Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational modification and cell surface attachment.

Paul D. Veith1, Nor A. Nor Muhammad1, Stuart G. Dashper1, Vladimir A. Likić2, Dhana G. Gorasia1, Dina Chen1, Samantha J. Byrne1, Deanne V. Catmull1 and Eric C. Reynolds1*.

1Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia.

2Bio21 Institute, The University of Melbourne, Australia.

Running title: Protein secretion in Bacteroidetes

*To whom correspondence should be addressed: Professor Eric C. Reynolds, Melbourne Dental School, University of Melbourne, 720 Swanston Street, Victoria, 3010, Australia.

Email: e.reynolds@unimelb.edu.au. Phone +61 3 9341 1547; Fax +61 3 9341 1597
ABSTRACT

The secretion of certain proteins in *Porphyromonas gingivalis* is dependent on a C-terminal domain (CTD). After secretion the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMM) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroides phylum while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of *Cytophaga hutchinsonii* led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from *P. gingivalis* and four other species containing predicted CTDs (*Parabacteroides distasonis*, *Prevotella intermedia*, *Tannerella forsythia* and *C. hutchinsonii*) demonstrated that membrane localisation, extensive post-translational modification and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of ten different proteins from three different species was determined and found to be similar to the cleavage site previously determined in *P. gingivalis* suggesting that homologs of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.

Key words: novel protein secretion system; Bacteroidetes; C-terminal signal peptidase.
INTRODUCTION

The *Bacteroidetes* is a major bacterial phylum whose members are prevalent in a diverse range of habitats and includes species that are of considerable medical, veterinary and environmental importance \(^1\). In soils they are estimated to represent about 5% of obtained rDNA sequences, \(^2\) while in the human gut \(^3\) and the world’s oceans \(^4\) they account for approximately one quarter of the sequences obtained. In the gut, *Bacteroidetes* are generally considered to be associated with health \(^3,5\), however in the oral cavity, *Bacteroidetes* species are associated with chronic periodontitis in both humans and animals \(^6,7\) and are also prevalent in endodontic infections \(^8\). Several fish pathogens are *Bacteroidetes* spp. for example *Flavobacterium psychrophilum* \(^9\), while other marine *Bacteroidetes* are important contributors to carbon cycling due to their ability to degrade high molecular weight components of dissolved organic carbon such as protein and chitin \(^10,11\).

Arguably, the most studied *Bacteroidetes* species is *Porphyromonas gingivalis*, recognised as the most important pathogen associated with chronic periodontitis \(^12\). The major virulence factors of this organism are surface-associated cysteine proteinases called gingipains \(^13\). The three gingipains (RgpA, RgpB and Kgp) have in common a conserved C-terminal domain of approximately 70 amino acid residues which is referred to as the CTD. The CTD was first postulated to be involved in anchoring these virulence factors to the cell surface over a decade ago \(^14\). The membrane form of RgpB was found to be extensively modified, containing 30% carbohydrate, while the soluble form lacking the CTD was not surface attached and was not modified \(^15\). In a proteomic study of the *P. gingivalis* outer membrane (OM), this link was strengthened by the identification of multiple CTD containing proteins that migrated on two-dimensional gel electrophoresis as diffuse spots of considerably elevated molecular weight that reacted with a monoclonal antibody (MAb-1B5) which recognised a Manα1-2 Manα1-phosphate epitope found on the anionic polysaccharide
of A-LPS. Alignment of the CTD sequences of these proteins revealed that the similarity was confined to three motifs separated by poorly conserved regions of variable length.

Extensive BLAST searching of the CTD sequences led to the identification of 34 proteins containing the CTD within the *P. gingivalis* W83 genome as well many CTD proteins in other *Bacteroidetes* spp. Protein motif searches further established the widespread presence of the CTD in this phylum.

Subsequent to the early *P. gingivalis* studies, other CTD proteins from other *Bacteroidetes* spp. have now been identified; including virulence factors of a fish pathogen, cellulose degrading enzymes of *Cytophaga hutchinsonii*, a xylanase from *Rhodothermus marinus* and a family of proteins from *Parabacteroides distasonis*. Some of these proteins were also found to be cell-associated or OM-attached and glycosylated. Note that the CTD is often referred to as “D5” in these publications. More recently, a proteomic study of the *Tannerella forsythia* OM also demonstrated the presence of multiple CTD proteins that were glycosylated and attached to the OM.

While the idea of the CTD being linked to the cell surface-attachment of proteins is evident in the various species mentioned above, the implication that the CTD may also represent a secretion signal enabling the CTD protein to be translocated across the OM has been mainly addressed by *P. gingivalis* researchers; as is the notion that cell-surface attachment may be attained by conjugation of the CTD protein to a particular form of lipopolysaccharide (A-LPS). Removal of the CTD from RgpB in *P. gingivalis* leads to the accumulation of RgpB in the periplasm and fusing of a CTD to the C-terminus of GFP resulted in the secretion, modification and attachment of GFP to the surface of *P. gingivalis* demonstrating a role for the CTD in secretion.

A number of *P. gingivalis* genes have been reported to be required for the secretion of the gingipains or CTD proteins in general. Many of these genes were chosen for
examination on the basis of their distribution amongst species within the *Bacteroidetes* phylum, as while many sequenced species within the phylum appear to contain CTD proteins and known components of the secretion system, most species within the *Bacteroides* genus do not. Hence a list of proteins common to *P. gingivalis* and *C. hutchinsonii* but absent in *Bacteroides thetaiotaomicron* proved to include many proteins essential for gingipain secretion\(^2^9\).

Electron microscopy of *P. gingivalis* reveals an electron dense layer external to the OM. This electron dense surface layer (EDSL) is dependent on the secretion system since mutants lacking components of the secretion system also lack the EDSL\(^1^6, 1^7\). Moreover, the gingipains were localised to the surface layer by immunogold labelling and mutants lacking RgpA or Kgp have a reduced EDSL suggesting that the EDSL may be comprised of secreted CTD proteins, particularly the gingipains\(^1^6\). Similarly, the surface layer of *T. forsythia* consists of the glycosylated surface layer proteins A and B\(^3^2\) which are also CTD proteins\(^2^5\).

Recently, we discovered that the *P. gingivalis* CTD is cleaved during secretion prior to post-translational modification of the matured CTD protein and that the CTD itself is not the site of modification and cell-surface attachment, but rather functions as a C-terminal secretion and attachment signal\(^1^7\). The PG0026 (PorU) protein was implicated as the C-terminal signal peptidase as PG0026 deletion mutants and mutants lacking the predicted catalytic Cys residue accumulated RgpB on the cell surface with its CTD intact.

In this study we used bioinformatic approaches to define the C-terminal signal of CTD-family proteins and used Hidden Markov Models (HMMs) to predict 663 CTD proteins across 21 *Bacteroidetes* species. We demonstrate in four representative species of the *Bacteroidetes* phylum, namely *P. gingivalis*, *P. distasonis*, *Prevotella intermedia* and *Cytophaga hutchinsonii* that each exhibit highly abundant, modified CTD proteins in the outer membrane fraction. As this is a unique and defining feature of secretion in the
Bacteroidetes phylum, we propose to name it “CoAtSS” (Combined Attachment and Secretion System) which describes its distinguishing feature of attaching its substrates to the cell-surface.
METHODS

Computer Hardware and Software

Bioinformatic analyses were performed on a Core i7 Desktop running Ubuntu 10.04 (http://www.ubuntu.com) as a virtual machine and Windows XP (http://www.microsoft.com) as the host operating system. Both operating systems had been updated with the latest patches. The virtual machine software used was VMware Player 4.0.2 (http://www.vmware.com). The motif analyses tools installed and used were the Gapped Local Alignment of Motifs (GLAM2) and Multiple Em for Motif Elicitation (MEME) from The MEME Suite, a package of Motif-based sequence analysis tools (http://meme.sdsc.edu/) 35.

GLAM2 Analyses

Twenty three CTD proteins from P. gingivalis W83 and eleven from T. forsythia ATCC 43037 that were previously identified by proteomic studies were selected for these analyses 20. The protein sequences of P. gingivalis CTD proteins were obtained from NCBI Genbank (http://www.ncbi.nlm.nih.gov/genbank/) and the protein sequences of T. forsythia CTD proteins were from ORALGEN (http://www.oralgen.lanl.gov). These thirty four protein sequences [PG1844, TF2339, TF2592, TF2998 (and for the remainder see Fig. 2)] were analysed using GLAM2. Parameters used were 100 for –b: maximum number of aligned columns and default for the remaining parameters. The thirty four sequences were then truncated to their C-terminal 80 amino acid residues and analysed using the global sequence alignment Needleman-Wunsch algorithm (EMBOSS Needle) 37, 38 to check for sequence similarity. Four sequences (from PG1844, TF2339, TF2592 and TF2998) were found to have extensive sequence identity to other sequences and were discarded from further analyses to
reduce redundancy. The remaining thirty CTD protein sequences were analysed using
GLAM2 again with the same parameters as before.

MEME Analyses

MEME was used to quantitate individual motifs within the conserved CTD region found by
GLAM2. MEME was run in one per sequence mode with the E-value threshold set at 1e-3
and the remaining parameters at their default values. MEME identified two motifs, Motif B
and Motif D \(^{20}\). The dominant Motif B sequence was then removed from the CTD protein
sequences and these sequences analysed with MEME which resulted in the identification of
Motif E. This was achieved by truncating the amino acid sequences from eighty to thirty
amino acids in length followed by MEME analysis using the same parameters as above.

Hidden Markov Modelling

HMMER software \(^{39}\) implements methods using probabilistic models named profile Hidden
Markov Models (HMM). The multiple sequence alignment of the thirty CTD proteins needed
by HMMER as input was produced from the GLAM2 output. The multiple sequence
alignment was truncated into two multiple sequence alignment files; the first containing
Motif B and the second containing Motif D+E (combined Motif D and Motif E). The variable
region between Motif B and Motif D was discarded. The two multiple sequence alignment
files were then inputted into HMMER for profiling of Motif B and Motif D+E. The two
HMM profiles produced were called Motif B profile and Motif D+E profile.

The protein sequence databases, Swiss-Prot and TrEMBL were obtained from Uniprot
release 2011_08 (http://www.uniprot.org) \(^{40,41}\). The Swiss-Prot database was processed into
two smaller databases. The first protein sequence database contained the last 80 amino acids
of each protein sequence (Swissprot_80aa) and the second database contained the last 30
amino acids of each protein sequence (Swissprot_30aa). The TrEMBL database was processed the same way (Trembl_80aa & Trembl_30aa). The truncation of these databases served to provide the important constraint of C-terminal location. Using hmmpfam, a part of the HMMER2 software package, Motif B profile was searched against Swissprot_80aa and Trembl_80aa database and Motif D+E profile was searched against Swissprot_30aa and Trembl_30aa database. The E-value chosen was 1e-3 for each HMM profile when searching against the truncated databases for a combined e-value of 1e-6. This E-value was chosen because it produced less than 1.5% false positives based on evaluation using decoy strategies (see below). Hmmpfam hits towards Motif B and Motif D+E profiles were processed using Microsoft Access to generate the list of proteins that matched Motif B and Motif D+E profiles.

HMM searching was also performed on the proteome sets of fully sequenced Bacteroidetes organisms. A total of twenty one Bacteroidetes proteomes were downloaded, nineteen from NCBI Genbank and two from ORALGEN (Fig. 3). They were combined to generate one Bacteroidetes protein sequence database. Again, two smaller databases were created, Bacteroidetes_80aa and Bacteroidetes_30aa. Motif B profile was searched against Bacteroidetes_80aa database while Motif D+E was searched against Bacteroidetes_30aa database. However, the E-value chosen this time was 0.1 for each HMM profile for a combined E-value of 1e-2. Hmmpfam hits towards Motif B and Motif D+E profiles were processed using Microsoft Access to generate the list of proteins that matched Motif B and Motif D+E profiles. A phylogenetic tree of the 21 Bacteroidetes species was constructed using taxonomic data from NCBI Taxonomy Common Tree (http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) and PHYLIP (the PHYLogeny Inference Package).
The number of random hits by the HMM methodology towards the *Bacteroidetes* database was estimated using two different decoy strategies. The first strategy was to randomize each protein sequence in the input *Bacteroidetes* _80aa and *Bacteroidetes* _30aa_ databases. This produced two randomized databases, *Bacteroidetes* _80aa_R1 and *Bacteroidetes* _30aa_R1_, which maintained the same amino acid composition of each protein sequence in the input databases. The second strategy was to extract random regions of each protein sequence from the full *Bacteroidetes* database. The length of the extracted regions was 80 amino acids for the generation of *Bacteroidetes* _80aa_R2 and 30 amino acids for *Bacteroidetes* _30aa_R2_. Once the four databases had been generated, Motif B was searched against *Bacteroidetes* _80aa_R1 and *Bacteroidetes* _80aa_R2_ while Motif D+E was searched against *Bacteroidetes* _30aa_R1 and *Bacteroidetes* _30aa_R2_. Results of all four hmmpfam search were processed using Microsoft Access to produce a list of proteins that hit Motif B and Motif D+E.

Bacterial Strains and Culture

P. gingivalis W50 was grown as previously described \(^{16}\). *Parabacteroides distasonis* \(^{45}\) and *Prevotella intermedia* (ATCC 25611) were grown on horse blood agar containing 10% v/v defibrinated horse blood and 5 mg L\(^{-1}\) menadione. The bacteria were grown in tryptic soy-enriched brain heart infusion broth (TSBHI), containing per litre, 25 g of tryptic soy, 30 g of brain heart infusion, 0.5 g of cysteine, 5 mg of haemin and 1 mg of menadione. Bacteria were incubated at 37\(^{\circ}\)C in an anaerobic workstation (MACS, Don Whitely Scientific, UK). *P. distasonis* and *P. intermedia* were grown in planktonic culture until they reached a cell density equivalent to ~0.6 AU\(_{650nm}\) and then harvested.

Cytophaga hutchinsonii ATCC 33406 \(^{22}\) was grown in Dubos Broth containing per litre, 0. 5 g NaNO\(_3\), 1 g K\(_2\)HPO\(_4\), 0.5 g MgSO\(_4\).7H\(_2\)O , 0.5 g KCl , 10 mg FeSO\(_4\).7H\(_2\)O. The
pH of the medium was adjusted to 7.2 and then filter sterilized. To Dubos Broth 1.5% (w/v) of agar was added for solid medium. Sterile strips of Whatman No.1 filter paper were laid on the surface of the agar and inserted into the broth. Bacteria were maintained on solid agar by adding a drop of bacterial suspension or streak from a previous plate and placing filter paper on top. Plates were incubated for 7-10 days at 26˚C in the anaerobic workstation. Broth cultures were inoculated with bacteria grown on plates and incubated for 10 days, these planktonic cultures were then used to inoculate larger volumes (1/50) which were incubated for 10 days. Bacteria were grown at 26˚C in a shaking incubator at 40 rpm.

Bacteroides thetaiotaomicron ATCC 29148 was grown in either Chopped Meat/Tryptic Soy Broth Medium with added Yeast Extract (containing per litre, 500 g ground beef, 25 mM NaOH, 30 g Trypticase Soy Broth, 5 g Yeast Extract, 5 g K2PO4 and added supplements after sterilization 0.5g cysteine-HCl, 5 mg hemin and 1 mg Vitamin K) or Brain Heart Infusion Medium with supplements as previously described. All media were pre-reduced in an anaerobic workstation for 24 h prior to use and all bacterial manipulations were performed in the anaerobic workstation. Stocks were grown for anywhere between 24-48 h in the initial passage and 24 h for subsequent passages. Purity of the cultures was determined by microscopic observation and Gram stain.

Bacterial Fractionation

Bacterial cells were harvested by centrifugation (8,000 g, 4˚C, 25 min) and the cell pellet was washed once with PBS + 5 mM MgCl2 (PBSM) and resuspended in 2 mL of 20% PBSM in a 15 mL plastic tube. Proteinase inhibitor cocktail, 5 uL (PIC, Sigma-Aldrich) was added to the cells of all species and in addition, 5 mM Nα-tosy-L-lysine chloromethyl ketone (TLCK, Sigma-Aldrich) was added to *P. gingivalis* cells before, during and after lysis. Cells were lysed using an ultrasonic processor (model CPX 750, Cole Parmer) fitted with a 3 mm
stepped microtip. The amplitude was set to 40%, pulser to 1 s on, 2 s off for a total of 30 min.

The membranes were collected by centrifugation (48,400 g, 20 min) washed twice with PBSM, and stored at -80°C until use. *P. gingivalis* outer membrane vesicles were prepared by collecting the culture fluid which was then passed through a 0.22 μm filter and ultracentrifuged (170,000 g, 4°C, 45 min). The vesicle pellet was washed once in PBS.

SDS-PAGE and Western Blot

SDS-PAGE was conducted using NuPAGE® Novex 10% Bis-Tris gels using MOPS running buffer (Invitrogen). MES running buffer was used to resolve cleaved CTDs. The optimum load of membrane sample to separate by SDS-PAGE was determined empirically. For Western blots, gel-separated proteins were transferred to a nitrocellulose membrane and probed with MAb 1B5 as previously described 16. MAb 1B5 was a gift from Professor Mike Curtis 15-17.

In-gel Digestion and Mass Spectrometry

In-gel digestion using trypsin was performed after reduction with DTT and alkylation with iodoacetamide as previously published 16. Tryptic digests were acidified with TFA and analysed by LC-MS/MS using a Dionex Ultimate 3000 system (Thermo Scientific) coupled to an HCTultra ion trap mass spectrometer as previously described 16. Proteins were identified by MS/MS Ion Search using Mascot v 2.2 (Matrix Science) against the *P. gingivalis* W83 sequence database (2,227 sequences) or other database as detailed below. Search parameters were as follows: enzyme = trypsin, missed cleavages = 1, fixed modifications = carbamidomethyl (Cys), optional modifications = oxidation (Met), MS tolerance = 1.5 Da, MS/MS tolerance = 0.5 Da. To enable the identification of mature N-termini resulting from signal peptide cleavage, additional searches using semi-trypsin and
pyro-Glu (N-term Q or E) as an extra variable modification were conducted. The *P. intermedia* sequence database was sourced from the Oralgen databases in May 2011 and contains 2807 sequences (www.oralgen.lanl.gov), and sequence databases for *P. distasonis* ATCC8503 (3861 sequences) and *C. hutchinsonii* ATCC 33406 (3789 sequences) were obtained from JCVI’s Comprehensive Microbial Resource (http://cmr.jcvi.org) in November 2011 and August 2011 respectively. Proteins were considered identified when at least one peptide match was greater than the Mascot identity threshold (p<0.05). All peptides were only considered identified if they scored higher than the relevant threshold score (p<0.05) which was 23 for *P. gingivalis* and *P. intermedia*, 25 for *C. hutchinsonii* and 26 for *P. distasonis*. For CTD proteins identified on the basis of a single peptide, the score was greater than 30. The average false discovery rate (FDR) as determined by the Mascot decoy searches was 1.0% (*P. gingivalis*), 0.5% (*P. intermedia*), 1.1% (*P. distasonis*) and 1.3% (*C. hutchinsonii*).
RESULTS

The CTD consists of three conserved motifs

Twenty-two non-redundant CTD proteins from *P. gingivalis* and eight non-redundant CTD proteins from *T. forsythia* were analysed by GLAM2 and MEME to detect, align and define the motifs of the CTD. GLAM2 analyses revealed that these 30 CTD proteins have a conserved C-terminal domain that is approximately 60 amino acids in length. After truncation of the CTD protein sequences to their C-terminal 80 amino acids a second round of GLAM2 analyses were conducted. The analyses revealed a conserved motif that is 42 amino acids long with a score of 946.6 (Fig. 1). Three shorter motifs within the CTD motif labeled Motif B, Motif D and Motif E were observed in the GLAM2 data (Fig. 1) and were verified by MEME (Table 1, Supplementary Figure 1). Absolutely conserved Gly residues were observed at positions 8 and 25, while absolutely conserved hydrophobic residues were observed at positions 1, 3, 29 and 31 (Fig. 1). Motif E, although small, exhibited an absolutely conserved basic amino acid residue at position 39 (almost exclusively Lys).

Hydrophobic amino acid residues were strongly preferred in the next three positions in Motif E (Fig. 1).

Using the combined results of the GLAM2 and MEME analyses a multiple sequence alignment was constructed with the three motifs marked, allowing species-specific differences to be noted (Fig. 2). In Motif B of *P. gingivalis* CTD proteins, position 5 preferred Asp which is acidic while in *T. forsythia*, this position preferred Asn, Ser or Thr which are polar, non-charged residues. At position 6, *P. gingivalis* preferred Met or Leu while *T. forsythia* preferred Val or Ile. At position 9, *P. gingivalis* preferred the positively charged residues, Arg and Lys while *T. forsythia* preferred the polar non-charged residues, Ser and Gln. In Motif D and Motif E, there was little difference in preferred residues between *P. gingivalis* and *T. forsythia*.

The CTD is present only in the Bacteroidetes/Chlorobi phylum

The two generated HMM profiles, Motif B and Motif D+E profiles (Fig. 2) were used to search the Uniprot’s Swiss-Prot and TrEMBL protein sequence databases. Sequences that matched both Motif B and Motif D+E profiles were defined as putative CTD proteins.

Putative CTD proteins were identified in 87 organisms belonging to the Bacteroidetes and in 8 unclassified organisms. 682 putative CTD proteins were identified using a combined E-value of 1e-6. CTD proteins had a wide species distribution but all were contained in organisms from the Bacteroidetes phylum (Supplementary Table 1).

For a more sensitive analysis, the search for putative CTD proteins was repeated against 21 fully sequenced Bacteroidetes species using a less strict combined E-value of 1e-2. The 21 species covered a broad distribution of Bacteroidetes organisms accounting for 8 of 15 known families. The total number of proteins that matched both HMM profiles was 663 proteins (Fig. 3). In 12 of the 21 Bacteroidetes species, at least 20 putative CTD proteins were predicted by the HMM searching and five other Bacteroidetes species had at least nine putative CTD proteins. Organisms that had at least nine putative CTD proteins were found in seven different families in the Bacteroidetes phylum while hits to the Bacteroidaceae family were very few (Fig. 3). Upon further analysis of the hits to the Bacteroidaceae family, four of the five hits either lacked an N-terminal signal peptide or else exhibited a Motif D+E hit that was not at the C terminus. Only one hit, BVU_0089 was considered an acceptable hit, however it was missing the conserved basic residue in Motif E (data not shown), and hence these species were considered to be CTD-negative (coloured red in Fig. 3). The CTD proteins predicted for P. gingivalis, T. forsythia, P. distasonis, P. intermedia and C. hutchinsonii are listed in Supplementary Table 2.
HMM searching was also conducted against decoy databases in order to estimate the number of false positives. Results for the first decoy strategy identified eight proteins that hit Motif B and Motif D+E profiles equating to 0.11% of the entire *Bacteroidetes* database. The second strategy found six proteins equating to 0.008% of the database. The false positive rate was therefore estimated to be 1.2% (8/663) and 0.9% (6/663), respectively.

CTD proteins are abundant and extensively modified in representative *Bacteroidetes*

To discern whether LPS-modification is common to all *P. gingivalis* CTD proteins, *P. gingivalis* cells were fractionated and subjected to proteome analysis. The outer membrane vesicle fraction was found to be enriched with CTD proteins and was therefore comprehensively analysed. A total of 29 CTD proteins were identified from LC-MS/MS analyses of 17 gel segments (Supplementary Table 3). Of these, 19 were identified from segments of considerably higher MW than predicted from the protein sequence, consistent with previously reported LPS-modification (Fig 4A). The modification increased the apparent MW of most proteins by approximately 20-50 kDa. The modified form of RgpA (PG2024) observed was the C-terminal A4 adhesin domain, as previously reported \(^{13,19}\), and for the first time, the modified form of the C-terminal A5 adhesin domain of Kgp (PG1844) was found (Fig 4A) as previously predicted \(^{13}\). Of the ten CTD proteins that did not exhibit a significantly increased MW, only PG0026 and PG1604 appeared to be intact, and therefore not extensively modified (Supplementary Table 3). The other eight CTD proteins may be modified but were too big to assess (e.g PG0183), or were proteolytically cleaved into smaller domains or fragments of unknown size (e.g PG1798, PG1427). Most also exhibited low sequence coverage making it difficult to assess the form of the protein identified (Supplementary Table 3). Apart from PG0026 and PG1604, it appeared that all other intact CTD proteins were extensively modified.
To determine whether the presence of abundant, cell-associated, and extensively post-
translationally modified CTD proteins are general features of other *Bacteroidetes* species that contain predicted CTD proteins, the membrane fractions of three predicted CTD-positive species, namely *P. intermedia*, *P. distasonis* and *C. hutchinsonii* (Fig 3) were analysed by SDS-PAGE and LC-MS/MS. In total, 298 proteins were identified from *P. intermedia*, 639 proteins from *P. distasonis* and 660 proteins from *C. hutchinsonii*. The complete identification data for all of the proteins identified are presented in Supplementary Table 3.

The membrane fraction of *P. distasonis* exhibited an SDS-PAGE band at approximately 160 kDa that was considerably stronger than any other band (Fig 4B). The major protein present in this band was BDI_2562, one of the predicted CTD family proteins (Supplementary Table 2) with a Mascot score of 4,624 (Fig 4B). The next five strongest hits (ranked 2-6) for this band were also predicted CTD proteins with Mascot scores ranging between 408 – 606 (Fig 4B). These and other predicted CTD proteins also dominated bands 24, 29 and 30, and were strongly represented in band 23 (Fig 4B). Of the ten identified CTD proteins, eight were observed at elevated MW relative to the estimated MW of the predicted mature sequence (Fig 4B). The PG0026 homolog, BDI_2576 was identified in band 27 in accordance with its predicted full length MW (Fig 4B) suggesting that like PG0026 (see above), it may lack extensive modification. For BDI_3364, BDI_2055 and BDI_2580 that exhibited forms at an equal or lower MW than expected (Fig 4B), in each case, the sequence coverage obtained by the MS analyses indicated that the form of the protein identified corresponded to an unmodified N-terminal fragment.

For *P. intermedia*, of the 298 non-redundant proteins identified from the membrane fraction, 15 were predicted to be CTD proteins by our bioinformatic analyses (Supplementary Table 2). In addition to the 15 predicted CTD proteins, two abundant proteins of elevated MW, namely PI_0610 and PI_1993 were identified (Fig. 4C). These proteins matched to
motif B but not motif D+E in the HMM search, however upon multiple alignment of their CTD sequences with the predicted CTD sequences, it was clear that they did in fact contain the major features of motif D+E (Supplementary Fig. 2), and were therefore considered to be CTD proteins. In total, twelve of the proteins exhibited a substantial increase in MW consistent with their conjugation to a large polymer such as LPS (Fig 4C). In terms of abundance, the identified CTD proteins dominated the high MW region of the gel from 120 kDa and higher, obtaining the top protein rank for each of the four bands in this region (Fig 4C). Although there were no single proteins as abundant as some of CTD proteins in \(P. \) \textit{distasonis}, there were many more CTD proteins identified. The PG1604 homolog, \(\text{PI}_\text{2159} \) was identified in band 15 in accordance with its predicted full length MW indicating that like PG1604 (see above) it was not extensively modified (Fig 4C). The proteomic data for \(\text{PI}_\text{2050} \) and \(\text{PI}_\text{1698} \) indicated extensive N-terminal truncation.

For \(C. \) \textit{hutchinsonii}, 18 of the predicted CTD proteins were identified, and an increase in MW was observed for eight proteins (Fig 4D). Again, the identified CTD proteins were very abundant in the high MW region of the gel, with the putative glycosidases \(\text{CHU1075} \) and \(\text{CHU1107} \) achieving the highest Mascot scores (Fig 4D). Homologs to both PG0026 (\(\text{CHU3237} \)) and PG1604 (\(\text{CHU3302} \)) were identified in bands corresponding to their expected full length MW (Fig 4D). Seven of the predicted CTD proteins identified were annotated as “CHU large proteins”, however eleven additional proteins with this annotation were identified (Supplementary Table 3). Most of these proteins appear to have a C-terminal sequence that is closely related to the CTD. Of particular note was a group of CHU large proteins expressed from mostly adjacent genes (\(\text{CHU}_\text{3435}, \text{CHU}_\text{3437}, \text{CHU}_\text{3439-3441} \) and \(\text{CHU}_\text{3654} \)) that shared an almost identical 87-residue C-terminal sequence. The MW of these proteins ranged from 242-297 kDa, and therefore it could not be easily determined by SDS-PAGE and MS whether they were C-terminally truncated and modified. To determine
whether these C-terminal sequences could be predicted by HMMs, a new HMM was
generated based on the 95 predicted CTDs for *C. hutchinsonii* (Supplementary Figure 3).
Using the new model an additional 76 putative CTD proteins were predicted, including the
CHU large proteins listed above. Comparison of the alignment of these newly predicted CTD
proteins with the original model demonstrates the similarity of the sequences, and reveals
interesting differences in all three motifs (Supplementary Fig. 4). Twelve of the newly
predicted CTD proteins were identified by MS, three of which were elevated in MW
(Supplementary Table 3).

A proteomic analysis was not conducted on *B. thetaiotaomicron* since the only
predicted CTD protein (BT_4596) was only 82 amino acids long and did not have an N-
terminus signal peptide. In contrast, all of the CTD proteins identified above in *P. gingivalis*,
P. distasonis, P. intermedia and *C. hutchinsonii* exhibited predicted N-terminal signal
peptides. The cleavage of five N-terminal signal peptides from *P. distasonis, P. intermedia*
and *C. hutchinsonii* was demonstrated by the identification of mature N-terminal peptides,
four of which contained pyroglutamate at the N-terminus (Supplementary Table 3).

The CTD is cleaved in representative Bacteroidetes: Of all the modified CTD proteins
identified from the four organisms examined, no peptides from the CTD itself were
identified, consistent with the CTD being cleaved in each organism. Strong examples of this
include PG2102 (P59), PG0553 and BDI_2562 where the sequence coverage obtained for the
mature region was 69%, 70%, and 62% respectively, yet no peptides for the CTD region were
identified (Fig 5A-C). Interestingly, in *P. intermedia* the sequence coverage obtained for five
CTD proteins extended to within 50-60 residues from their C-terminus, indicating that the
CTD of *P. intermedia* proteins can be shorter than that found in the other species examined
(Fig 5D). To verify that the CTD was indeed cleaved in each species, the culture fluid
fractions were fractionated by SDS-PAGE and the region less than ~12 kDa analysed for the presence of cleaved CTDs. The culture fluid of *T. forsythia* was also examined. A total of twelve cleaved CTDs were identified from *T. forsythia*, five from *P. distasonis*, six from *C. hutchinsonii* and seven from *P. intermedia* (Supp Table 3). Included in this data set were five semi-tryptic peptides from *T. forsythia*, four from *P. distasonis* and one from *C. hutchinsonii* that reveal the likely CTD cleavage sites (Fig. 6). One of the cleaved CTDs identified from *P. distasonis* was BDI_0323, which was predicted by HMM to contain motif D+E only.

Together the data show that CTD cleavage is a conserved feature of the secretion system.
DISCUSSION

Characterisation of the CTD

Based on our bioinformatic analyses, the C-terminal domain of 30 *P. gingivalis* and *T. forsythia* protein sequences contained a conserved region of about 42 amino acids in length (excluding gaps) consisting of three motifs that were statistically significant according to MEME. Seers et al (2006) divided the CTD into five motifs named Motif A to E, however our findings with GLAM2 indicated that only Motif B, D and E were significantly conserved. The HMM based on these three motifs was successful in predicting large numbers of CTD proteins both from species within the same taxonomic class (*Bacteroidia*) as *P. gingivalis* and *T. forsythia* and also from more distantly related organisms within the *Flavobacterii*, *Cytophagia* and *Sphingobacterii* classes of the *Bacteroidetes* phylum (Fig. 3). In representative organisms, motifs B, D and E were always found together in CTD proteins that were detected to be extensively modified by SDS-PAGE. While the CTD can be predicted using the above motifs that encompass approximately 42 amino acid residues, the CTD was shown to extend 27-36 residues N-terminal of motif B. The total length of the CTD in those CTDs with known or strongly predicted cleavage sites was between 67 and 88 amino acid residues (Fig. 6). However, as shown in Fig 5D, several CTD proteins of *P. intermedia* appear to have CTDs that are very short, with some being less than 50 residues. CTD cleavage of these short CTDs however remains to be demonstrated. The CTD cleavage sites determined (Fig. 6) are similar in that the P1' residue is always small (Ser, Ala, or Gly, or rarely Asp). A pattern can also be seen for the P1 position, but is species dependent. For example Thr is preferred in *P. distasonis*, Val is preferred in *T. forsythia*, while *P. gingivalis* likes a polar or negatively charged residue. Species specific preferences were also detected for positions P2' to P5'. Thus consensus cleavage sites were T/SNExI (*P. distasonis*), V/ANETI (*T. forsythia*), and T/SLADV (*P. gingivalis*).
Prediction of CTD proteins

A Hidden Markov Model was used to profile the chosen CTD proteins. Due to the large variability of the CTD, conventional bioinformatic methods (e.g. BLAST) for finding CTD sequences in other species were not suitable. Using HMM, we were able to capture the information of 30 CTD proteins in a HMM profile which acts like a super sequence having the features of all the 30 CTD proteins. Using this method, many more candidate CTD proteins were found compared to conventional protein homology searching.

In addition to *P. gingivalis*\(^ {20}\), and *T. forsythia*\(^ {25}\), the CTD motif or D5 domain has been reported in *Rhodothermus marinus*\(^ {23}\) *Cytophaga hutchinsonii*\(^ {22}\) and *Flavobacterium psychrophilum*\(^ {9}\).

P. gingivalis contained 23 experimentally identified CTD proteins that were used to build the HMM profile, and an additional 11 CTD proteins predicted by BLAST only\(^ {20}\). The HMM method employed predicted two extra CTD proteins, PG0183 and PG1604, but did not support the prediction of PG0111, PG0290 or PG1035. The 11 *T. forsythia* CTD protein sequences that were used in building the HMM profile were experimentally identified CTD proteins from Veith et al (2009)\(^ {25}\). Veith et al (2009)\(^ {25}\) further identified 15 proteins that might be CTD proteins using multiple BLAST searches. All 15 proteins were also identified using the HMM methods. In addition, another 11 *T. forsythia* CTD proteins were predicted for a total of 37 CTD proteins. In comparison, 25 *T. forsythia* CTD proteins were predicted using a simpler protein motif search\(^ {21}\).

The HMM methods found 95 candidate CTD proteins in *C. hutchinsonii* compared to only 57 found by methods using BlastP\(^ {22}\), clearly demonstrating the power of the HMM to predict proteins from distantly related organisms. However, 19 out of the 57 proteins found by Xie et al (2007)\(^ {22}\) were not found by the HMM. Further HMM modelling using the
initial 95 candidates predicted a further 76 CTD candidates including all but one of the proteins predicted by Xie et al (2007) \(^\text{22}\). In the alignment of Xie et al (2007) \(^\text{22}\) it is apparent that the YPNP motif was important. The YPNP motif is however present in only a few \(P.\) gingivalis and \(T.\) forsythia CTD sequences, and was therefore not used in our model.

Previously, a total of nine proteins were found in \(P.\) distasonis that had C-terminal similarity to each other and to the surface layer proteins of \(T.\) forsythia \(^\text{24}\) in contrast to the 22 predicted here by HMM. Karlsson et al (2005) \(^\text{23}\) described a conserved C-terminal domain in \(Rhodothermus\) marinus proteins, RmX10A (Rm1069) and RmM26A (Rm0016) which they called the D5 domain. Using BLAST, they found another 12 D5-containing proteins. In contrast, the HMM profiles predicted 54 CTD proteins in \(R.\) marinus. Similarly, in \(Flavobacterium\) psychrophilum, 34 proteins containing the CTD have been predicted previously \(^\text{9}\). Our HMM methodology predicted 33 of these proteins and predicted an extra eight CTD proteins. In each case the HMM profile despite being built from proteins of another bacterial class was able to predict more CTD proteins than that found by conventional searching within a specific organism.

CTD proteins were found to be widespread in the \(Bacteroidetes\) phylum being predicted in 87 different species, a number that will continue to grow as the genomes of more \(Bacteroidetes\) species are sequenced. A total of 663 putative CTD proteins were predicted from only 17 fully sequenced CTD-positive species, at an average of 39 different CTD proteins per organism (Fig. 3). A second round of HMM profiling of \(C.\) hutchinsonii predicted a total of 171 CTD proteins suggesting that the numbers presented in Fig. 3 may be an underestimate. The ease of predicting the CTD signal contrasts sharply with the prediction of secretion signals in the substrates of other major secretion systems. In Type II systems, the largest number of substrates reported in a single species is 25 as determined by proteomic analyses of specific mutants \(^\text{48}\). In type III and IV systems, due to the complex nature of the secretion
signals, sophisticated algorithms are needed to predict substrates which ultimately need to be confirmed experimentally.

Characterisation of CTD proteins

The putative functions of the predicted proteins based on their annotation included proteases, glycosidases, adhesins, hemagglutinins and internalins (Supplementary Table 2 & 3). In this study, a comprehensive analysis of *P. gingivalis* OM vesicles demonstrated that extensive modification of CTD proteins, probably with A-LPS was a standard feature with few exceptions. This rule of extensive modification was also true for the CTD proteins identified in *P. distasonis*, *P. intermedia*, and *C. hutchinsonii*, and has been previously demonstrated in *T. forsythia*. Although extensive modification has not yet been definitively demonstrated by elucidating the nature or structure of the linkage between protein and polysaccharide, the cumulative evidence for modification is strong. Some proteins, especially when in high concentration can produce high MW SDS-PAGE bands corresponding to oligomeric forms of the protein. However in such cases the monomer is the most abundant form. The results of this study showed that in general, CTD proteins do not produce bands at their expected monomer MW and therefore it is extremely unlikely that the appearance of abundant higher MW forms is due to oligomerisation. The molecule responsible for the extensive modification in each species may be different, as LPS and other surface polysaccharides are generally species-specific. Immunoblot analysis of the cell envelope fractions of *P. intermedia*, *C. hutchinsonii*, and *P. distasonis* using MAb-1B5 which recognises a Manα1-2Manα1-phosphate epitope of the modified CTD proteins of *P. gingivalis* seemed to weakly cross-react with proteins from *C. hutchinsonii* but not to the other two species (data not shown).
Other conserved features of secretion were the high abundance of the identified CTD proteins, and their high MW. The dominant CTD proteins of each of the species examined, as well as of *T. forsythia* had a predicted MW of at least 110 kDa (Fig 4). In *P. gingivalis*, the most abundant CTD proteins are RgpA and Kgp which each have a precursor MW of above 180 kDa. After proteolytic processing of their individual proteolytic and adhesin domains, they associate non-covalently to form multimeric complexes of up to 660 kDa. In *P. distasonis*, the nine CTD proteins identified had a predicted MW between 90 and 122 kDa and in *C. hutchinsonii*, the two most abundant CTD proteins had a MW of 274 and 135 kDa respectively. These two proteins are annotated as CHU large proteins along with 16 others with a combined average MW of 224 kDa. In *T. forsythia*, 12 of 14 identified CTD proteins had a MW between 114 and 242 kDa. The reason for the predominance of large CTD proteins is uncertain. Potentially, the proteins are large to position their active sites as far as possible from the cell surface to maximise unhindered access to substrate. This would be particularly useful for proteins like adhesins, hemagglutinins and internalins that interact directly with large substrates such as host tissues/cells or in the case of *C. hutchinsonii*, expansive polysaccharides such as cellulose. The abundance, number and size of CTD proteins identified indicates a remarkable secretion system that must be capable of secreting large proteins very efficiently. It is not known yet whether these proteins are secreted in a folded or unfolded state.

The Combined Attachment and Secretion System (CoAtSS) of the Bacteroidetes

At least six major protein secretion pathways have been identified in Gram negative bacteria. Type I, III, IV & VI transport proteins directly from the cytoplasm to the outside of the cell, whereas Type II & V systems secrete proteins from the periplasm. The secretion system of *P. gingivalis* that is used to secrete the gingipains and other CTD proteins has been
recognised as a new type, and given the number IX29-31. We propose that this novel Type IX secretion system be named CoAtSS, recognising that secretion is combined with surface attachment to “coat” the bacterial cell. In each case CoAtSS is characterised by the secretion of substrates containing a universal N-terminal signal peptide directing translocation across the inner membrane and a conserved C-terminal signal (the CTD) that directs translocation across the OM. Recently we demonstrated that CTD cleavage was performed by PG0026 in \textit{P. gingivalis} on the cell surface17. We also concluded that extensive modification of the CTD protein was concomitant with CTD cleavage17. PG0026 is well conserved amongst the \textit{Bacteroidetes} and like the \textit{P. gingivalis} form, its homologs in \textit{T. forsythia}25, \textit{P. distasonis} and \textit{C. hutchinsonii} (Fig 4) were found to be full length and unmodified consistent with its function as the C-terminal signal peptidase on the cell surface. Similar results were found for PG1604 and its homologs suggesting that PG1604 may also be a secreted component of the secretion system. Furthermore, since CTD cleavage and extensive modification were observed in all species analysed (Fig 4, Supplementary Table 3) it would appear that the mechanism of cleavage and modification is conserved and is integral to CoAtSS.

Many CoAtSS components have been demonstrated or predicted to be localised to the OM including LptO16, PorT16,54, Sov55, PorN, PorP, PorK29, PG002617, PG053456 and PorQ since it belongs to the FadL family of outer membrane proteins (data not shown). However, in most secretion systems, only one integral OM protein is required to form the secretion channel, while most of the other proteins required for secretion are located in the inner membrane, periplasm and cytoplasm. Therefore it is likely that in addition to PG0026 and LptO, some of the other CoAtSS components listed above are involved in the attachment stage of this system. Further to our recommendation that this secretion system is named CoAtSS, we propose that CTD proteins that are secreted and attached to the cell surface are named CoAtSS substrate proteins (CSPs), and that the genes encoding components of the
system be named cotA, cotB etc. There is much confusion in the literature of other secretion systems where different names have been adopted for every different species, and therefore a species-neutral name such as cot (pronounced as “coat”) that could be utilised for all Bacteroidetes species appears useful. In summary, the major protein secretion system present in the Bacteroidetes and which we propose to name CoAtSS is characterised by its unique cleavable C-terminal signal, the attachment of its substrates to the cell surface, and its tendency to secrete copious quantities of large substrates.

ACKNOWLEDGEMENTS

This project was supported by the Australian National Health and Medical Research Council Project Grant # 1027812. Ms Rita Paolini is thanked for technical assistance with bacterial culture.
ASSOCIATED CONTENT

Supporting Information: This material is available free of charge via the internet at

http://pubs.acs.org

Supplementary Figure 1. Protein logo representations of the individual motifs present in the last 80 amino acids of the C-terminal region of 30 experimentally identified CTD proteins from Porphyromonas gingivalis and Tannerella forsythia produced by MEME (http://meme.sdsc.edu). (A) Motif B (B) Motif D (C) Motif E.

Supplementary Figure 2. Multiple sequence alignment of the C-terminal region of 54 predicted P. intermedia CTD proteins, PI0610 and PI1993. Alignment was extracted from GLAM2 analysis of the 56 P. intermedia protein sequences. Parameters used for the GLAM2 analysis were –b (maximum number of aligned columns) = 100, -z (minimum number of sequences in the alignment) = 56 and default for the remaining parameters. P. intermedia protein sequences were from the Oralgen Sequence Databases (www.oralgen.lanl.gov).

Supplementary Figure 3. The C. hutchinsonii CTD motif derived from 95 HMM predicted CTD proteins in C. hutchinsonii (using HMM from P. gingivalis and T. forsythia). The motif was discovered using GLAM2 with parameters set to: –b (maximum number of aligned columns) = 100, -z (minimum number of sequences in the alignment) = 95 and default for the remaining parameters. C. hutchinsonii protein sequences were sourced from NCBI Genbank (www.ncbi.nlm.nih.gov/genbank).
Supplementary Figure 4. Multiple sequence alignment of the C-terminal region of 102 \textit{C. hutchinsonii} proteins. The alignment was constructed from 95 predicted CTD proteins and nine \textit{C. hutchinsonii} large proteins (two of which were in the 95 predicted CTD proteins). Alignment was extracted from GLAM2 analysis of the 102 \textit{C. hutchinsonii} protein sequences. Parameters used for the GLAM2 analysis were –b (maximum number of aligned columns) = 100, -z (minimum number of sequences in the alignment) = 102 and default for the remaining parameters. \textit{C. hutchinsonii} protein sequences were sourced from NCBI Genbank (www.ncbi.nlm.nih.gov/genbank).

Supplementary Table 1 - Predicted CTD proteins in Swiss-Prot and TrEMBL databases.

Supplementary Table 2 - Predicted CTD proteins in selected bacteria.

Supplementary Table 3 - Proteomic data.
REFERENCES

(23) Karlsson, E. N.; Hachem, M. A.; Ramchuran, S.; Costa, H.; Holst, O.; Svenningsen, S. F.; Heggvidsson, G. O. The modular xylanase Xyn10A from Rhodothermus marinus is

Figure Legends

Figure 1. Protein logo representations of the motifs present in the C-terminal 80 amino acids of 30 experimentally identified CTD proteins from *Porphyromonas gingivalis* and *Tannerella forsythia* produced by GLAM2 (meme.sdsc.edu). The GLAM2 score for the full alignment was 946.6. The boundaries of Motif B, Motif D and Motif E were defined by MEME analysis (Supplementary Figure 1). The colours of each amino acid were based on the biochemical properties of the amino acids. A, C, F, I, L, V, W & M are most hydrophobic and coloured blue. N, Q, S & T are polar, non-charged, non-aliphatic residues and are coloured green. D & E are acidic and coloured magenta. K & R are positively charged and are coloured red. H is coloured pink, G is coloured orange, P is coloured yellow and Y is coloured turquoise.

Figure 2. Multiple sequence alignment of the CTD motifs from 30 experimentally identified CTD proteins from *Porphyromonas gingivalis* and *Tannerella forsythia*. Labelled are regions of Motif B, Motif D, Motif E and the variable gaps between Motif B and Motif D. Motif logo representation of the multiple sequence alignment is shown in Fig 1. The amount of amino acid conservation in each column can be seen in the bar graph below the alignment.

Figure 3. Distribution of 663 predicted CTD proteins that were detected by HMM methodology in 21 *Bacteroidetes* organisms organized in a phylogenetic tree. The phylogenetic tree was obtained from NCBI taxonomy common tree (www.ncbi.nlm.nih.gov/Taxonomy/CommonTree). Species that were predicted to have true CTD proteins were labelled blue while red represents species that do not have true CTD
proteins. The predicted CTD proteins in the red coloured species were lacking one of the
three motifs or the motifs positions were wrong in the sequences.

Figure 4. Identification of CTD proteins from SDS-PAGE gels. Each gel was excised into
segments as shown. The identified CTD proteins are shown as shaded rectangles at the
correct MW relative to the gel and with their accession number shown above. The shading
reflects the Mascot score with darker shaded proteins being identified with higher scores and
therefore likely to be of higher abundance. The calculated MW of each protein excluding
signal peptide, pro domain (if any) and CTD is shown by a bar. The MW of bars outside the
scale of the gels are provided. The accession numbers of PG0026 and PG1604 homologs are
shaded and are found close to their calculated MW (see text). A) *P. gingivalis* vesicles. Only
CTD proteins elevated in MW are shown. *PG1837 (HagA) and PG1844 (Kgp) have similar
A5 adhesin domains. B) *P. distasonis* membrane fraction. In addition to the gray scale,
Mascot scores are also shown in each rectangle. C) *P. intermedia* membrane fraction. D) *C.
hutchinsonii* membrane fraction

Figure 5. Sequence coverage obtained for selected CTD proteins. Peptides identified from
membrane or vesicle samples are shown in red. The CTD is shown in blue based on the
cleavage site shown in Table 1 or previously reported 17. The signal peptides are shown in
green. A) PG2102 (P59) B) PG0553. C) BDL_2562. D) The C-terminal region of five CTD
proteins identified from *P. intermedia* showing the most C-terminal peptide identified (in red)
demonstrating very short CTDs. The numbers show the number of residues from the C-
terminus.
Figure 6. Clustal W alignments of full length CTDs (from cleavage site to C-terminus).

Identified semi-tryptic peptides are highlighted yellow and mark experimentally determined cleavage sites. The MS data for these peptides is shown in Supplementary Table 3, or in the case of *P. gingivalis* from Glew et al., 2012 & data not shown. A) *P. gingivalis* CTD proteins from Fig 4. B) *T. forsythia* CTD proteins from Veith et al., 2009. C) *P. distasonis* CTD proteins with identified cleaved CTDs and CTD proteins listed in Figure 4. D) Single CTD sequence from *C. hutchinsonii* with identified semitryptic peptide. Due to only one cleavage site being determined in this species, reliable prediction of cleavage sites in other CTD proteins was not possible.
Table 1. Motif elucidation of *Porphyromonas gingivalis* and *Tannerella forsythia* CTD proteins by MEME (meme.sdsc.edu). All three motifs had significant E-Values validating their existence.

<table>
<thead>
<tr>
<th>Motif</th>
<th>Length</th>
<th>E-Value</th>
<th>Regular Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>13</td>
<td>1.9e-56</td>
<td>[VA][ILV][YF][D]MLNG[RK]LV[ARY]A</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>2.4e-04</td>
<td>Y[VT]EK[VIL][I]VI</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
C) *P. distasonis* CTDs

<table>
<thead>
<tr>
<th>Cleavage Site</th>
<th>Motif B</th>
<th>Motif D</th>
<th>Motif E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2723 DDEFVT</td>
<td>SNDEIA--TEGVSIAAAGTVGAAKGKLVITNLGKVIAEVTLSNATI---SVPGAVAVAVGDEE--------AVKAIVK</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2757 KEDMVV</td>
<td>SNDEIA--TEGVVAGNGTVAAGAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKTVK</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2653 DDDMVV</td>
<td>SNDEIA--TEGVVAGNGTVGAAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKVVK</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>2633 GDVMVT</td>
<td>SNDEIA--TEGVVAGNGTVGAAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKVVK</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>3364 TSTTP</td>
<td>SNDEIA--TEGVVAGNGTVGAAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKVVK</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>3485 AAGDPT</td>
<td>SNDEIA--TEGVVAGNGTVGAAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKVVK</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>3313 GTEVPT</td>
<td>SNDEIA--TEGVVAGNGTVGAAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKVVK</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>2580 RASTPT</td>
<td>SNDEIA--TEGVVAGNGTVGAAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKVVK</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>2055 NAPTPV</td>
<td>SNDEIA--TEGVVAGNGTVGAAAGKLVITNLGKVVAATLSDNATI---AVPGIVAVAVGDEE--------AVKVVK</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>

D) *C. hutchinsonii* CTDs

<table>
<thead>
<tr>
<th>Cleavage Site</th>
<th>Motif B</th>
<th>Motif D</th>
<th>Motif E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708 KTGIVT</td>
<td>STTSAANIESITVFPNPAEFTAEVSLSKNNSNVILSDMKGQIAKSAANGSAAFETASLAKMYTVTVDPTAKTELVVK</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.
Author/s:
Veith, PD; Muhammad, NAN; Dashper, SG; Likic, VA; Gorasia, DG; Chen, D; Byrne, SJ; Catmull, DV; Reynolds, EC

Title:
Protein Substrates of a Novel Secretion System Are Numerous in the Bacteroidetes Phylum and Have in Common a Cleavable C-Terminal Secretion Signal, Extensive Post-Translational Modification, and Cell-Surface Attachment

Date:
2013-10-01

Citation:
Veith, PD; Muhammad, NAN; Dashper, SG; Likic, VA; Gorasia, DG; Chen, D; Byrne, SJ; Catmull, DV; Reynolds, EC, Protein Substrates of a Novel Secretion System Are Numerous in the Bacteroidetes Phylum and Have in Common a Cleavable C-Terminal Secretion Signal, Extensive Post-Translational Modification, and Cell-Surface Attachment, JOURNAL OF PROTEOME RESEARCH, 2013, 12 (10), pp. 4449 - 4461

Persistent Link:
http://hdl.handle.net/11343/158070

File Description:
Accepted version