Development LLC, and a paid consultant for Collaborative Medicinal Development, Pty Ltd. Drs Ayton, Faux, and Bush have filed a provisional patent encompassing findings from these data. Drs Ayton and Bush have received funding relevant to this study from the Australian National Health and Medical Research Council (NHMRC), the Alzheimer’s Association, Alzheimer’s Research UK, the Michael J. Fox Foundation for Parkinson’s Research, the Weston Brain Institute, and the Perpetual-Salteri Foundation. No other disclosures are reported.

Funding/Support: Data collection and sharing for this project were funded by the Alzheimer Disease Neuroimaging Initiative (ADNI) (National Institutes of Health grant U01 AG024904) and the Department of Defense ADNI (award No. W81XWH-12-2-0012). The ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: the Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica Inc; Biogen Idec Inc; Bristol-Myers Squibb Company; Eisai Inc; Elan Pharmaceuticals Inc; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc; GE Healthcare; Innogenetics, NV; IXICO Ltd; Janssen Alzheimer Immunotherapy Research & Development LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Medpace Inc; Merck & Co Inc; Moso Scale Diagnostics LLC; NeuroRx Research; Novartis Pharmaceuticals Corp; Pfizer Inc; Piramal Imaging; Servier; Synarc Inc; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Analysis was supported by funds from the Australian Research Council, the NHMRC, the Cooperative Research Centre for Mental Health (an Australian Government Initiative), Alzheimer’s Australia, the Vulgilar Foundation, and Perpetual-Salteri Foundation. The Florey Institute of Neuroscience and Mental Health acknowledges support from the Victorian government, in particular funding from the Operational Infrastructure Support grant.

Role of the Funder/Sponsor: No funder of this study had any role in the design and conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Information: Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.


Use of Genetic Testing in Amyotrophic Lateral Sclerosis by Neurologists

There have been a number of publications describing the important role of genetic counseling in amyotrophic lateral sclerosis (ALS).1,2 While such attempts at guiding who should undergo genetic testing are welcome, they are put forth in a vacuum because there are no data on where ALS neurologists stand in terms of genetic testing and counseling for the disease, and in terms of what is considered to be familial and sporadic ALS.3 We attempted to fill this gap by surveying members of the Northeast Amyotrophic Lateral Sclerosis Consortium (NEALS, http://www.alsconsortium.org), one of the largest clinical research organizations for ALS. We sought to understand in which situations genetic testing is used, which genes are tested for, and the attitudes of respondents toward genetic testing and counseling.

Methods | The survey was sent via email on June 20, 2016, to 134 principal investigators who are members of NEALS. The deadline for survey completion was July 29, 2016. Data were collated and analyzed using Microsoft Excel (Table). The NIH Office of Human Subjects Research Protection has determined that this type of research falls under exemption for institutional review board approval.

Table. Survey Questions and Responses of Neurologists Who Study Amyotrophic Lateral Sclerosis (ALS) (N = 43)

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>No Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you screen familial ALS cases for genetic mutations for clinical trials?</td>
<td>31</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Do you screen sporadic ALS cases for genetic mutations for clinical trials?</td>
<td>8</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>Do you screen familial ALS cases for genetic mutations in everyday clinical practice?</td>
<td>40</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Do you screen sporadic ALS cases for genetic mutations in everyday clinical practice?</td>
<td>13</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Do you use next-generation sequencing techniques such as exome sequencing?</td>
<td>21</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Do you use genetic panel testing?</td>
<td>24</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Do you believe panel testing is cost-effective?</td>
<td>18</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Do you provide genetic counseling to patients?</td>
<td>42</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Would your attitude toward genetic testing change if an effective gene therapy became available?</td>
<td>39</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Author/s:
Ayton, S; Faux, NG; Bush, AI

Title:
Association of Cerebrospinal Fluid Ferritin Level With Preclinical Cognitive Decline in APOE-epsilon 4 Carriers

Date:
2017-01-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/123364

File Description:
Published version