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Abstract

Standard theories in philosophy of language tend to endorse three
claims:

1. Representationalist notions such as truth and reference are semantic
primitives;

2. Sentence level meaning is propositional;

3. The meaning of complex expressions is a function of the meaning
of their constituents.

This thesis develops a semantics for languages with both imperative and
declarative sentences, along with constituent names and predicates, and
which rejects 1. and 2. above. The key features of this semantics are: infer-
entialism, compositionality, and content pluralism. It is inferentialist in
the sense that, contra 1., meanings are treated as inferential roles, deter-
mined by norms of use in speech acts such as asserting and commanding.
This is formalised as a proof-theoretic semantics in a cut-free sequent cal-
culus system. It is compositional in the sense that the inference rules as-
signed to sentences are a function of those assigned to their constituents,
names and predicates. In contrast to 2., it is a kind of content pluralism.
This means that declarative and imperatives sentences express different
sentence level semantic types, rather than just propositions. Despite this,
sameness of word meaning is preserved across these different sentence
types.
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CHAPTER ONE

Pragmatism, Content Pluralism, and
Compositionality

1.1 Introduction

In this chapter we introduce the central positions, and the three argu-
ments which drive the discussion in the following chapters. First, we dis-
cuss the divide in contemporary philosophy of language between prag-
matists and representationalists. Here we present an argument due to
Jasper Liptow (Liptow 2013), that pragmatist theories of meaning must
fail due to their inability to explain the shared propositional content of
different sentences types. In response to this, one might think that there
need be no such shared propositional content. This would be a kind of
content pluralism, rather than Liptow’s content monism. However, we
next present an argument of Michael Dummett’s, purporting to show that
there must be such shared propositional content (Dummett 1991). Dum-
mett’s argument rests on the claim that semantic theories must meet re-
quirements of (1) compositionality, and (2) uniformity of word meaning
across sentence types. The aim of the thesis is to present an inferentialist
semantics for declaratives and imperatives which is a counter-example
to Dummett’s argument. A difficulty in doing so is that many believe
that inferentialist theories of content cannot be compositional. The third
argument introduced in this chapter is one due to Ernest Lepore & Jerry
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Fodor (Lepore and Fodor 2001, 2007) which claims that the holistic na-
ture of inferentialism prevents it from being compositional. We will later
in the thesis show an inferentialist semantics can in fact be compositional.
Lastly, we reconnect the above discussion to briefly give a positive case
for pragmatism (inferentialism) and content pluralism.

1.2 Pragmatism

The divide between pragmatists and representationalists is one of, if not
the most, important contemporary debates in philosophy of language
(MacFarlane 2010; Wanderer 2010). The disagreements concerns the au-
tonomy of linguistic meaning or content (semantics) from language use
(pragmatics), which is respectively denied and affirmed by pragmatists
and representationalists.

Wittgenstein’s work can be used to motivate the distinction between
pragmatist and representationalist theories of meaning. In the Tracta-
tus Wittgenstein provides a paradigmatically representationalist theory
(Wittgenstein 1922). Like many representationalists, he begins with a
metaphysics, in this case of a world made up of states of affairs, and
states of affairs as objects in relation to one another. Wittgenstein then ex-
plains the meaning of names and sentences through their relation to ob-
jects and states of affairs. Sentences express ‘pictures’ of states of affairs
and grasping their meaning involves understanding what is the case if
they are true. In case of names the object which they refer to is their mean-
ing. The sentence pictures or represents the state of affairs, through the
names of which it is composed standing in relations which correspond to
the objects in the state of affairs. While many representationalist theories
of meaning differ in the details, the three notions of reference, truth, and
representation (picturing) all play a similar central role. Language use is
not in the picture.

Wittgenstein famously changed his mind, swapping from representa-
tionalism to pragmatism. Two examples illustrate this. First, a descrip-
tion of a conversation with the Italian economist Piero Sraffa:
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Wittgenstein was insisting that a proposition and that which it
describes must have the same ‘logical form’, the same ‘logical
multiplicity’. Sraffa made a gesture, familiar to Neapolitans as
meaning something like disgust or contempt, of brushing the
underneath of his chin with an outward sweep of the finger-
tips of one hand. And he asked: ‘What is the logical form of
that?’ (Malcolm 1958: p.55-58)

The gesture, while meaningful does not ‘picture’ anything, let alone a
state of affairs. Yet it expresses something, namely disgust, and plays a
role in a social practice. Second, Wittgenstein’s observations about the
relation between language and a game such as chess:

For Frege the alternative was so: Either we are dealing with
ink strokes on paper or these ink strokes are signs for some-
thing, and that which they represent is their meaning. The
game of chess shows precisely that this alternative is not right:
here we are not dealing with the wooden figures, however
the figures don’t represent anything, they have not meaning
in Frege’s sense. There is yet a third option, the signs can be
used as in a game (Waismann and Mcguinness 1967: p.105).1

Here the significance of a chess piece is constituted by its role in the game
rather than by standing for something else. Hence Wittgenstein’s term
‘language game’ and the idea that the meaning of an expression is its role
within such a game.

In moving away from representationalism Wittgenstein also aban-
doned systematic theories of meaning. We need not do so here. His game
analogy can still be used as the basis for a systematic theory. Let us return
to chess. At each move the player is constrained by two things:

1. the rules determining correct movement of each piece; and

2. the state of the game - the distribution of the pieces.

1. My translation.
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Their move will alter 2., bringing the game into a new state. Think of each
move as a function from one state to another. Language games work sim-
ilarly. Speech acts are governed by norms determining their correct use
and how they change the conversation state. They are “pieces” which we
make linguistic “moves” with. The conversation state is determined by
the speech acts made so far, which will require, permit, and prohibit fur-
ther moves. On this model, think of the pragmatic force or significance of
a speech act as a mapping from one conversation state to another (Bran-
dom, 1994, 190). The pragmatist thesis can now be stated more clearly:

Pragmatism in this sense is the view that what attributions
of semantic contentfulness are for is explaining the normative
significance of intentional states such as beliefs and of speech
acts such as assertions. Thus the criteria of adequacy to which
semantic theory’s concept of content must answer are to be set
by the pragmatic theory, which deals with contentful inten-
tional states and the sentences used to express them in speech
acts (Brandom 1994: p.143).

For pragmatists, pragmatics, the theory of force, determines the object
of explanation for the semantic theory. Any semantics which makes no
reference to pragmatics, such as that of the early Wittgenstein, has no
grounds for its own justification.

One helpful feature of the score-keeping model is that it directly
explains the meaning of non-declaratives sentences such as ‘Close the
door’. Non-declaratives challenge representationalism because they ap-
pear not to have truth values and in as much as they “represent” the
world, they do so differently from declaratives. The sentence types
declarative, interrogative and imperative are paradigmatically used for
acts of asserting, asking, and commanding respectively, which systemat-
ically alter the conversation score in different ways. For pragmatists, all
that’s needed is the appropriate kind of content to explain each of their
force. Despite the promise of this kind of explanation, Jasper Liptow
(Liptow 2013) has argued against pragmatist theories of meaning, due
to their tight connection between force and content. Consider the three
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sentences:

1. Marlowe will peel an orange.

2. Marlowe, peel an orange!

3. Will Marlowe peel an orange?2

Liptow claims that any theory must explain the semantic commonality
between these three sentences – most simply that “the meaning of ‘Mar-
lowe’, ‘peel’, and ‘orange’ is the same in all three case”(Liptow 2013: p.7)
But the three are connected in a further way: “In all three cases it is about
the upcoming peeling of an orange by Marlowe”(Liptow 2013: p.7) This
is typically explained by dividing the meaning of each sentence into two
parts (Davidson 1979; McGinn 1977). First, a sentence-radical expressing
the sentence’s propositional content, shared by different sentence types.
The difference between the sentences is located in their ‘mood’, repre-
sented by a mood-operator applied to the sentence-radical. Thus deter-
mining the mood of the sentence as either declarative, imperative or in-
terrogative. Liptow argues that pragmatists will have difficulty finding
this structure in pragmatic significance. Speech acts of asserting, com-
manding, and asking have systematically different force, and the force of
each does not neatly divide into parts expressing propositional content
and mood respectively. Liptow claims that:

Generally speaking, the pragmatic significance of an utterance
does not seem to be divided into parts in a simple way (Lip-
tow 2013: p.7).

If Liptow’s argument is successful, it shows that pragmatists cannot ex-
plain the semantics of mood in terms of a shared sentence-radical cou-
pled with a mood-operator. The clearest alternative is that they express
genuinely different types of content rather than a shared propositional

2. All quotations from Liptow are my own translations.
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(or other) core. This flows naturally from the above account of score-
keeping pragmatics. Different speech act types systematically alter the
conversation score in different ways and so it is no surprise that they
express different content types. We will now examine why so many con-
sider content pluralism a non-starter and show what needs to be done to
overcome this prejudice.

1.3 Content Pluralism

Call a semantic theory content monist if it only has one content type. Most
theories are declarative monist in taking the propositional content typically
expressed by declaratives as this one content type. The alternative to
content monism is content pluralism. Content Pluralists, following Nuel
Belnap, name Declarative Monism the Declarative Fallacy. He sums it up
so:

Strict avoidance of the Declarative Fallacy ... requires
the recognition that interrogatives and imperatives are not
just marked differently from declaratives, but possess fun-
damentally different underlying content structures (Belnap
1990: p.5).

Content pluralists argue that there are many rather than just one content
types. Questions, imperatives and propositions would be equiprimordial
semantic primitives, rather than the latter two being derivative of the for-
mer. Nuel Belnap (Belnap 1990) defended such a view and it has recently
been advocated for imperatives by Rosja Mastop (Mastop 2005, 2011).

Why do Liptow and many others consider content pluralism a non-
starter? One motivation comes from concerns about compositionality,
seen through an argument of Dummett’s against content pluralism. In
his broadly Fregean theory Dummett distinguishes sense (Sinn) and force
(Kraft). Sense is the part of the meaning of an expression ‘which is rele-
vant to the determination of a sentence in which it occurs as true or oth-
erwise’ (Dummett 1991: p.144). This is at least weakly compositional as
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the truth-conditions of sentences are determined by the meanings of their
parts. Dummett is committed to:

C0 The meaning of a complex expression is a function of the meanings of
its constituents and the way they are combined (Szabó 2012: p.64).

Force ‘indicate[s] which type of speech act is being performed’ (Dum-
mett 1991: p.144). The fact that the sentence ‘Is it raining? is in the in-
terrogative mood, according to Dummett, indicates that a question is be-
ing asked. Dummett is committed to sentences that differ in their force-
indicator being able to share the same sense. E.g 1., 2., and 3. are all
meant to express the same proposition:

1. Tim bakes a cake

2. Does Tim bake a cake?

3. Tim, bake a cake!

Because of this the force indicator applies ‘to the sentence as a whole’
(Dummett 1991: p.115) rather than to particular clauses. E.g ‘Come on
time or don’t bother at all!’ has a sense which includes the disjunction
over which the imperative force indicator ranges rather than the force
indicator being within the disjunction.

Dummett’s argument for this position appeals not just to compo-
sitionality but also to the idea that word meaning is uniform across
sentence-types. I quote him at length:

[I]f we do not observe that the content of a command, request,
instruction, or piece of advice can coincide with that of an as-
sertion or sentential question, we shall be perplexed to explain
our compelling intuition that most words have the same sense
in assertoric and imperative contexts: the words ‘simmer’ and
‘twenty’ do not change their sense from those they bore in the
cookery book when the cook reports, ‘I simmered it for twenty
minutes’... They have identical sense: we therefore need a
uniform account of what these senses are. Such an account is
attainable only if we separate the content of an utterance from
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the force attaching to it, regarding words like ‘simmer’, ‘four’,
‘plate’, and so on, as contributing to determining the content
independently of the force (Dummett 1991: p.116).

Dummett’s argument is also based around concerns with compositional-
ity. For him, the contents of words are what they contribute to the con-
tents of wholes (sentences or clauses). The contents of wholes are com-
posed out of that of their parts. Yet if there are many different kinds of
wholes (propositions, questions, prescriptions etc), then that difference
must come from their parts. It is the interaction between compositional-
ity and uniformity of meaning that is doing the work.

Imagine Dummett was concerned about compositionality but not uni-
formity of meaning and wished to give a semantics for the sentences 1, 2,
and 3 above. Unconcerned by uniformity of meaning, Dummett might
say that the single orthographic word ‘bake’ is semantically ‘baked’,
‘bakein’ and ‘bakeim’ – perhaps so for every word. Dummett could tell
a story about how the content of each sentence type is composed out
of the content of words with the corresponding subscript. Alternatively,
imagine he rejected compositionality but maintained uniformity of word
meaning. Then he would not be committed to the meanings of wholes
being entirely made up of those of their parts. Words appearing in differ-
ent sentence types could maintain sameness of meaning across types, be-
cause the different sentence level meanings could come from somewhere
other than their parts. Thus it is only because uniformity of meaning and
compositionality are combined that Dummett is so motivated to adopt
Declarative Monism.

A similar point stands by considering truth-conditional semantics for
logical connectives. Suppose in a conjunction, one of its conjuncts is a
non-declarative and therefore not truth-evaluable. E.g, ‘Tim is always
late & don’t worry about offending him!’. If this semantics is composi-
tional, there must be some common feature of both conjuncts which can
feature in the semantics of ‘&’. Dummett’s answer is that they both share
(different) truth-evaluable senses. Again, the combination of uniformity
of meaning and compositionality motivates declarative monism.
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1.4 Compositionality

If correct, Dummett’s argument shows that content pluralism will have
difficulty accommodating both uniformity of word meaning and compo-
sitionality. Why think though, that Dummett is right in assuming these
principles? Wittgenstein in the Philosophical Investigations (Wittgenstein
2010) is famously unsystematic and one might be tempted to follow him
and reject compositionality. I will briefly explain why we ought to take
compositionality seriously. A relatively “theory-neutral” way of stating
the principle of compositionality is the earlier:

C0 The meaning of a complex expression is a function of the meanings of
its constituents and the way they are combined (Szabó 2012: p.64).

Why think that something like C0 holds? The most common argument
concerns how we understand expressions. Zoltán Gendler Szabó sums
this up so:

the meanings of complexes must be determined by the mean-
ings of their constituents and the way they are combined,
since we in fact understand them by understanding their parts
and their structure (Szabó 2012: p.14).

The idea is that we understand complex expressions through first under-
standing their parts and then combining our grasp of the meanings of the
parts into that of the complex. That we understand complex expressions
in this manner is often supported by two further arguments. First, the
argument from productivity. This begins by observing that “competent
speakers can understand complex expressions they never encountered
before” (Szabó 2012: p.15). The best explanation, so the argument goes,
is to posit the principle of compositionality. Speakers understand new
complex expressions because they already understand the constituents
and then use this to compute the meaning of the complex. The second
argument is that from systematicity and is also “an argument to the best
explanation” (Szabó 2012: p.17). The initial claim is that given a number
of complex expressions, e.g ‘red car’, ‘long hair’, ‘cut grass’, a speaker
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who understands these can also understand “all other complex expres-
sions that can be built up from the[ir] constituents... using syntactic rules
employed in building up their structures” (Szabó 2012: p.17). As with
productivity, compositionality is appealed to as the best explanation. The
speaker understands the initial complex expressions through their parts
and means of combination, which are recombined in the new expres-
sions. It is open as to what extent it really is compositionality which
best explains productivity and systematicity, and what other commit-
ments are required to do so. Because of this, Szabó suggest that “What
really does the job of constraining what lexical meanings might be... is
not compositionality but rather whatever best explains productivity and
systematicity” (Szabó 2004: p.343). The constraints required for this may
be significantly stronger than just compositionality.

So far, the discussion has focused on the question of pragmatism and
its viability. In contrasting pragmatism and its rival, representational-
ism, there has been some conflation between theories of the semantics-
pragmatics relation and those of content. Semantic pragmatism here is
strictly a thesis about the relationship between semantics and pragmat-
ics, namely that the former is not autonomous from the latter. Represen-
tationalism, as a rival to pragmatism, is the assertion of the autonomy
of semantics from pragmatics, whereas as a theory of content it is one
that appeals to representational vocabulary such as truth and reference
as its semantic primitives. Nothing in principle prevents one from be-
ing a representationalist about content and also a semantic pragmatist
– Davidson may be an example of this (MacFarlane 2010). Representa-
tionalism about content is contrasted with inferential role semantics, of
which Brandom’s inferentialism is an example. This particular theory
of content fits well with the scorekeeping pragmatics introduced earlier
on the basis of the chess analogy. There the pragmatic force of a speech
act was the way it affected the conversation state. Inferentialists think of
the content of a sentence as its inferential role, rather than the conditions
under which it is true. The inferential roles of sentences map on to the
conventional force of their utterances, thus meeting the pragmatist crite-
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ria for a semantic theory. In what follows, the theory of content will be an
inferentialist rather than representationalist one. It should not be thought
though, that pragmatism per se requires this. Inferentialism rather follows
from the scorekeeping pragmatics. Compositionality however presents a
problem for inferentialists, and any other holistic semantics where the
meaning of an expression is constituted by its relations to other expres-
sions. As argued by Jerry Fodor & Ernest Lepore (Lepore and Fodor 2001,
2007), holism appears to violate compositionality because the meanings
of complex expression may depend not only on the meanings of their
constituents but also on the meanings of other expressions which are se-
mantically related to these constituents. So, despite C0 being a “weak”
or “neutral” statement, it is strong enough to rule out some semantics,
merely by attributing a function from the meanings of constituents to
that of complexes (the semantic subformula property). C0 requires atomism
in this sense.

Brandom’s incompatibility semantics for a directly modal logic (Bran-
dom 2008) is a concrete example of a semantics that does not meet C0.
While the details don’t concern us, what matters is that the semantics is
‘projectable and systematic, in that semantic values are determined for
all syntactically admissible compounds, of arbitrary degrees of complex-
ity’ (Brandom 2008: p.135). E.g, the semantic value of ‘¬p’ is determined
by p and other expressions of the same logical complexity. Brandom’s se-
mantics however does not have the semantic subformula property (and
is therefore holistic) because it is both the meaning of p and other expres-
sions of the same complexity which determine the meaning of ‘¬p’. This
vindicates Szabó’s above conclusion that what really matters is whatever
can explain productivity (projectability) and systematicity. A semantics
needn’t be compositional in an atomistic sense in order to do so. Bran-
dom sums this up by saying that:

What semantic projectability, systematicity, and learnability-in-
principle require, then, is not semantic atomism and composi-
tionality, but semantic recursiveness with respect to complex-
ity... Having compound expressions exhibit the semantic sub-
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formula property is only one way of securing recursiveness.
The standard arguments for semantic compositionality are
fallacious (Brandom 2010: p.336).

This response removes worries that inferentialist semantics, favoured by
many pragmatists, fail on the grounds of compositionality. A semantics
may not be compositional but still recursive. Semantic recursiveness is
also all that is required for Dummett’s earlier argument. A recursive but
non-compositional semantics still faces the problem of words with ap-
parently uniform meanings combining in such a way to project different
wholes. The problem has not disappeared but inferentialist-pragmatists
can in principle address it rather than being ruled out by requirements of
compositionality.

1.5 Conclusion

1.5.1 Reconnecting Pragmatism, Pluralism, and
Compositionality

We can draw on compositionality (“recursiveness”) to give positive ar-
guments for content pluralism, through the difference between force and
content. Take a declarative sentence ‘A’. When uttered freestanding, the
act conventionally has the force of an assertion. However, when em-
bedded in the conditional ‘A � B’, the utterance is not an assertion of
‘A’. Traditionally content is identified with that which is preserved un-
der embedding. This can be used against varieties of the mood-setter
sentence-radical theory. Suppose for the following sentences

1. Who shot Mr Burns?

2. Shoot Mr Burns!

3. Homer didn’t shoot Mr Burns.

the content is in each case a proposition whereas being mooded is only
part of the force. If so, then when non-declaratives are embedded what
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they contribute as a constituent ought to be propositional. The following
are prima facie counterexamples:

1. I wonder who shot Mr Burns?

2. If Homer didn’t shoot Mr Burns, then who did?

3. Tell me who shot Mr Burns!

4. If he tries to steal Bobo, then shoot Mr Burns!

The embedded interrogative and imperative appear to contribute some-
thing non-truthy. Moreover, the interrogative can be embedded within
the imperative. It is open to propositional theories to explain away these
cases but they prima facie favour content pluralist accounts of meaning.

Compositionality also forms part of a negative argument against
those who think that the mood-setter forms part of the content. David
Lewis gives us a good summary of a representationalist and non-
pragmatist theory:

In order to say what a meaning is, we may first ask what a
meaning does, and then find something that does that.
A meaning for a sentence is something that determines the
conditions under which the sentence is true or false. It de-
termines the truth-value of the sentence in various possible
states of affairs, at various times, at various places, for vari-
ous speakers, and so on. (Lewis 1970: p.54)

Lewis intends this to cover all sentence types, not only declaratives, and
treats non-declaratives as paraphrases of performative declaratives. E.g
’Shut the door!’ paraphrases ‘I hereby command you to shut the door!’.
Though odd-sounding, it has an important advantage of over the mood-
setter theory. For it places the semantics of non-declaratives within a gen-
eral theory of meaning, one where meaning determines truth-conditions.

Where the mood setter is understood as merely indicating conven-
tional force (Dummett (1991)) or is itself truth-conditional (Davidson
(1979)) it stays consistent with the above Lewis quote. Where it fails



14 PRAGMATISM, CONTENT PLURALISM, AND COMPOSITIONALITY §1.5

is that ‘mood’ appears to embed (contra Dummett) and moreover this
embedded content appears to be non-propositional (contra Davidson).
Some have proposed new semantic predicates such as ‘answered’ and
‘obeyed’ to go alongside ‘truth’ subsuming all under a general notion
such as ‘fulfilment’ (e.g Boisvert and Ludwig (2006); Ludwig (1997)).
There are two worries with this sort of theory. First, it may have strayed
into pragmatist territory by tying the notion of content to how the ex-
pressions are used. Being answered, obeyed etc are aspects of use, which
non-pragmatists deny are tied to content. Second, they may collapse into
truth-conditions, as pointed out by Ernest Lepore & Sarah-Jane Leslie
(Lepore and Leslie 2001). Each non-declarative is fulfilment-wise equiv-
alent to some declarative which states the former’s fulfilment conditions.
Thus making all sentence types have the same content – all content can
then be subsumed under propositional content. However the earlier ex-
amples of embedding point to the ‘mood’ as part of the content. So we
are stuck at an impasse.

It may appear that inferentialists face a similar problem. They are,
according to Belnap:

also miserably guilty of the Declarative Fallacy, for, to a first
approximation, it is only declaratives that can figure in infer-
ence, and we are thereby given no purchase on interrogatives
or imperatives (Belnap 1990: p.8).

Brandom is happily guilty of this. He argues that in pragmatics assertion
is the fundamental speech act, and that in semantics it is propositions,
understood as inferential roles. Other speech acts and possible contents
are parasitic:

It is only because some performances function as assertions
that others deserve to be distinguished as speech acts. The class
of questions, for instance, is recognizable in virtue of its rela-
tion to possible answers, and offering an answer is making
an assertion... Orders or commands are not just performances
that alter the boundaries of what is permissable or obligatory.
They are performances that do so specifically by saying or de-
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scribing what is and is not appropriate, and this sort of making
explicit is parasitic on claiming (Brandom 1994: 172).

It is really only on first approximation however that inferentialism is a
dead end for non-declaratives. The notion of inference used by Brandom
piggybacks on the scorekeeping relations in the pragmatics. Given this
the ‘inferential’ relations between non-declaratives, if we want to call it
‘inference’, will follow from the relevant scorekeeping relations in their
pragmatics. The notion of ‘inference’ in this sense is far easier to gener-
alise than that of truth. The remainder of the thesis will do just this.

1.5.2 Where to now?

Pragmatism

Compositionality Pluralism

LiptowFodor & Lepore

Dumett

We’ve gotten here by looking at three ideas - pragmatism, pluralism,
and the principle of compositionality - each connected by an argument.
We began by looking at pragmatism, the idea that

what attributions of semantic contentfulness are for is ex-
plaining the normative significance of intentional states such
as beliefs and of speech acts such as assertions (Brandom
1994: p.143).

We then examined part of an argument of Jasper Liptow’s that a prag-
matism theory of meaning could not account for a semantics of mood
where the meaning of a sentence was divided into a propositional core
and mood-setter. Rather than seeing this as a blow for pragmatism we
suggested that a more natural account of mood was one where different
sentence types shared no propositional core. We called this view content
pluralism. Next, we asked why so many philosophers have considered
content pluralism a non-starter. After looking at an argument of Michael
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Dummett’s we saw that one reason was its apparent inability to meet
requirements of uniformity of meaning and compositionality. We then ex-
amined the principle of compositionality more closely, covering its use in
explaining productivity and systematicity. We took on Szabó’s suggestion
that rather than compositionality per se it was the need to explain these
two phenomena that puts constraints on our semantic theories. This
posed an apparent problem for our original commitment to pragmatism,
as Jerry Fodor & Ernest Lepore have argued that a holistic theory of con-
tent required by our brand of pragmatism could not be compositional,
and thus explain neither productivity nor systematicity. We then drew
on the work of Robert Brandom to show that it is possible for a semantics
to be non-compositional but still recursive and thus projectable [produc-
tive] and systematic. This showed that Dummett’s argument poses no in
principle problem for a semantics which is both pluralist and pragmatist.
If that is successful we would be then in a position to respond to Liptow
by showing that pragmatists have a viable alternative explanation of the
semantics of mood. The remaining chapters will follow through on these
commitments.



CHAPTER TWO

Atomic and Subatomic Systems

2.1 Introduction

In the previous chapter three arguments were introduced which moti-
vate the topic of the thesis. The first was Liptow’s argument that se-
mantic pragmatists cannot accommodate different sentence types which
share the same propositional content. The second was Dummett’s argu-
ment that all sentence level meaning must be propositional, and the third
was Fodor & Lepore’s argument that inferentialists cannot accommodate
compositionality and are thus bound to fail. The thesis will respond to
these arguments by setting out a theory where meaning is dependent
on use, content in understood in terms of inferential roles, and sentence
level meaning is plural. This will be done in reverse order, using the re-
sponse to Fodor & Lepore to answer Dummett, and then the response
to Dummett to answer Liptow. This chapter will respond to Fodor &
Lepore by setting out a compositional, inferentialist semantics for atomic
sentences, names and predicates. This semantics results in an analogous
structure to a simple extensional semantics in the model-theoretic tradi-
tion, but which uses proof-theory as its basis. To do so I first sketch Greg
Restall’s bilateralist interpretation of the multiple conclusion sequent cal-
culus. This declarative semantics for logic connectives will be expanded
on in the thesis, first in this chapter to atomics and their constituents and
then in the next chapter to imperatives. Second, I introduce Brandom’s
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notion of material inference and show how it can be formalised in an
atomic system: a proof system for atomic sentences. The system is “well-
behaved” and allows for cut-elimination. Third, I use Brandom’s distinc-
tion between names and predicates in terms of their inferential roles to
extend the previous proof system to accommodate subsententials. This
subatomic system allows for a compositional proof-theoretic semantics
analogous to the standard model-theoretic one, but where classes of mod-
els are derivative of the basic inference rules. Lastly, I show how this se-
mantics responds to Fodor & Lepore’s objection. On a narrow notion of
meaning it is compositional and on a broader one is still recursive, in the
sense discussed in Section 1.4 of the previous chapter.

2.2 Bilateralism

2.2.1 Assertion, Denial, and the Sequent Calculus

In this section I briefly sketch a bilateralist interpretation of the classi-
cal multiple conclusion sequent calculus, drawing on the work of Greg
Restall (Restall 2005b, 2009, 2013). Later in this chapter, it is extended
to atomic declarative sentences and their constituents, predicates and
names, and in the last two chapters, to imperatives and their constituents.

Bilateralism is a kind of semantic pragmatism – the claim that mean-
ing (semantics) depend on use (pragmatics), where the point of attribut-
ing meanings is to explain (or prescribe) aspects of use. Exemplifying this
position Brandom says:

[I]t is pointless to attribute semantic structure or content that
does no pragmatic explanatory work. It is only insofar as it
is appealed to in explaining the circumstances under which
judgments and inferences are properly made and the proper
consequences of doing so that something associated by the
theorist with interpreted states or expressions qualifies as a
semantic interpretant, or deserves to be called a theoretical
concept of content (Brandom 1994: p.144).
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Importantly, this a normative rather than dispositional pragmatism (e.g
Horwich (1998)) – meaning is determined by norms of correct use not
patterns of actual use.

Bilateralism is an answer to the question ‘which norms of use?’. Uni-
lateralists are those, such as Brandom and Dummett (Brandom 1994;
Dummett 1991), who answer that the single speech act of assertion de-
termines meaning. There are many kinds of bilateralism (Price 1990; Re-
stall 2005b; Rumfitt 2000). What is shared between them is the view that
norms of both assertion and denial determine meaning, where denials of
p are not simply assertions of ¬p. Here I adopt Restall’s take on bilateral-
ism as an interpretation of the multiple conclusion sequent calculus. He
give three main motivations for bilateralism:

1. Many speakers appear to (developmentally) be able to deny propo-
sitions, before being able to assert negations;

2. Assertion and denial provides a framework for both classical and
some non-classical logics. Classical logicians treat the assertion [de-
nial] of both a proposition and its negation as incoherent. In con-
trast, dialethists allow the coherent assertion of both a proposition
and its negation, whereas supervaluationists treat the denial of both
as a coherent option; and

3. It shows how consequence relations place cognitive constraints on
us. Asserting p does not require one to assert all of its logical con-
sequences nor actively form beliefs about them. Instead of focusing
on what’s prescribed (ruled in), bilateralism focuses on what’s pro-
scribed (ruled out) by performing a speech act. Asserting p rules
out denying p’s consequences. Doing so is “out of bounds”. Sim-
ilarly, denying p rules out asserting (at least one of) p’s possible
antecedents (Restall 2005b).

To simplify talk about interactions between assertions and denials we
introduce the notion of a declarative position

X : Y
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made up of the possibly empty multisets3 of sentences asserted X and
denied Y. These positions are bound by norms of coherence and inco-
herence. Incoherent, or “out of bounds”, positions and coherent, or “in
bounds”, positions are written respectively as

X ` Y X 0 Y

We write
X, p : Y, q

for the position where the single sentence p is added to the speaker’s
assertions and the single sentence q to the speaker’s denials.

This provides a natural reading of the classical multiple conclusion
sequent calculus. Below are the standard rules for the logical connectives

X, A ` Y X, B ` Y
_LX, A _ B ` Y

X ` A, Y
_R1X ` A _ B, Y

X ` B, Y
_R2X ` A _ B, Y

X, A ` Y
^L1X, A ^ B ` Y

X, B ` Y
^L2X, A ^ B ` Y

X ` A, Y X ` B, Y
_RX ` A ^ B, Y

X ` A, Y
¬LX,¬A ` Y

X, A ` Y
¬RX ` ¬A, Y

X ` A, Y X, B ` Y
�LX, A � B ` Y

X, A ` B, Y
�RX ` A � B, Y

Read the turnstile as recording that it is incoherent to both assert all to
the left of the turnstile and deny all to the right. The inference rules can
be read top-to-bottom or bottom-to-top. Top-to-bottom they say that if
the position(s) above the line are out of bounds then so is the one be-
low the line. Bottom-to-top they say that if the position below the line
is coherent then at least one of the positions above the line is also. The

3. A multiset is simply like a set but which tracks the number of instances of a member.
E.g {a,b,c} and {a,a,b,c} would be the same sets but different multisets. Order however
doesn’t matter. {a,b,c} and {b,c,a} are the same multisets.
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sequent calculus has two types of rules, left [L] and right [R]. Top-to-
bottom [bottom-to-top] the left rules say when it is incoherent [coherent]
to assert a logically complex sentence, whereas the right rules govern co-
herence and incoherence of denials. E.g, ¬L says that if is incoherent to
deny A, in the context of asserting all of X and denying all of Y, then it
is also incoherent to assert ¬A in the same context. Read the other way,
it says that if is coherent to assert ¬A in some context, then it is coher-
ent to deny A also. The two negation rules have the effect of making the
assertion [denial] of a negation and the denial [assertion] of its negand
have equivalent force. A “gappy” or “glutty” theory will modify these to
remove one or both of these equivalences.4

Alongside rules governing specific connectives, there are also the fol-
lowing structural rules, governing assertions and denials in general

Idp ` p
X ` A, Y X, A ` Y

CutX ` Y

X ` Y
KRX ` A, Y

X ` Y
KLX, A ` Y

X ` A, A, Y
WRX ` A, Y

X, A, A ` Y
WLX, A ` Y

Id (for identity) is the only axiom and records the basic incoherency of
asserting and denying the same thing. Cut is a kind of transitivity and is
read top-to-bottom as saying that if it is incoherent to deny A (along with
asserting X and denying Y) and also incoherent to assert A (along with
asserting X and denying Y) then it is incoherent to jointly assert X and
deny Y. Bottom-to-top it tells us that if asserting all of X and denying all
of Y is coherent, then either asserting or denying A is coherent. Weaken-
ing (K) and contraction (W) will only play a minor role in the following
and respectively record monotonicity and idempotency.5

4. The logics K3 (Kleene 1952) and LP (Priest 1979) are examples of gappy and glutty
theories respectively.
5. Sequent systems also sometimes include a rule of permutation (exchange) which
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A derivation in the sequent calculus is a tree of sequents whose leaves
are all instances of [Id] and whose transitions are all either an instance of
one of the structural or connective rules (Restall 2009: p.243). For exam-
ple,

IdA ` A
¬LA,¬A `

^L1A,¬A ^ ¬B `

IdB ` B
¬LB,¬B `

^L1B,¬A ^ ¬B `
_L¬A ^ ¬B,¬A ^ ¬B, A _ B `

WL¬A ^ ¬B, A _ B `
¬R¬A ^ ¬B ` ¬(A _ B)

This derivation shows that the clash between the complex sentences
¬A ^ ¬B and ¬(A _ B) is composed out of (or decomposes into) sim-
ple clashes between asserting and denying the same thing (Id). In this
way, it is a compositional semantics because the inferential roles govern-
ing complex sentences are a function of those of their constituents and
the way they combine.

2.2.2 Limit Positions and Models

We have so far identified semantic content with inferential roles rather
than traditional model theoretic extensions. However, given inferential
roles for sentences, the latter can be recovered. We do so by thinking of
our coherent positions as models.

Definition [POSITION]: Given a collection of sentences, with
a consequent relation ` satisfying the rules of the classical se-
quent calculus, a pair [X : Y] of sets of sentences is a position
when X 0 Y (Restall 2009: p.,246).6

Rather than a property of the sentences themselves, being asserted or

allows one to change the order of premises or conclusions. We are however working
with multisets which make order irrelevant. See previous footnote.
6. For simplicity we here use sets rather than multisets. Take a multiset with multiple
instance of some formula(s). Then apply contraction until there is only one.
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denied is a function of being to the left or right in our representation of
positions.

Definition: [LEFT AND RIGHT, IN A POSITION]: The LEFT
COMPONENT of the position [X : Y] is X. The RIGHT COM-
PONENT is Y. These are the formulas explicitly on the left
and in the right, respectively. We say that A is to TO THE
LEFT of [X : Y] if and only if X ` A, Y. A is to THE RIGHT
OF [X : Y] if and only if X, A ` Y (Restall 2009: p.,247).

As a conversation continues, its participants make further assertions and
denials. When the new position is consistent with the old, we call this an
extension of the old position:

DEFINITION [EXTENSION OF POSITIONS]: [X0 : Y0] ex-
tends [X : Y] if every formula in X is in X0, and every formula
in Y is in Y0 (Restall 2009: p.,248).

The more opinionated someone becomes, the more populated their po-
sition is on the left and the right. However, assuming their language is
recursive they can never explicitly take a stance on every topic. “Taking a
stance on everything” is a kind of maximally opinionated limit – an ide-
alisation which can be approached but never reached. Each of these is a
limit position:

DEFINITION [LIMIT POSITIONS]: Given a language L, a
LIMIT POSITION is a pair [X : Y] of sets of sentences such
that (a) whenever X ⇢ X and Y ⇢ Y are finite sets of formulas,
[X : Y] is a position, and (b) X[Y = L (Restall 2009: p.,249).

Limit positions act as Boolean evaluations for a language, with every sen-
tence on the left assigned ‘true’ and every on the right assigned ‘false’.
These assignments are compositional because whether a complex for-
mula is on the left or right depends on whether its subformulae are on
the left or right in one-to-one correspondence with truth-functional con-
nectives:
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FACT 5: For any limit position P (i) A ^ B is to the left of P iff
A and B are both to the left of P. (i’) A ^ B is to the right of P
iff either A or B is to the right of B. (ii) A _ B is to the right of
P iff A and B are both to the right of P. (ii’) A _ B is to the left
of P iff either A or B are to the left of P. (iii) ¬A is to the left of
P iff A is to the right of P. (iv) ¬A is to the right of P iff A is to
the left of P. (v) A is to the left of P iff A is not to the right of
P (Restall 2009: p.,249).

This gives us a notion of ‘truth (or falsity) in a model’ as ‘being to the left
(or the right)’ of a limit position and propositional content as ‘possible
worlds at which it is true’ as ‘limit positions in which it is to the left’,
for those who wish to define them so. These model theoretic (“repre-
sentational”) notions here are idealisations, abstractions away from our
concrete norms governing our assertions and denials. Later in Section
2.3.5 we will show how this same limit position approach can define cor-
responding classes of models for atomics, given basic inference rules, and
the same for names and predicates in 2.4.4.

2.3 Material Inference and Atomic Systems

So far, we have focused on an inferentialist semantics for logical vocab-
ulary, where the meanings of logical constants are their inferential roles,
represented by rules in a proof system. What though, about non-logical
expressions and logically simple sentences? This section shows how a
notion of material rather than formal logical inference can accommodate
these cases and be appropriately represented in a proof system.

2.3.1 Material Inference

Here we introduce the notion of material inference, taken from (Brandom
2000: Chapter 1, Section 5), which constitutes the meanings of non-logical
expressions. We do so on via analogy with a notion of material rather
than formal truth, showing that representationalists must also make a
formal/material distinction.
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Suppose you have a representationalist semantics for logical vocabu-
lary. E.g

• v(A ^ B) = 1 iff v(A) = 1 and v(B) = 1.

• v(A _ B) = 1 iff v(A) = 1 or v(B) = 1.

What though, do the atomic sentences substituted for A and B mean?
What are their truth conditions? Their semantics requires not just formal
truth conditions, i.e truth conditions for logical vocabulary, but also mate-
rial truth. This mustn’t equate ‘truth’ with something like ‘logical truth’.
For ‘Water is H2O’ might (controversially!) be a semantic truth but is
not one of logic. This often involves a story about how the meanings of
atomic sentences are composed from those of their parts. For now how-
ever, we restrict ourselves to a merely propositional language with the
three constants:

• p: Rumo is a dog

• q: Rumos is a cat

• r: Rumo is a mammal

and the following truth-conditions:

• v(r) = 1 iff v(p) = 1 or v(q) = 1.

• v(p) = 1 iff v(r) = 1 and v(q) = 0.

• v(q) = 1 iff v(r) = 1 and v(p) = 0.

We might have done this by stating the following logically complex ex-
pressions as axioms:

• v(r ⌘ (p _ q)) = 1.

• v(p ⌘ (r ^ ¬q)) = 1.

• v(q ⌘ (r ^ ¬p)) = 1.
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This, however, violates treating the meanings of complexes as a function
of constituents. The earlier truth conditions for p, q, and r ground the
truth of the purported axioms and the latter are rather theorems of our
propositional language extended with logical vocabulary. So a represen-
tationalist semantics also requires a notion of non-logical or material truth
and a means of representing such truth conditions.

Inferentialists are in an analogous position regarding inference rather
than truth. Suppose our notion of ‘good inference’ were assimilated to
that of ‘logically valid inference’. E.g

If it’s tasty, then I’ll eat it. It’s tasty.
I’ll eat it.

This has the logical form

If A, then B A
B

That the conclusion follows from the premises need have nothing to do
with the meanings of A and B. Just as with logical truth for representa-
tionalists, logical inference cannot be the basis of an inferentialist seman-
tics for non-logical expressions. Rather than just those that are good in
virtue of their logical form, we need to also attend to those that Brandom
calls ‘material inferences’. These are inferences that are good in virtue of
their conceptual contents or non-logical vocabulary. E.g

Paula is a platypus
Paula is a monotreme

This isn’t logically valid as its sequent calculus logical form is

X ` A, Y
X ` B, Y

X, B ` Y
X, A ` Y

Rather it’s good in virtue of the contents of ‘platypus’ and ‘monotreme’.7

It is these conceptual contents constituted by material inferential rela-
tions which can be made explicit by logical vocabulary. In this case by the

7. For the interested non-Antipodean, monotremes are mammals which lay eggs. There
are two kinds: platypus and echidna.
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quantified conditional ‘8xPx � Mx’.8 Logically valid inferences can be
understood as those materially good inferences which remain good when
holding logical vocabulary fixed and substituting and arbitrarily substi-
tuting the non-logical vocabulary. They are good in virtue of the contents
of logical expressions (Brandom 1994: p.104)(Brandom 2000: p.55).

2.3.2 Atomic Systems

Here we formalise Brandom’s notion of material inference between
atomic sentences by extending some of Dag Prawitz’s work on atomic
systems and proof-theoretic validity.

Prawitz defines proof-theoretic validity using the notion of deduc-
tions over arbitrary atomic systems (Prawitz 1970, 1971, 1973), analo-
gous to models in model-theoretic semantics (Wieckowski 2011: p.220).9

Prawitz defines an atomic system as:

a pair (L, R) where L is a set of descriptive constants including
those that determine the language we are dealing with and R
is a set of inference rules for inferences from atomic formulas
to atomic formulas in the language L (Prawitz 1973: p.231).

We now build on Prawitz’s notion of an atomic system within the con-
text of the multiple conclusion sequent calculus. We define an Atomic
System as a triple of a language [L], a set of inference rules [R], and an
assignment function [v]: {L, R, v}. We stipulate that [L] is made up only of
atomic constants. Restriction will be lifted later in the chapter to include
those with subsentential vocabulary. As in Prawitz’s case, [R] includes

8. Brandom also makes the point that many materially valid inferences are non-
monotonic. For example, that from ‘It is raining’ to ‘I should bring my umbrella’ (Bran-
dom 2000: p.87). This will not play a major role in the following discussion. The infer-
ential relations considered here are closer to his incompatibility entailments focused on
in (Brandom 2008).
9. In (Prawitz 1973), Prawitz refers to these as ‘atomic bases’. I have adopted the term
‘atomic system’ from (Wieckowski 2011: p.220), who provides a critical explanation of
Prawitz’s work and a very different take on the meanings of atomics and their con-
stituents than the one taken here.
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inference rules linking atomic formula. Rather than restricting the rules
in [R] to behave appropriately, restrictions on v are introduced through-
out the chapter.

2.3.3 Local Soundness and Completeness

As it stands, there are no restraints on the rules assigned by v, giving no
guarantee that our atomic systems will be well-behaved (e.g. consistent).
In proof-theoretic semantics a common restriction on the inference rules
assigned to logical expressions is that they be harmonious. Harmony is
often understood in terms of not being able to infer anything more from
the introduction of an expression than from the grounds for its introduc-
tion. A further requirement, sometimes called stability, is that we can
infer no less from the introduction of a logically complex sentence than
from the grounds for its introduction.10 The take on these requirements
adopted here is due to Pfenning & Davies, which they call local sound-
ness & completeness [LSC] (Pfenning and Davies 2001), with soundness
corresponding to harmony and completeness to stability. In a natural de-
duction system, the elimination rules for a connective are sound relative
to the introduction rules when a derivation involving the application of
the introduction and then the elimination rules can be reduced to one
involving neither. E.g. conjunction

····· p1

A

····· p2

B
^IA ^ B

^E1A =)

····· p1

A

····· p1

A

····· p2

B
^IA ^ B

^E2B =)

····· p2

B

The elimination rules are complete relative to the introduction rules when
we can expand a derivation of a complex sentence into one where we first

10. Dummett (1991) provides a more philosophical discussion of harmony and stability.
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apply the elimination and then the introduction rules. Conjunction again:

····· p1

A ^ B =)

····· p1

A ^ B
^E1A

····· p1

A ^ B
^E2B

^IA ^ B

LSC as an approach to harmony and stability has two advantages which
should be emphasised. First, it fits well with bilateralism because it need
not prioritise one kind of rule over the other. Although we gave prior-
ity to the introduction rules above, we could have just as easily taken
the elimination rules as basic. Second, it fits well with inference rules
for atomics and subsententials because, as we shall see in the next sec-
tion, each of these rules is just as much an introduction as an elimination
rule. This contrasts with some other theories (e.g (Hallnäs and Schroeder-
Heister 1991; Schroeder-Heister 1992)), which prioritise one of the intro-
duction or elimination rules and assign a particular form to the other.

In Pfenning & Davies, LSC relates to natural deduction rather than
sequent calculus. In the sequent calculus rules for logical connectives,
vocabulary is only ever introduced rather than eliminated. However, as
will be seen in the next section, with sequent calculus rules for material
relations between atomic propositions the situation is like natural deduc-
tion where one expression is eliminated and another introduced. Thus
LSC is apt for the sequent calculus as well. In the next section we will
apply LSC to general rules for material inference.

2.3.4 Trees and General Rule Forms

Here we introduce a framework for material inference rules in the mul-
tiple conclusion sequent calculus, showing the rules to be locally sound
and complete and the whole system cut-free. First, several examples of
material inference rules are introduced. Then we show how material in-
ference rules can be represented diagrammatically in a general way along
with their general form within the sequent calculus. Lastly, we show that
these are locally sound and complete.
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Examples

Before moving on to material inference rules in general, we will briefly
describe three examples of the kinds of rules we are talking about. First,
the example of “conjunctive” relations between the atomics H, B, and F,
as represented below:

Figure 2.1: Human Example

H Socrates is human

B Socrates is a biped

F Socrates is feather-
less

H

B F
X ` B, Y X ` F, Y

HR
X ` H, Y

Above we have an R-rule for H and diagrammatic representation as a tree
to its left. Trees will become useful in the next section to represent larger
languages with many inferential relations. Second, below we have “dis-
junctive” and “negation”-like relations between the atomics O, E, and N.

Figure 2.2: Number Example

O 2 is odd

E 2 is even

N 2 is a number

O

N

E

X ` O, Y
NR1X ` N, Y

X ` E, Y
NR2X ` N, Y

X ` E, Y
OL

X, O ` Y
X ` O, Y

EL
X, E ` Y

In our first two examples, although strictly speaking atomics, in their En-
glish translations it is the predicates which appear to be doing the work.
Below is an example where in the English it is the names doing so.
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Figure 2.3: Super Example

S Superman flies

C Clark Kent flies
C

S

X ` C, Y
SR

X ` S, Y
X, C ` Y

SL
X, S ` Y

As can be seen, in each of these examples inference rules both introduce
and eliminate expressions at the same time.

Trees

We can represent the inferential relations between atomic sentences
through trees. See Figure 2.4.

Figure 2.4: Tree Forms: Roots & Leaves

L2L1

R

Ln R

L1 L2 Ln R

L

In these trees an atomic sentence is represented by a node in the tree. A
node attached to other nodes, above or below, is a root [R]. The nodes
attached to the root are its leaves [L]. We stipulate that each root only has
finitely many leaves.11 In cases like the third diagram with no branching,
it is arbitrary which we pick as the root or the leaf. Roots [leaves] can be
above or below their leaves [root]. Our trees may look like Laputa, with
as much branching below as above.

11. This restriction is in part for simplicity. There may be cases of roots within infinite
leaves in our languages, e.g numbers, though perhaps still built recursively from finite
rules.
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Figure 2.5: General Identity for Parents

(a) Bonsai (b) Laputa

The collection of a root along with its leaves is a concept cluster, to which
there are a corresponding cluster of rules. To represent a concept cluster
we write {R, L1, ..., Ln}. The rules for a cluster are represented by verti-
cal branches linking the root and leaves and, horizontal branches linking
leaves. The earlier ‘Human’, ‘Number’, and ‘Super’ examples are all con-
cept clusters. In more complex languages, one expression may be part of
many clusters, and so for their rules.

Figure 2.6: Tree Forms: Parents & Children

P2P1

C

Pn

Sufficiency

Incompatibility

P

C1 C2 Cn

P

C

Necessity

Compatibility

In our earlier examples we had rules representing three kinds of re-
lations, those of sufficiency, necessity, and incompatibility. Within a con-
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cept cluster we can identify different roles according to these relations.
For each concept cluster, those at the top are parents [P] and those below
children [C]. A root node might have many parents or children. For each
child C [parent P], P [C] is the set of its parents [children]. Each pair of a
parent [child] and the set of its children [parents] form a concept cluster.
Parents and children stand in different kinds of relations to one another.
Each parent is (by itself) a sufficient condition for each of its children.
Conversely, each child is (by itself) a necessary condition for each of its
parents. Necessity goes up, while sufficiency goes down the tree. Each
set of children with the same parent are siblings. Siblings are compatible
with one another. Dotted lines between parents of the same child rep-
resent incompatibility. Depending on our tree we may want parents to
be compatible or incompatible. Each parent [child] of a child [parent] is
one of its ancestors [descendants]. Ancestorhood [descendanthood] is tran-
sitive.

Figure 2.7: Example Tree

D

BA

C

F G

E

IH

Above is a tree made up of several clusters. Each cluster whose root is a
child is marked by different coloured branches. Note that because D is a
parent of both A and B, it also heads the cluster {D, A, B}.

Rules

Below are general material inference rules corresponding to the general
trees above.
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Figure 2.8: General rule forms

X ` Pi, Y
CR

X ` Ci, Y
X, C1, ..., Cn ` Y

PL1X, Pi ` Y

X, P1 ` Y ... X, Pn ` Y
CL

X, C1, ..., Cn ` Y

X ` Pi, Y
PL2X, Pj ` Y

X ` C1, Y ... X ` Cn, Y X, Pi ` Y ... X, Pn ` Y
PR

X ` Pj, Y

Each parent and child have rules introducing [eliminating] it on the left
and on the right.

• [CR] tells us that for each parent Pi in a concept cluster, if it is on
the right we may eliminate it and introduce one of the children Ci

in the cluster. In terms of assertion and denial, if it is incoherent to
deny a parent then it is incoherent to deny each of its children.

• [PL1] tells us that for each child Ci in a concept cluster, if it is on
the left we may eliminate it and introduce one of the parents Pi in
the cluster. If it is incoherent to assert all of the children, then it is
incoherent to assert each of the parents. Note that with weakening
this follows from it being incoherent to assert one of the children.

• [CL] tells us that if we have for each parent P1, ..., Pn in a concept
cluster, a derivation with the parent on the left and some (possibly
empty) Y on the right, then we may eliminate the parents and intro-
duce on the left each child C1, ..., Cn in the cluster. If asserting each
of the parents is incoherent then so is asserting all of the children.

• [PL2] tells us that for each parent Pi in a concept cluster, if it is on
the right we may eliminate it and introduce some other parent Pj
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on the left. If it is incoherent to deny a parent then it is incoherent
to assert each of the other parents.

• [PR] is the most complicated. Suppose that for every child C1, ..., Cn

in a cluster, we have derivations from some X ending with each
child on the right. Also, for every parent P1, ..., Pn except for one,
Pj, we have derivations with each parent on the left and some Y on
the right. We may then eliminate the premise children and parents,
introducing Pj on the right. Simply put, it’s incoherent to deny a
parent when it’s incoherent to deny each of its children and assert
each of the other parents.

The rules have been phrased in a way which is neutral regarding whether
the root is a parent or child. In any actual cluster there will either only be
one parent or only one child.This will be the root of the cluster.

To make these general rules more concrete we apply them to the ex-
amples from 3.4.1:

Figure 2.9: {N, O, E} Rules

X ` O, Y
NR1X ` N, Y

X ` E, Y
NR2X ` N, Y

X, N ` Y
OL1X, O ` Y

X, N ` Y
EL1X, E ` Y

X, O ` Y X, E ` Y
NL

X, N ` Y

X ` O, Y
EL2X, E ` Y

X ` E, Y
OL2X, O ` Y

X ` N, Y X, E ` Y
OR

X ` O, Y
X ` N, Y X, O ` Y

ER
X ` E, Y

In the above {N, O, E} rules, [CR] has become the two [NR] rules. [PL1]

has become [OL1] and [EL1]. [CL] has become [NL]. The general form of
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the rule allows for multiple children to be introduced on the left. How-
ever for clusters like {N, O, E} whose root is a child, the instance of this
rule will only introduce one child on the left. [PL1] has become [OL2] and
[EL2]. Lastly, [PR] has become [OR] and [ER]. As there are only two par-
ents and one child, the premises for these instances of the rule are much
simpler than the general rule itself.

Below we have the instances of the general rules for the {H, B, F} clus-
ter:

Figure 2.10: {H, B, F} Rules

X ` H, Y
BR

X ` B, Y
X ` H, Y

FR
X ` F, Y

X, B ` Y
HL1X, H ` Y

X, F ` Y
HL2X, H ` Y

X, H ` Y
B,FL

X, B, F ` Y

X ` B, Y X ` F, Y
HR

X ` H, Y

These are similar to those for {N, O, E} but with some differences due it
being a single parent, multi-child cluster (rather than multi-parent, sin-
gle child). The instance of [CL], [B, FL], is a single premise multiple-
conclusion rule, rather than the other way round. [HR], the instance of
[PR], also differs in requiring derivations on the right of many children
but none on the left of other parents. Lastly, those for the earlier non-
branching ‘super’ cluster {S, C}:

X ` S, Y
CRX ` C, Y

X, S ` Y
CLX, C ` Y

X ` C, Y
SRX ` S, Y

X, C ` Y
SLX, S ` Y
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There is no rule corresponding to PL2 because there is only one par-
ent. As will be important when discussing subsententials, clusters with
branching result in asymmetric inference rules whereas the rules for
those without branching are symmetric.

General Local Soundness & Completeness

We now show that the above general rule forms are Locally Sound &
Complete (LSC). LSC is shown for each cluster rather than each constant.
We divide the general rule forms into two groups, the second of which
are locally sound and complete relative to the first.

Figure 2.11: First Rules

X ` Pi, Y
CR

X ` Ci, Y

X, C1, ..., Cn ` Y
PL1X, Pi ` Y

X ` Pi, Y
PL2X, Pj ` Y

We can think of the first rules as those showing movement from parents
down to children or across to other parents. Parents are sufficient condi-
tions for children (‘dog’ to ‘mammal’) and incompatible with one-another
(‘dog’ to ‘cat’).

Figure 2.12: Second Rules

X, P1 ` Y ... X, Pn ` Y
CL

X, C1, ..., Cn ` Y

X ` C1, Y ... X ` Cn, Y X, Pi ` Y ... X, Pn ` Y
PR

X ` Pj, Y

We can think of the second rules as those showing movement from chil-
dren up to parents (from ‘biped’ and ‘featherless’ to ‘human’).

Local Soundness: Our second rules are sound relative to the first if we
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can apply the second rules to the outputs of the first rules, resulting only
in the inputs for the first rules. No information is gained through the
application of the second rules which is not already “contained” in the
application of the first. Derivations which apply the first and then the
second rules of the one cluster can be reduced to ones that do not.

Figure 2.13: Soundness of [PR] relative to [CR] and [PL2]

·····
p

X ` Pi, Y
C1R

X ` C1

·····
p

X ` Pi, Y
CnR

X ` Cn

·····
p

X ` Pi, Y
PjL2X, Pj ` Y

·····
p

X ` Pi, Y
PnL2X, Pn�i ` Y

PR
X ` Pi, Y

=)

·····
p

X ` Pi, Y

Figure 2.14: Soundness of [CL] relative to [PL1]

·····
p

X, C1, ..., Cn ` Y
P1L1X, P1 ` Y

·····
p

X, C1, ..., Cn ` Y
PnL1X, Pn ` Y

CL
X, C1, ..., Cn ` Y

=)

·····
p

X, C1, ..., Cn ` Y

Local Completeness: Our second rules are complete relative to the first
if we can apply the first rules to the outputs of the second rules, result-
ing in the inputs for the second rules. No information “contained” in
the application of the first rules is lost through the application of the sec-
ond. Derivations of children on the right and parents on the left can be
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expanded into ones which eliminate, using the second rules, and then in-
troduce, using the first rules, the same expressions on the right and left
respectively.

Figure 2.15: Completeness of [PR] relative to [CR] and [PL2]

·····
p1

X ` C1, Y

·····
pn

X ` Cn, Y

·····
di

X, Pi ` Y

·····
dn�j

X, Pn�j ` Y
PR

X ` Pj, Y
C1R

X ` C1

(=

·····
p1

X,` C1, Y

·····
p1

X ` C1, Y

·····
pn

X ` Cn, Y

·····
di

X, Pi ` Y

·····
dn�j

X, Pn�j ` Y
PR

X ` Pj, Y
Pi L2X, Pi `

(=

·····
di

X, Pi ` Y
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Figure 2.16: Completeness of [CL] relative to [PL1]

·····
p1

X, P1 ` Y

·····
pn

X, Pn ` Y
CL

X, C1, ..., Cn ` Y
PL1X, P1 ` Y

(=

·····
p1

X, P1 ` Y

(=

·····
pn

X, Pn ` Y

Note that on these definitions it is irrelevant which rules are chosen as
“first” and “second”. We could have shown the first rules to be LSC rel-
ative to the second. It is this feature of material inference rules which fits
with LSC rather than treating one of the left or right rules as basic (e.g
(Hallnäs and Schroeder-Heister 1991; Schroeder-Heister 1992)).

Two objections might be raised to our take on LSC. The first question-
ing why LSC should hold for clusters rather than individual expressions
and the second why LSC should hold at all. The first objection says that
given LSC holds for individual logical expressions then it should hold
for individual non-logical expressions. This misses an important differ-
ence between our material inferential relations and those involving tradi-
tional logical constants. The rules for logical constants are given in terms
of arbitrary expressions of a particular type, and which do only one of
introducing or eliminating an expression. Because of this the inference
rules for constants aren’t dependent on those for any other particular ex-
pression. In contrast, material rules relate particular expressions to one
another, introducing one and eliminating the other. They are intrinsi-
cally related, and so LSC cannot be characterised as a property of a single
expression but rather a cluster. The second objection says that LSC is
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simply an issue for logical expressions rather than material, non-logical
ones. Brandom, in his discussion of Dummett on harmony, claims that
in as much as there is a notion of harmony for material expressions, it
differs from that of logical expressions. This undermines the case for ap-
plying LSC to material concepts, so the thought goes. The distinction,
however, that Brandom makes between logical and material expressions
is that the addition of the former but not the latter must yield conser-
vative extensions of the language, in order for logic to play an explica-
tive role (Brandom 2000: p.68). The addition of material concepts may be
non-conservative and this ‘non-conservativeness just shows that it has
substantive content’ (Brandom 2000: p.71). Nothing said so far requires
the extension of a language with a new material expression to always be
conservative. It may sometimes be the case, as trees can easily be con-
servatively extended. In the case of non-conservative extensions, we’re
simply required to not only add inference rules for the new vocabulary,
but also remove and modify existing rules in order to meet LSC. There
might be a number of different ways to do so and still meet LSC. This fits
with Brandom’s claim that ‘[g]rooming our concepts and material infer-
ential commitments... is a messy, retail, business’ (Brandom 2000: p.75).

What has been shown so far is that each of our concept clusters are
LSC. We haven’t yet shown whether a whole language built up from
many clusters is globally so. The global correlate of local soundness
is the admissibility of the structural rule of Cut in our system without
it. Demonstrating that Cut is admissible requires showing that for any
derivation using the Cut rule, there is one of the same end-sequent which
does not use Cut.

X ` A, Y X, A ` Y
CutX ` Y

Read top-to-bottom, Cut says that if X ` A, Y is out of bounds and so is
X, A ` Y then the problem is with X ` Y – the latter is out of bounds
regardless of whether A is asserted or denied. Bottom-to-top, Cut tells us
that assertion and denial are exhaustive, in the sense that if the position
which asserts X and denies Y is coherent, then adding A to either its
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assertions or denials must be as well. Cut’s inadmissibility would have
two undesirable features. Top-to-bottom, it would allow for expressions
which “gain information” in the sense of allowing more information to
be extracted than is put in. E.g X may be sufficient conditions for A, A
sufficient conditions for Y, but X not sufficient conditions for Y. Bottom-
to-top, it would allow for situations where a position P is coherent but
for some sentence A, P cannot coherently be extended to assert or deny
A. Cut is however admissible to our system, meaning that it is globally
sound. In fact, Cut can be eliminated in the sense that for any derivation
using Cut there is a procedure for transforming it into one that does not
[See Appendix B].

The global equivalent of completeness is an identity proof for arbi-
trary sequents of the form A ` A. Id reads as saying for any atomic
sentence, it is incoherent to both assert and deny it

Idp ` p

Normally the identity axiom applies only to atomic sentences, and iden-
tity sequents for logically complex expressions are shown to follow from
Id for atomics and the connectives rules. A failure of general identity
proofs allows for expressions which lose information, in contrast to fail-
ures of Cut gaining information. More worryingly, in terms of assertion
and denial, it allows for the coherent assertion and denial of the same sen-
tence. The languages under discussion are atomic. What corresponds to
general identity proofs in these language are ones showing that given the
identity axiom for the parents of a cluster, we can derive it for children
and vice versa, though with two qualifications. First, for clusters with
many parents and one child, to show that Id holds for some parent Pi we
assume Id for the child and the other parents. Second, for clusters with
one parent and many children, on the assumption of Id for the parent we
derive sequents of the form C1, ..., Cn ` Ci for each child Ci. This illus-
trates a sense in which Id holds for clusters rather than just individual
expressions. Assuming asserting and denying the parent is incoherent,
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then it is incoherent to assert all of the children and deny each of them
[See Appendix A].

Some bilateralists argue that we should rethink the relation between
assertion and denial to allow either failures of cut (Ripley 2013, 2015),
or identity (French 2016). These arguments are made in the context of
responding to paradoxes and it is not immediately clear to what extent
these concerns carry over to the issues discussed here. One difference
is that for material rather than logical vocabulary, failures of transitiv-
ity (soundness, cut) for one expression can result in failures of reflexiv-
ity (completeness, identity) for another. For example, suppose we mod-
ify the rules for a cluster with one parent and n many children (e.g the
{H,B,F} example cluster from in Figure 9 Section 3.4.2) so that the rule in-
troducing the parent on the right requires only n� 1 children on the right
in the premises. We however keep the normal rule introducing children
on the right, treating PR* as the ‘First’ rule and CiR as the ‘Second’.12

X ` C1, Y X ` Cn�1, Y
PR⇤X ` P, Y

X ` P, Y
CiRX ` Ci, Y

Given these rules we have a failure of soundness because an application
of PR* and then CiR cannot be reduced to one of the former’s inputs.

····· p1

X ` C1, Y

····· p2

X ` Cn�1, Y
PR⇤X ` P, Y

CnRX ` Cn, Y 6=)

····· p3

X ` Cn, Y

We also have a failure of completeness because given an application of
CnR (an instance of CiR) we cannot apply PR to its output. We cannot
expand a derivation of X ` P, Y into one which eliminates and then in-

12. Which rules are ‘First’ and which are ‘Second’ has been swapped for ease of exposi-
tion.
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troduces it. ····· p

X ` P, Y
CnRX ` Cn, Y 6(=

····· p

X ` P, Y

Whether this is a general feature of material rules is an open question.
What it does show is that, at least in some cases, local soundness and local
completeness stand or fall together, and so likely their global equivalents.
The study of atomic systems which are non-classical, both in the sense
of being non-transitive or non-reflexive, but also in the more traditional
sense of being, say, intuitionistic or relevant, is left for future work.

2.3.5 Limit Positions

Limit positions can be used to derive models for atomic systems, as with
logical systems.

Corresponding to Restall’s earlier ‘Fact 5’ for logical vocabulary, the
following holds given our general sequent rules for atomic propositions
[See Appendix C.2]

FACT 6: For any limit position LP
(i) A parent Pi is to the left of LP iff all its children C1...Cn are
to the left of LP and all other parents Pj...Pn�i are to the right
of LP;
(i’) A parent Pi is to the right of LP iff either some child Ci is
to the right of LP or some other parent Pj is to the left of LP;
(ii) A child Ci is to the left of LP iff a parent Pi is to the left of
LP; and
(ii’) A child Ci is to the right of LP iff all its parents P1...Pn are
to the right of LP.

As in the case with logical vocabulary, our inference rules determine limit
positions which are Boolean truth-value assignments, though this time to
atomic propositions rather than logical vocabulary. These biconditionals
can be read as truth (and falsity) conditions for atomics and as determin-
ing the class of models in which they’re true. What we do not have, yet, is
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a compositional story about how their meanings are determined by those
of their parts. This will be set out in the next section.

2.4 Subsententials

2.4.1 Introduction

Moving beyond logical vocabulary and sentential semantics to that of
subsententials presents a challenge for inferentialism. For many it is not
obvious how to extend the inferentialist philosophical thesis about mean-
ing to subsentential expressions such as names and predicates. Unlike
sentences, these expressions do not stand in directly inferential relations.
So they must, in some way, contribute to the inferential role of sentences
(Brandom 1994: p.363-4); analogous to a truth-conditional semantics,
where the constituents’ semantic contributions determine the whole’s
truth-conditions without themselves having truth-conditions. First we
use the previous inference rules for atomics and apply them to names
and predicates, showing that they can accommodate Brandom’s inferen-
tialist distinction between the two in terms of their inferential roles. Bran-
dom’s thesis is that names and predicates are distinguished by the former
only standing in symmetrical inferential relations (Brandom 1994: Chap-
ter 6) (Brandom 2000: Chapter 4).13 Next we show that our general rules
and trees can accommodate these relations in a compositional semantics.
Lastly, we respond to Fodor & Lepore’s critique from the first chapter.

13. Brandom is officially telling a story about singular terms in general rather than just
names. However we will here only treat names because they usually have no inter-
nal structure, whereas that of others such as definite descriptions brings with it other
complications.
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2.4.2 Subatomic Systems

Model Theory

Model-theoretic semantics has a standard story about predicates and
names. The latter are assigned single objects and the former sets of ob-
jects, interpreted as their referring to individuals and properties respec-
tively. Inferentialists need to draw this distinction in terms of inferen-
tial relations rather than kinds of reference, with Brandom arguing that
names are distinguished from predicates by only standing in symmetrical
inferential relations. Before showing how our inference rules can accom-
modate this, we show that it agrees with model-theoretic semantics on
the underlying structure.

To set up the analogy with model theory, take a simple language L

with only the syntactic categories of ‘name’ [t], ‘n-place predicates’ [Pn],
and ‘sentences’ [S] of the form ‘Pnti,...,tn’. A model M is a triple of L, a
domain D, and a valuation function v which assigns objects from D to ex-
pressions in L. v assigns to sentences one and only one of the truth values
true or false, to names individual objects, and to n-place predicates sets
of n-tuples of objects from the domain. The assignments to expressions
are their semantic values. v is restricted such that the value of a sen-
tence ‘Pnti,...,tn’ is true iff the n-tuple of the values of the names within
the sentence, ti,...,tn, is a member of the value of the predicate ‘Pn’. Put
less formally, names pick out individual objects, predicates sets of objects
which satisfy them, and sentences are true iff the object(s) picked out by
the names in the sentence satisfy the predicate in the sentence. This se-
mantics is compositional in that the meanings (values) of sentences are
a function of the meanings of their constituents. Importantly, although
truth plays a central role, subsentential expressions don’t have truth val-
ues, rather they contribute to the truth-values of sentences.

We define model-theoretic consequence such that a sentence p of L

is a consequence of some (possibly empty) set of sentences X of L iff
there is no model M where all of X are true and p is false. Truth is pre-
served from premises to conclusion. Using this, we can define ‘quasi-
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consequence’ relations for subsententials. A name [predicate] a [F] is a
quasi-consequence of another, b [G], iff for each sentence S containing a
[F], the substitutional variant S/ a

b [S/ F
G ] obtained by replacing at least

one instance of a [F] by b [G] entails S. A subsentential entails another
of the same category so long as truth is preserved under substitution.
These quasi-consequence relations between names will always be sym-
metric because the values of names are single objections – the value of
one is a member of some predicate iff the other is as well. The relations
between predicates however can be asymmetric because their values are
sets of objects. The value of one might be a proper subset of another,
allowing truth-preservation one way but not the other. This structure
of symmetry for names and asymmetry for predicates is shared by both
model-theoretic representationalist semantics and Brandom’s inferential-
ism. They can agree on the general structure while still disagreeing about
the relative priority of representation and inference. Later in 2.4.4, we
show that these model-theoretic relations can be derived from more ba-
sic inference rules as in 2.2.2 and 2.3.5.

2.4.3 Inference Rules and Trees

Here we show how the general inference rules from the previous section
apply to subsententials and that asymmetry and symmetry corresponds
to branching and non-branching trees.

We formulate inference rules for subsententials as in [1] and [2] below:

X ` Fa, Y
1X ` Fb, Y

X, Ga ` Y
2X, Fa ` Y

In rules such as [1] for names, the names, here a and b, stand in an arbi-
trary predicate context, represented by F. In those for predicates, such
as [2], the n-place predicates, G and F, stand with an n-tuple of arbitrary
names a. F and a respectively play an analogous role to the arbitrary As
and Bs in rules for connectives.

We will soon show how Brandom’s thesis that names and predicates
are distinguished by standing in symmetric only and asymmetric infer-
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ential relations respectively can be captured by our subatomic systems.
Before this, we show that our rules in general can accomodate symmetric
and asymmetric relations, corresponding to non-branching and branch-
ing trees.

Figure 2.17: General rule forms

X ` Pi, Y
CR

X ` Ci, Y
X, C1, ..., Cn ` Y

PL1X, Pi ` Y

X, P1 ` Y ... X, Pn ` Y
CL

X, C1, ..., Cn ` Y
X ` Pi, Y

PL2X, Pj ` Y

X ` C1, Y ... X ` Cn, Y X, Pi ` Y ... X, Pn ` Y
PR

X ` Pj, Y

Instances of these general rules will be symmetric or asymmetric depend-
ing on whether their concept cluster branches. If a cluster branches, the
inferential relations between parents and children will be asymmetric.
With upwards or downwards branching, CR and PL1 can both be used
to derive Pi ` Ci – they are different perspectives on the same inferential
relation. However Ci 0 Pi, because either only C1, ..., Cn ` P with down-
wards branching, or only C ` P1, ..., Pn with upwards branching due to
CL and PR. Branching clusters capture asymmetric inferential relations.
With non-branching clusters, each of CR, PL1, CL, and PR is a single-
premise single-conclusion rule, allowing for Pi ` Ci from the first two
and Ci ` Pi from the next. So our general rules can also capture the struc-
ture of symmetric inferential relations when applied to concept clusters
without branching with only one parent and one child. Our rules go be-
yond Brandom’s theory by also representing relations of incompatibility.
This is in part a result of our bilateralism and Brandom’s unilateralism.
Bilateralists get incompatibility for cheap by taking both assertion and
denial, and incompatibilities between them as basic. In contrast Bran-
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dom needs to define incompatibilities between propositions in terms of
the commitment to one disentitling one to the other (Brandom 1994: p.
160)(Brandom 2000: p.43).14

The story about symmetry and asymmetry so far has nothing to say
about examples of names which do not stand in any substitution rela-
tions. Surely they still play an inferential role, just as names which are
not co-referential with any others still play a role in model-theoretic se-
mantics.15 To capture this, we take the identity axiom to apply not to
atomic propositions but instead to names in arbitrary predicate contexts.

IdsFa ` Fa

We substitute a name in the language, a, for a to get an instance of the rule
for a, and then substitute a predicate F to get an instance of the rule for
the atomic proposition Fa. The identity axiom captures the simple sense
of asserting and denying the same thing being out of bounds. In propo-
sitional logic there is no simpler sense of ‘the same thing’ than an atomic
proposition, and in predicate logic the particular names and predicates
are normally irrelevant. However, because we are concerned with par-
ticular names, and particular predicates, we treat the propositional sense
of asserting and denying ‘the same thing’ as derived from that of assert-
ing and denying the same predicate of the same name. This matches the
model-theoretic notion of the value of a name never being both in and
not in the extension of the same predicate.

Extending the earlier notion of an atomic system, let us define a Sub-
Atomic System as a triple of a language [L] made up of names, n-place
predicates, and sentences of the form ‘Pn(t1, ..., tn)’, a set of substitution
rules [R], and an assignment function [v]: {L, R, v}. We set the following
restrictions on v:

14. See (Restall, Kukla, and Lance 2009: p.229, fn.5) for an argument for taking incom-
patibility as basic even in a unilateral theory.
15. I would like to thank Lloyd Humberstone for pointing out this as a problem with a
previous version of the theory.
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LSC The rules for each concept cluster are instances of the general rule
forms;

Symmetry For names, each concept cluster has only one parent and one
child;

Identity Each name in the language is assigned an instance of the iden-
tity axiom Ids; and

Compositionality For sentences, rules are assigned by substituting the
predicate of the sentence into the rules for its names and names
into the rules for its parents.

The first restriction simply carries over from the previous atomic sys-
tems, ensuring that our sub-atomic systems are locally sound and com-
plete. Symmetry ensure that inferential relations for names are symmet-
ric and allows those for predicates to be asymmetric. Identity, as dis-
cussed above, gives a subsentential notion of asserting and denying the
same thing being out of bounds. Compositionality ensures that the rules
assigned to sentences are a function of those of their constituents and the
way they combine. For example, suppose we have the sentence Fa and
the following rules for F and a.

X, Fb ` Y
aLX, Fa ` Y

X ` Fb, Y
aRX ` Fa, Y

X, Ga ` Y
FLX, Fa ` Y

By substituting F for the metalinguistic variable F in the a rules and a for
the metalinguistic variable a in the F rule we get the following rules for
Fa.

X, Fb ` Y
FaL1X, Fa ` Y

X ` Fb, Y
FaRX ` Fa, Y

X, Ga ` Y
FaL2X, Fa ` Y



§2.4 SUBSENTENTIALS 51

We can also represent trees for languages with subsentential struc-
ture, which are similarly compositional. Suppose we have the predicate
concept cluster {C, D, E} and the name concept cluster {a, b} below.

Figure 2.18: Name {a, b} and Predicate {C, D, E} Cluster Trees

Fa

Fb Da

Ca

Ea

Each of these clusters represents by itself the inferential relations between
a cluster of names and predicates respectively. We can combine these
clusters to represent the inferential relations between atomics as deter-
mined by those for their constituent names and predicates. We do so by
making two copies of the predicate tree (one for each name) and three
copies of the name tree (one for each predicate). We then fuse each of the
b nodes from the name trees to one (and only one) of each of the predi-
cates on one copy of the predicate tree. We then fuse each of the a nodes
to the corresponding predicate on the other copy of the predicate tree.
The resulting tree below represents the inferential relations between six
atomics as determined by their constituent names and predicates.

Figure 2.19: Predicate & Name Tree

Ea

Db

EaDa

Eb

Cb

In this way, concept clusters and larger trees for atomics can be built out
of those for names and predicates. These trees are compositional in the
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sentence that they are a function of the trees for their constituents and the
way they combine.

2.4.4 Limit Positions and Subsententials

We have similar results for Limit Positions, allowing us to read off model-
theoretic extensions. We have the following facts (See Appendix C.3).
Applying FACT 6 to the case of symmetric trees, we have:

FACT 7
(i) For symmetric concept clusters, if the parent [child] is to
one of the left or the right, then the child [parent] is the same.

As in the case of atomic sentences, we can read off model theoretic valua-
tions from our limit positions, however with a modification. The number
of names in our languages so far has been finite. However we wish to
consider models with infinite domains, or for that matter finite models
with simply more objects than there are names in the language. Limit po-
sitions are intended to represent idealisations where everything has been
decided on. In order to decide on everything though, we need to extend
the language L to one L+ which can do so. Given a language L we pair
up the names which share clusters. For each name which is a member
of more than one cluster, we construct an n-tuple of it and its partners.
Suppose we have a set of size n made up of names without any partners,
and the n-tuples of parters. Then for a model M with m many objects, we
extent L to L+ with m � n many names x1, x2, x3..., each only assigned an
instance of the identity axiom.16 This allows everything to be decided on
and captures the way in which the predicate rules are intended to apply
to any arbitrary name, were it introduced to the language. You might
think of these new names as playing the role of demonstratives or def-
inite descriptions which allows us to talk about objects which we don’t

16. An alternative is to extent the language with a denumerable set of names x1, x2, x3, ....
However, then we have more names than we need.
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have names for.
From FACT 7 and the earlier FACT 6 we can read off the following

restrictions on a model theoretic valuation function v:

1. For any two names a and b, if whenever Fa is to the left [right] Fb

is also, then v(a) = v(b);

2. For any predicate F if Fa is on the left [right] then v(a) 2 v(F) [
v(a) /2 v(F)];

From FACT 6 & 7 and our above restrictions restriction:

Subsententials Fact
(i) For any two names a and b which share a concept cluster,
v(a) = v(b);
(ii) For any predicates F and G, if F is a parent of G, then
v(F) ✓ v(G). If these are members of an upwards branching
cluster then v(F) ⇢ v(G).

As previously, our inference rules determine classes of models much like
meaning postulates. As can be seen, these are the model-theoretic quasi-
consequence relations identified earlier. Our adoption of Brandom’s in-
ferentialist characterisation of names and predicates gets at the same
structure as the traditional model-theoretic story.

2.5 Conclusion: Inferentialism and
Compositionality

Here we can situate the current semantics in relation to the criticism of
Fodor & Lepore’s raised in Chapter 1, Section 1.4, namely that an inferen-
tialist semantics was bound to fail because it could not meet requirements
of compositionality. There we adopted a definition of compositionality,
C0, as the meaning of complex expressions being a function of the mean-
ings of their parts and the way they combine. We saw that the main jus-
tification for thinking that our languages are compositional is to explain
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their apparent productivity (projectability) and systematicity. We then
saw Brandom’s incompatibility semantics for S5 as an example of a se-
mantics which is non-compositional but both productive and systematic.
The meanings of complex expressions were determined by those of sim-
pler expressions but rather than the latter only being their constituents
they included (potentially) all those of the same logical complexity. We
now locate the current semantics within this discussion, showing that on
a narrow notion of meaning it is compositional and on a broader notion
it is non-compositional but still recursive.

There is a clear sense in which our semantics is plausibly holistic. It
is so in that the meanings attached to expressions are inference rules re-
lating expressions to one another. This is in contrast with the earlier ex-
ample simple extensional model theoretic semantics where the meanings
(extensions) of expressions were objects from the domain completely in-
dependent from other expressions. Whether the semantics is composi-
tional depends on what exactly we take the meanings of expressions to
be. We might adopt a narrow understanding of the meaning of an ex-
pression as just the inference rules assigned to it. If this is so, then the
semantics is compositional and has what Brandom called the semantic
subformula property. The inference rules (meaning) assigned to some
sentence Fa will only depend on those assigned to F and to a and not
any other expressions. This might better be called a kind of molecular-
ism rather than holism, as expressions are related to each other in small
clusters rather than to every or most of the expressions in the language
(Jackman 2017). Alternatively, we could adopt a broader notion of mean-
ing, making it more holistic but also non-compositional. Take our earlier
example tree
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Figure 2.20: Example Tree
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C

F G
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An expression such as F shares a concept cluster with only G and C, but
due to C sharing a cluster with D and A, and F being a parent of C, F is an
ancestor of A and incompatible with D. A “fuller” sense of grasping F’s
meaning then requires more than just the inference rules for its concept
cluster. This comes out in the way limit positions are determined. Al-
though not directly linked by any inference rules, any position on which
F is on the left will also be one in which A is on the left. Similarly, if F
is on the left, then D is on the right (and vice versa). In as much as limit
positions are taken as some aspect of “meaning” or as required to grasp
an expression, then they are holistic in a broader sense than just the in-
ference rules assigned to expressions, although still not to the extent that
they relate every expression to one another. Regardless of whether the
broad or narrow notion of meaning is adopted, Fodor & Lepore’s in prin-
ciple objections to an inferentialist semantics can be avoided. For in either
case they are recursive, in Brandom’s sense, and in the narrow case are
compositional, having the semantic sub-formula property.

A qualification should be made that Fodor & Lepore take their ar-
gument to also be bound up with concerns about analyticity, which has
not been discussed here. Roughly, they believe that inferentialists must
appeal to a notion of analyticity in order to identify which inferential rela-
tions are meaning constitutive, but that inferentialists have either failed
to tell a plausible story about analyticity or denied it in the first place
(Fodor and Lepore 2002: Chapter 1 & 7). Besides a few observations,
discussions of analyticity in any detail are beyond the scope of this the-
sis. First, the notion of inference used here is one of incompatibilities
between assertion and denial rather than weaker notions of such as war-
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rant. A entails B only when asserting A and denying B is incoherent.
What’s required from Fodor & Lepore are examples of these sorts of in-
coherences which are non-compositional. Second, the semantics of this
chapter may provide a notion of an analytic proof: a proof is analytic if
it only employs rules from one concept cluster and has no expressions
which it introduces and then eliminates. These will have the subformula
property. Third, the normative pragmatism employed here does not re-
quire us to interpret someone in terms of the inferences that they endorse
or perform. It is not a dispositional theory. Rather it is a form of social
externalism (anti-individualism) and someone may be bound by inferen-
tial norms in virtue of participating in a particular practice. So concerns
with analyticity as a criterion of concept possession do not apply.



CHAPTER THREE

Imperative Inference without Truth

3.1 Introduction

In Chapter 1 we introduced three arguments made respectively by Lip-
tow, Dummett, and Fodor & Lepore. The thesis then began addressing
these in reverse order. The previous chapter addressed Fodor & Lep-
ore’s argument that inferentialism about semantic content could not meet
requirements of compositionality. It showed how inferentialists could
proof-theoretically formalise the meanings of atomic sentences and their
constituent names and predicates. On a narrow notion of meaning as in-
ference rules, this semantics was compositional and on a broader notion
of meaning, e.g inclusion in limit positions, it was non-compositional
but still recursive (productive and systematic). This chapter will begin
to provide a response to Liptow and to Dummett. Liptow argued that
pragmatist theories of meaning, to which our inferentialism is linked, are
bound to fail due to their inability to account for the shared propositional
content expressed by different sentence types. One avenue for respond-
ing to Liptow was the idea that there may be no shared propositional
content, which we called content pluralism. Dummett’s argument was
against content pluralism in trying to show that there must be one sen-
tence level semantic type. That this is propositional was assumed. So
adopting content pluralism in response to Liptow first requires a counter
to Dummett’s argument. In this chapter, we begin telling a pragmatist
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story about languages with both imperatives and declaratives, which re-
spects compositionality (or recursivity), and while rejecting strict unifor-
mity of meaning shows how the meanings of words across different sen-
tence types are related if not wholly shared. Here the focus will be on
giving a sentential level account of imperatives and their logico-semantic
relations. The first section (3.2.1) will provide some background to im-
peratives and motivate the idea that although imperatives are involved
in logical relations such as inference, incompatibility, and equivalence,
they are not truth evaluable. Section 3.2.2 will provide a brief outline of
some historical and existing approaches to imperatives, partly motivat-
ing the course that we will take. In Section 3.3, we will extend Restall’s
bilateralist interpretation of the sequent calculus to imperatives. Next,
in 3.4, we show how bilateralism can accomodate languages with both
sentential declaratives and imperatives. We see that in such a language
logical connectives can be assigned the same inference rules, regardless
of whether they are applied to imperatives or declaratives. This goes part
of the way to responding to Dummett’s objection. In Section 3.4 we will
respond to a general objection to the idea of imperative inference. This is
Ross’ Paradox, the worry that imperative inference allows the expansion
or creation of permissions. The related issue of Free Choice Permission
(FCP) will also be discussed.
We use lower case Greek letters, f and y etc, for atomic imperatives and
upper case Greek, G and S etc, for multisets of imperatives. For declar-
atives, lower case standard Latin, p and q etc are used for atomics, and
upper case, X and Y etc, for multisets. For sentences of an arbitrary type
we use lower case Latin maths sans serif, p and q etc, and upper case for
multisets, X and Y etc.
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3.2 Motivations and Current Theories

3.2.1 Motivating imperative (non-propositional) content
and inference

Standard approaches to both semantics and logic are very closely tied to
truth. ‘Meaning’ or ‘content’, the object of semantics, is normally thought
of in terms of truth-bearing propositions. Regardless of which is primary,
truth and inference are tied together closely enough that propositions are
also seen as being “at the heart of logic” (Restall 2005a), and often as what
we exclusively reason with. Imperatives present a challenge regarding
both truth and inference. They are prima facie not truth-evaluable and
yet appear to stand in inferential and other logical relations. For example,

1. a) Wipe the bench!

b) *That’s true.

c) Yeah!

2. a) Do your homework!

b) *That’s false.

c) Nah!

Applications of truth and falsity predicates to 1.a and 2.a appear incor-
rect, suggesting that they aren’t in the game of being true or false. Per-
haps though, this is only a result of the force conventionally attached
to imperatives, and so their content is still propositional. Traditionally,
features of sentences which embed are taken to be part of their content
rather than force, as it is contributed to the meaning of complex sen-
tences. Though rare, there are some embedded imperatives in English.
For example:

3. a) Ede to Magda: This book is brilliant, everyone should buy it!

b) Magda to colloquium audience: Ede said buy that book.
(Kaufmann 2014)



60 IMPERATIVE INFERENCE WITHOUT TRUTH §3.2

Notice that Magda is not directly quoting Ede. Rather ‘buy that book’ is
being attributed to Ede and contributing its content to the larger sentence.
This hardly rules out the possibility of a truth-conditional account but it
ought to motivate an alternative, assuming it doesn’t come at too high a
cost.

Imperatives being non-truth evaluable presents a challenge to the idea
of inferential relations being fundamentally truth preserving. For imper-
atives appear to stand in their own non-truth-preserving inferential re-
lations. Take this example from Peter Vranas (Vranas 2011: p.369). Say
someone is sitting an exam. They read instructions (a), (b) and (c), and
then notice that the third follows from the first two.

(a) Answer exactly three out of the six questions;

(b) Do not answer both questions 3 and 5;

(c) Answer at least one even-numbered question.

It as an instruction (a what-to-do) is information-wise redundant, just
like the conclusion of a declarative inference, despite potentially being
informative.

Besides inference, imperatives also stand in other logical relations
such as incompatibility and equivalence. 4. and 5. are both examples
of incompatibilities, respectively formal and material:

4. a) Both buy jam and don’t buy marmalade (f ^ ¬y)

b) Either don’t buy jam or buy marmalade (¬f _ y)

5. a) Run!

b) Be still!

Equivalences also come in formal and material kinds, as in 6. and 7.:

6. a) Neither buy quinoa nor soy falafel mix! (¬(f _ y))

b) Don’t buy quinoa falafel mix and also not the soy! (¬f ^ ¬y)

7. a) Jump!
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b) Leap!

These examples don’t demonstrate the undeniability of imperatives be-
ing non-propositional yet inferential. Rather they motivate the non-
propositional inferential semantics for imperatives set out in this chapter
and the next.

3.2.2 Some current approaches

In this section we briefly outline some current approaches to imperative
meaning and inference before in the next section proposing my own.

Aside from whether they see imperatives as expressing propositions,
theories of imperative inference tend to fall into two categories, focus-
ing on either fulfilment or bindingness (Fox 2012; Ross 1941). The first is
based on the observation that imperatives are the kinds of things that can
be fulfilled or satisfied which is then used to explain their inferential rela-
tions. In Vranas’ earlier exam example, fulfilling instructions (a) and (b)
appeared to result in fulfilling (c), thus making it redundant. Fulfilment
conditions could in this way supporting a notion of imperative conse-
quence. It also appears plausible for incompatibility. In examples 6. and
7., it appears that for each pair of incompatible imperatives, both mem-
bers cannot be fulfilled at once. However, drawing on Lepore & Leslie’s
argument from Chapter 1 (Lepore and Leslie 2001), a worry about think-
ing of imperatives in terms of fulfilment, or at least fulfilment conditions,
is that it easily reduces to truth-conditions, and therefore propositions.
The fulfilment conditions of some imperative appears to be just the ob-
taining of a certain state of affairs, the truth of some proposition. For
those wanting a non-propositional theory of imperatives, fulfilment con-
ditions are suspect.

An alternative that appears to avoid some of the above issues is the
binding approach. The idea here is that the endorsement of y on the ba-
sis of f is an explicit acknowledgement of the validity or bindingness of
the former on the basis of that of the latter. In the exam example, the
reader acknowledges the bindingness of (c) as following from that of (a)
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and (b). It is normatively redundant, even if informative. Incompatibili-
ties appear to be where someone cannot be genuinely bound by both or
perhaps where someone cannot coherently bind somebody else by them.
One might try and use Lepore & Leslie’s argument in this case as well,
claiming that these notions of ‘binding’ merely express deontic modals.
However, this is less of a problem than in the fulfilment case because: (1)
it is more plausible as deontic modals would preserve the explicit con-
nection with notions of obligation, permission, and prohibition that are
central to imperatives, and (2) there’s room to explain the connection be-
tween imperatives and deontic modals by seeing the latter as building
on, rather than being the content of, the former. In a Brandomian spirit,
we might say that deontic modals make explicit imperative positions in
the declarative part of the language.

In the current literature, two theories close to the one presented here
are those of Paul Portner (Portner 2004) and Rosja Mastop (Mastop
2005, 2011) both of which have a similar idea in regards to the non-
propositional content of imperatives. Portner and Mastop share a picture
of the pragmatics of conversation where the conventional force of declar-
atives is to add propositions to the Common Ground (the shared beliefs)
of the conversation and that imperatives play an analogous role but in
updating the ‘To Do Lists’ of individual participants. The meaning or
content of an imperative has to be such that it can add new actions to the
To Do List. In Portner’s case, he sees imperatives as denoting properties
which agents are to make true of themselves – despite imperatives being
non-propositional, truth still plays a central role. Mastop takes the idea
further, and closer to the position we will adopt, by treating imperatives
in an update semantics where the content of an imperative is a practical
commitment function which assigns an action plan (set of actions) to each
world. Essentially an imperative tells us what to do, given a situation.
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3.3 Imperative Bilateralism, Gaps and Gluts

3.3.1 Imperative Bilateralism

Having set out some of the features of imperatives along with existing
theories, in this section we sketch how an account might work from a
normative pragmatist perspective. We will extend the bilateralist inter-
pretation of declaratives from the previous chapter to imperatives, show-
ing that bilateralism can be motivated for imperatives for similar reasons
to declaratives and likely comes with similar benefits of being able to
model “non-classical” reasoning.

The kind of bilateralism, drawn from Restall, and sketched in Chapter
2, can easily be generalised so as to accommodate a theory of imperatives
along the line of Portner and Mastop, particularly the latter. In Chapter
2 we had the two speech acts of assertion and denial, performed using
declaratives, and where coherent collections of these formed positions.
Positions “clashed” or were “out of bounds” when the same thing was
both asserted and denied, and inference rules, initially for logical con-
nectives and then later for atomics and subsententials, placed constraints
on what could coherently be asserted and denied.

X ` A, Y X ` B, Y ^RG ` A ^ B, Y

The conjunction right-hand rule for example, says that if it is incoherent
to deny A and also incoherent to deny B then it is incoherent to deny
A ^ B. Read bottom to top, if it is coherent to deny A ^ B then it is coher-
ent to deny (at least one of) A or B. In order to generalise this to imper-
atives we begin by thinking of assertion and denial as kinds of ruling-in
and ruling-out respectively. They rule-in and -out states of affairs or ways
things might be. The Porter-Mastop view of imperatives is that they shift
agents’ practical commitments, what actions are on their ‘To Do Lists’. So
for an imperative bilateralism, we need speech acts that rule-in and -out
actions for agents, shifting their practical commitments. The speech acts
of commanding and prohibiting do just this. Commands rule-in actions
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for someone by requiring their performance – making them “in bounds”
– whereas prohibiting rules out actions for someone by forbidding their
performance – making them “out of bounds”. Commands and prohibi-
tions of the same action clash just as assertions and denials of the same
proposition do.

We will call G : S an imperative position of (someone’s) commands G
and prohibitions S. For now, we can think of these positions as represent-
ing a simple “Overseer-Underling” type situation where Overseer gives
Underling commands and prohibitions but not the reverse. We will later
extend these positions to accommodate multiple givers and receivers of
imperatives, which may yield different notions of coherence and incoher-
ence. We write

G ` S

for those imperative positions which “clash” or are “out of bounds” and
again treat the simple case of commanding and prohibiting the same
thing

Id
f ` f

as the basic form of imperative incoherence. This gives us a natural read-
ing of standard classical multiple conclusion sequent calculus rules. E.g
conjunction:

G, f ` S ^L1G, f ^ y ` S
G, y ` S ^L2G, f ^ y ` S

G ` f, S G ` y, S ^RG ` f ^ y, S

^L1 [^L2] tells us that if it is incoherent to command f [y] then it is in-
coherent to command f ^ y, whereas ^R tells us that if it is incoherent
to prohibit f and also y then it is incoherent to prohibit f ^ y. Structural
rules such as weakening and contraction also have natural readings.

G ` S
KRG ` f, S

G ` S
KLG, f ` S

G ` f, f, S
WRG ` f, S

G, f, f ` S
WLG, A ` S

Weakening says that if it is incoherent to command [prohibit] f then that
position continues to be incoherent if a command or prohibition of an-
other action y is added to it. Contraction records that commanding [pro-
hibiting] once is equivalent to doing so multiple times. If the position
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of commanding [prohibiting] f, f is incoherent then so is one the one
commanding [prohibiting] just f. This makes sense of readings where
someone commanding ‘Write an essay’ and then saying so again later is
reinforcing the first command with the second rather than telling them to
write two essays.

One of the motivations of Restall’s bilateralist reading of the multi-
ple conclusion sequent calculus introduced in Chapter 2 was its ability
to provide a shared vocabulary for different logics, with a focus on nega-
tion. Classical logicians treat the assertion of a negation as having the
same force as a denial of its negand (and vice versa) whereas dialetheists
and supervaluationists uncouple the two, allowing for truth gluts and
gaps respectively. There appear to be similar possibilities in the case of
imperative negation. These will not be discussed in any detail, though
several examples will be given. It should be kept in mind that the nega-
tion of an imperative f is not ‘It is not the case that f’ but rather ‘Don’t
f’.

G ` f, S ¬LG,¬f ` S
G, f ` S ¬RG ` ¬f, S

If ¬L is removed then we have an imperative equivalent of truth gluts,
allowing for both f and ¬f to be ruled-in. One way of interpreting this
would be in terms of inconsistent commands, where one is commanded
to perform an action and also commanded not to perform it. Alterna-
tively we might interpret the kind of ruling-in involved in this situation
to be something weaker than commanding, such as permitting, as per-
mitting f and ¬f appears to be consistent. Though this permissive read-
ing may require also modifying the conjunction rules to avoid permitting
f ^ y following from permitting each conjunct separately.17 Thinking
of ruling-in an imperative as involving permission even in the presence
of classical ¬L helps us better understand the force of commands. The
force of being a command has two important features. The first is that it

17. I would like to thank Lloyd Humberstone for pointing out this change in the be-
haviour of conjunction in the context of permissions.
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permits the action commanded, it makes it “in bounds”. The second is
that it requires the action commanded. In other words it makes the non-
performance of the action out of bounds. Adopting classical negation
rules give uses of imperatives the force of commands by making ruling-in
an imperative equivalent to ruling-out its negation, just as in the declar-
ative case it makes the assertion of a declarative equivalent to denying
its negation. Altering or removing ¬R, the equivalent of truth-gaps, also
allows for an interesting change in the relation between ruling-in and
ruling-out an imperative. ¬R makes ruling-out an imperative, prohibit-
ing it, equivalent to ruling-in, commanding, its negation. If we think of
commands as permitting the action commanded then it also permits its
negation. If ¬R is removed, then it allows for the coherent prohibition
of an imperative and its negation without it following that either is com-
manded and thereby permitted. This appears to be a “bind” where what-
ever the agent does they do something that is prohibited, and thereby not
permitted. Lastly, there may be scope for altering structural rules to give
a different interpretation of the logic. Here, due to the presence of con-
traction, we are treating multiple occurrences of the same imperative as
equivalent to one. Dropping contraction, however, may allow for an in-
terpretation of multiple occurrences of an imperative as commanding or
prohibiting more than one performance of the action. While interesting
in their own right, such non-classical imperative logics are left to the in-
vestigation of further work.

3.3.2 Imperative Systems and Limit Positions

Here we apply the definition of atomic systems and results regarding
limit positions from the previous chapter to the case of imperatives.

We can adopt the previous definition of an atomic system as a triple
of a language L, a set of rules R, and a valuation function v. Rather than
L being made up of declaratives we stipulate that L is made up of atomic
imperative sentences, the binary connectives ^, _, and the unary con-
nective ¬, and those complex imperatives formed from the first two. As
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previously we restrict v so that all rules assigned to atomics are instances
of the general rules. We also adopt the standard structural and connective
rules from the classical multiple conclusion sequent calculus.

Id
f ` f

G ` f, S G, f ` S
CutG ` S

G ` S
KRG ` f, S

G ` S
KLG, f ` S

G ` f, f, S
WRG ` f, S

G, f, f ` S
WLG, f ` S

G ` f, S G ` y, S
^RG ` f ^ y, S

G, f ` S
^L1G, f ^ y ` S

G, y ` S
^L2G, f ^ y ` S

G ` f, S
_R1G ` f _ y, S

G ` y, S
_R2G ` f _ y, S

G, f ` S G, y ` S
_LG, f _ y ` S

G ` f, S
¬RG,¬f ` S

G, f ` S
¬RG ` ¬f, S

The imperative positions introduced above can be understood as
agents’ ‘plans’ or ’schedules’. They determine what actions are explicitly
permissible, prohibited, and commanded for an agent. Many more ac-
tions may of course be implicitly premissable, prohibited, or commanded
– in the same way that various propositions might be implicitly asserted
or denied in the declarative case. We can now define what it is for actions
to be permitted, prohibited, and commanded:

Permitted an imperative position G : S permits an action f iff G ` f, S.

Prohibited an imperative position G : S prohibits an action f iff G, f ` S.

Commanded an imperative position G : S commands an action f iff G `
f, S and G,¬f ` S.

These notions of permitted and prohibited correspond to the previous
chapter’s of being ‘to the left’ and ‘to the right’. Given the above classical
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rules for negation, whenever an action is permitted or its negation pro-
hibited, then it will also be commanded, due to the negation rules making
ruling-in something have the equivalent force of ruling-out its negation.
Note that this makes being permitted and commanded in the above sense
equivalent, as whenever G ` f, S then via ¬L G, f ` S. This should be
interpreted as saying that the speech act of ruling-in, which in this case
is a command, has the force of permitting the action commanded and
prohibiting its negation (non-performance), rather than permissions and
commands amounting to the same thing. This system does however lack
a distinct speech act of merely permitting (without also commanding) an
action. We can also define weaker notions of permission and prohibi-
tion, corresponding to non-prohibition and non-permission respectively.
These are similar to what Ripley calls ‘tolerant’ rather than ‘strict’ asser-
tion and denial in the declarative case (Ripley 2013: Section 4.2).

Permitted* an imperative position G : S permits* an action f iff G, f 0 S.

Prohibited* an imperative position G : S prohibits* an action f iff G 0
f, S.

We can for the most part treat these two types of permission and prohibi-
tion as distinct but related notions, although we will soon see a situation
where they correspond.

We can think of an imperative position as a plan or schedule, which
determines which actions are permitted, prohibited, and commanded.
This is with the proviso that our plans are more like shopping lists.
They say what to do but not in any particular order. The inference rules
for both connectives and atomic sentences constrain the way positions
(plans) can be coherently extended, just as in the case with declaratives.
We can now carry over the limit position results from Restall’s work and
the previous chapter, and apply it to the case of imperatives. A limit posi-
tion for imperatives can be thought of as a maximally extended schedule
or plan. Imagine someone whose diary is as full as it can be, given their
language. While no one could write down every action (including logi-
cally complex ones) ruled-in and -out, we do in a sense carry out these
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schedules within a given time period. In the case of limit positions the
above two notions of being permitted and prohibited come together. For
an imperative limit position G : S, any action is one of either to the left,
permitted, or to the right, prohibited. Thus in order for G, f 0 S to be
the case, f must already be on the left, permitted, because if it weren’t,
then it would be to the right and G, f ` S. Swap ‘left’ and ‘right’ and the
same follows for prohibition.

We can now interpret the limit position results in the imperative case

FACT 5: For any limit position P (i) A ^ B is to the left of P iff
A and B are both to the left of P. (i’) A ^ B is to the right of P
iff either A or B is to the right of B. (ii) A _ B is to the right of
P iff A and B. (ii’) A^ B is to the right of P iff A and B are both
to the right of P. (iii) ¬A is to the left ofP iff A is to the right of
P. (iv) ¬A is to the right of P iff A is to the left of P. (v) A is to
the left of P iff A is not to the right of P (Restall 2009: p.,249).

(i) and (i’) tell us respectively that a conjunction is permitted iff its con-
juncts are permitted and prohibited iff one of its is. (ii) and (ii’) tell us
respectively tell us that disjunction is the dual of conjunct. (iii) and (iv)
tell us that a negation is prohibited iff its negand is permitted and vice
versa. This turns what would otherwise be mere permission into a com-
mand, and also rules out “binds”.

FACT 6: For any limit position P
(i) A parent Pi is to the left of LP iff all its children C1...Cn are
to the left of LP and all other parents Pj...Pn�i are to the right
of LP.
(i’) A parent Pi is to the right of LP iff either some child Ci is
to the right of LP or some other parent Pj is to the left of LP.
(ii) A child C is to the left of LP iff a parent P is to the left of
LP.
(ii’) A child C is to the right of LP iff all its parents P1...Pn are
to the right of LP.

Fact 6 can be read in the same way. From our imperative limit positions
for a language of atomics and connectives we can read off Boolean eval-
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uations determining (classes) of atomic models for imperatives. As ex-
pected, the evaluations of logically complex imperatives will be deter-
mined by those of their constituents and the way they are combined, and
thus compositional, whereas those for atomics will be holistic and code-
pendent on the evaluations of other atomics. In the next chapter we will
carry over the limit position results for subsententials to the imperative
case.

Some might be concerned that unlike for declaratives limit positions
are inappropriate models for imperatives, because our plans or schedules
are never fully determined. First, it should be noted that our collections
of assertions and denials are in actuality never fully determined. Limit
positions are an idealisation for those as well. Second, just as one might
think that the ”world” is fully determined, so might be the schedules
which we execute – for any space of time I do in fact perform or not-
perform any given action. Third, there is room to extend this kind of story
to include incomplete plans. One could take the partial Boolean evalua-
tions determined by imperative (non-limit) positions as incomplete mod-
els.

3.4 Imperatives and Declaratives

In this section we sketch an inferentialist semantics for a mixed language
made up of both declarative and imperative atomics, along with logical
connectives. In doing so we go part way to responding to the objection
attributed to Dummett in Chapter 1, namely that content pluralism can-
not account for both compositionality and sameness of meaning across
different sentences types. Here we show that the meanings of logically
complex sentences can be compositional and invariant across sentence
types. That this is also so for predicates and names will be shown in the
next chapter.
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3.4.1 Mixed Inference Rules

Here we introduce the notion of mixed positions and inference rules.
When introducing imperative bilateralism we abstracted from the declar-
ative nature of assertion and denial to thinking of them as forms of
ruling-in and ruling-out, and that commanding and prohibiting were
their respective imperative forms. We can now introduce the notion of a
mixed position X : Y made up of ruling-ins, X, and ruling-outs, Y. Ruling-
ins are assertions or commands depending on sentence-type, and denials
or prohibitions for ruling-outs.

We can represent structural rules and those for logical connectives,
except the conditional, in a sentence-type neutral way.

Id
p ` p

X ` A,Y X,A ` Y
Cut

X ` Y

X ` Y
KR

X ` A,Y
X ` Y

KL
X,A ` Y

X ` A,A,Y
WR

X ` A,Y
X,A,A ` Y

WL
X,A ` Y

X ` A,Y X ` B,Y
^R

X ` A^ B,Y
X,A ` Y

^L1X,A^ B ` Y
X,B ` Y

^L2X,A^ B ` Y

X ` A,Y
_R1X ` A_ B,Y

X ` B,Y
_R2X ` A_ B,Y

X,A ` Y X,B ` Y
_L

X,A_ B ` Y

X ` A,Y
¬R

X,¬A ` Y
X,A ` Y

¬R
X ` ¬A,Y

We interpret these in terms of ruling-in and ruling-out and treat the dif-
ferent speech acts as instances of this. In our natural languages, or at least
English, imperatives cannot be the antecedents of conditionals. Two sim-
ple options are to either exclude the conditional and make do with the
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other connectives, or to adopt the following rule:

X, A ` B,Y
�R

X ` A � B,Y
X ` A,Y X,B ` Y

�R
X, A � B ` Y

This is the standard material conditional but with the restriction that the
antecedent must be a declarative. Principled argument for and explana-
tion of the restriction is beyond the scope of this thesis, though two points
will be noted. First, given that material conditional A � B is equivalent to
both ¬A _ B and ¬(A ^ B), and that both of these can be expressed with
imperatives, the lack of imperatives in the antecedents of conditionals
undermines the claim that � expresses ‘If...then...’. Second, a plausible
avenue for explaining the restriction may relate to imperatives being non-
propositional. If we think of conditionals as telling us that something (the
consequent) holds given a particular situation (the antecedent), then the
lack of imperative antecedents is unsurprising. For they relate to actions
rather than situations (states of affairs) and so do not express the right
kind of thing for situations or actions to be conditional on. Investigation
of this idea is left for further work.

The story so far makes declaratives and imperatives appear very sim-
ilar when operating just at a sentential level. They will be differentiated
in terms of their internal structure in the next chapter, but there are still
important ways in which they can be differentiated at the sentence and
speech act level. In their book ‘Yo!’ and ‘Lo!’ Rebecca Kukla & Mark Lance
point out that declaratives and imperatives differ in terms of how they
change the conversational score by declaratives having agent-neutral and
imperatives agent-relative effects. (Kukla and Lance 2009: Chapter 1, Sec-
tion 1.2) To illustrate this, if Oliver tells Mac that ‘Plantasia is a great al-
bum’ then he is being inconsistent if he denies the same thing to Sarah, or
anybody else. He also disagrees with Sarah if she, or anybody else, denies
it. Declaratives are agent-neutral in the sense that there is a clash between
assertions and denials of the same thing, regardless of who the speaker or
addressees are.18 Imperatives are agent-relative in the sense that if Oliver

18. This is assuming the language is free of indexicals.
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commands Mac to ‘Listen to Plantasia!’ he is not being inconsistent if he
prohibits Sarah from doing the same. He is only being inconsistent if
he both commands and prohibits the same action for the same person.
Similarly, he only “disagrees” or clashes with somebody else if the two
of them respectively command and prohibit the same action for the same
person. We can capture this difference in the way declaratives and imper-
ative clash by introducing contexts to the representation of the language.
We write a context

ha, bi
where a is the speaker and b is the addressee. To represent a sentence in
the context of a speaker and a hearer we write

Sha,bi

This represents S said by a to b. If on the left, it is a ruling-in and if on the
right a ruling-out. The basis kind of clash is now represented by

IdcSha,bi ` Sha,bi

rather than the previous ‘context-free’ [Id] rule.
We call S said in a different context, i.e a different speaker and/or

addressee, a contextual variant of Sha,bi. We can now represent agent-
neutrality and agent-relativity using ‘perspective shifting rules’ which
shift incompatibilities between contextual variants. The first of these
rules, govern incompatibilities between speakers (asserters, prohibitors
etc).

X, Sha,bi ` Y
1stL

X, Shc,bi ` Y

X ` Sha,bi,Y
1stR

X ` Shc,bi,Y
What these rules say is that if it is incoherent for a to rule-in [-out] S to
b, then it is incoherent for some other arbitrary agent c to rule-in [-out]
S to b. We take these rules as applying to both declaratives and imper-
atives. In the declarative case this captures the way in which assertions
and denials clash regardless of who the speaker is. As for imperatives, it
captures the way in which there is a clash if the same thing is both com-
manded and prohibited of the same person, even if the speakers (sources)
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differ. If Oliver tells Mac to listen to Plantasia and Sarah prohibits it, then
this creates a “clash” or inconsistency in the whole conversation. Though
we may have norms for resolving such issues.

The second perspective shifting rules govern inconsistencies between
addressees.

X, Sha,bi ` Y
2ndL

X, Sha,ci ` Y

X ` Sha,bi,Y
2ndR

X ` Shc,bi,Y

What these rules say is that if it is incoherent for a to rule-in [-out] S

to b, then it is incoherent for a to to rule-in [-out] S to some other ar-
bitrary agent c. We take these to only apply to declaratives rather than
imperatives. This captures the way that uses of declaratives, assertions
and denials, clash regardless of who is addressed. By having these rules
not apply to imperatives, this captures the way in which clashes of com-
mands and prohibitions require the same addressee.

3.4.2 Mixed Limit Positions

In the previous section we showed how we can have a language made up
of atomic declaratives and imperatives, and logical connectives, where:
(1) connectives had the same meanings, in terms of inference rules, re-
gardless of sentence types, and (2) the atomics were structurally differ-
ent in terms of declaratives being agent-neutral and imperatives being
agent-relative. Here we show what limit positions look like for this kind
of language.

Our limit position results largely carry over from before but with
some important differences. The first is that the language we are deal-
ing with is a contextual one, where inference rules were defined for sen-
tences in a speaker-addressee context. Without the perspective shifting
rules, what we have are valuations of sentences in a context, and with no
systematic connections between contexts. Our perspective shifting rules
correct this however. We have the following FACT 7 about contextual
declaratives and imperatives [See Appendix C.4]:
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FACT 7: For any contextual mixed limit position CMP:
(i) A contextual declarative Dha,bi is to the left [right] iff all of
its contextual variants are.
(ii) A contextual imperative Iha,bi is to the left [right] iff all of
its speaker variants are.

A consequence of (i) above is that for any contextual mixed limit position,
Boolean evaluations of declaratives will be the same across all contexts.
We can use this to determine a value for the sentences simpliciter, i.e con-
text free, and have this function as one of our models just as in Chapter
2. The declarative part of the position is shared among all participants,
much like in more standard models of common ground. What (ii) tells us
is that for imperatives in any contextual mixed limit positions, Boolean
valuations will agree across all speaker contextual variants. This then
determines a value for the sentence paired with a conversational partici-
pant. These imperatives parts of the position are much like ‘To Do Lists’
in Porter and Mastop’s theories.

The second difference from our previous limit positions is that mixed
positions allow for the interaction between contextual declaratives and
imperatives. Mixed sentences are ones such as

8. a) Tim’s always late and don’t worry [p ^ ¬f]

b) Stop or I’ll shoot [f _ ¬p]

FACT 5 about connectives in limit positions in general and the FACT
7 above about contextual limit positions carries over to these as well,
though they are worth some discussion of their own. They will be on
the left or right (ruled-in or -out) of different pairs of declarative and im-
perative parts of mixed limit positions. (8a) will be on the left iff ‘Tim’s
always late’ is on the left for every context, i.e it’s part of the Common
Ground, and ‘Don’t worry’ is on the left for every speaker variant of the
addressee of the conjunction, i.e it’s on their To Do List. (8a) will be on the
right, just if one of its conjuncts is on the right. If the declarative is then
it will be so for all, whereas if the imperative is then only for the original
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addressee. Philosophers often interpret sentences such as (8b) as express-
ing the same as ‘If you don’t stop, then I’ll shoot’. (Mastop 2005: Chapter
5, Section 5.7) That may be so, however it also has a plausible “surface
level” interpretation. (8b) will be on the left iff one of the disjunct is on
the left. For ‘Stop’ to be on the left for the original addressee, is for it to
be on their To Do List. It represents their acceptance of or bindingness
of the command to stop. In the case where the disjunct is to the left and
only ‘Stop’ is to the left, we have the situation where someone is bound
to stop and the other person will not shoot. However if ‘Stop’ is on the
right, then the only way for the disjunction to be on the left is for ‘I’ll
shoot’ to be on the left. Given our language doesn’t have indexicals, we
can replace ’I’ll’ with ‘a will’. If the addressee does not accept, or is not
bound by, the command to stop, then from the perspective of the conver-
sation, the speaker will shoot them. This sounds fairly natural. Similarly,
(8b) will be on the right, ruled-out, if neither the addressee accepts the
command to stop (or isn’t bound by it) nor from the perspective of the
conversation is the speaker going to shoot the addressee. The remaining
case is less natural. This is the one where the disjunct is to the left but both
disjuncts are also. It looks like a case where someone is bound to stop but
where the other will still shoot them. The one who utters the imperative
isn’t going to follow through on their word. It is counter-intuitive that
the imperative holds, is to the left, in this situation. Note that this isn’t a
consequence of it being read as a disjunction rather than the conditional
‘If you don’t stop, then I’ll shoot’. For if this is the material conditional
then it will still be true in the situation where someone stops and the
other shoots. The oddness of this last case might motivate reading it as a
conditional, but definitely not the material conditional. This however is
not within the scope of this thesis.

3.4.3 Compositionality and Sameness of Meaning

In Chapter 1 Dummett’s objection to content pluralism was introduced.
This was that content pluralism could not meet requirements both of
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compositionality and sameness of meaning across sentence types. The
semantics in this chapter goes some way to answering this challenge. For
our mixed language of declaratives and imperatives, the inference rules
assigned to logical connectives were neutral regardless of sentence type,
showing that pluralists can meet Dummett’s second requirement for log-
ical vocabulary. The meaning of logically complex sentences was also
compositional, just as in the case for the purely declarative language.
Thus Dummett’s criteria are met for logical vocabulary. The inference
rules assigned to atomic sentences were not compositional, as we have
only operated at a sentential rather than subsentential level in this chap-
ter. In the next chapter we will give a compositional semantics for imper-
atives at the subsentential level as well as for a mixed language of both
imperatives and declaratives. This will respond to the rest of Dummett’s
objection and also Liptow’s argument from Chapter 1, that pragmatists
cannot account for the shared meanings of non-declaratives.

3.5 Ross’ Paradox and Free Choice Permission

The strategy in this chapter has been to apply the same inference rules
to logical vocabulary in regard to both declarative and imperatives sen-
tences. One might think however that the logic of imperatives, if there is
one, needs to be substantially different. Such a concern might be moti-
vated by Ross’ Paradox and the problem of Free Choice Permission (FC).
Ross’ Paradox relates to disjunction introduction for imperatives (Ross
1941). Suppose somebody commands another to ’Post the letter!’. The
addressee then infers ‘Post the letter or burn the letter!’ via disjunction
introduction. The problem of FC concerns the way in which we nor-
mally interpret disjunctive imperatives as permitting both their disjuncts,
though not at once (Fox 2015; Fusco 2015). This leads to imperative absur-
dity when combined with disjunction introduction. For if our addressee
above interprets ‘Post the letter or burn the letter!’ as permitting both
disjuncts, they may opt for letter burning as a way of fulfilling their prac-
tical commitments. Note that the issue isn’t with ‘burn the letter’ being
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incompatible with ’post the letter’. The former could be replaced with
any other action.19

Ross Inference FC Inferences
f ) f _ y f _ y ) f

f _ y ) y

f _ y ; f ^ y

Above we have the Ross and FC inferences. The Ross inference is simple
disjunction introduction. The FC inferences should be read as saying that
a disjunctive imperative permits either of its imperatives but not both.
Hence the idea that the addressee has permission to freely choose which
one they carry out. It should be clear that one ought not to endorse both
the Ross and FC inferences, with imperative logics and semantics tend-
ing to opt for one or the other.20 Our inferences rules accept the Ross
inference, because if it is incoherent to prohibit f it is incoherent to pro-
hibit f _ y. However the semantics rejects the first two FC inferences. If
is incoherent to prohibit f _ y then it is incoherent to prohibit both f and
y but not either by themselves. Our system does not result in imperative
absurdity.

The rest of this chapter will briefly motivate this option rather than the
alternative of rejecting Ross and accepting FC. The argument is drawn
from Castaneda (1981). The first argument shows that when f _ y is
introduced from f, the only particular action commanded is still f. In his
solution to Ross’ paradox, Castañeda points out that we mustn’t forget
about our premises once we infer our conclusions:

No sentence is an island unto itself. In particular, the mem-
bers of an inference form a tightly knit community of thought

19. Ross’ Paradox and particularly Free Choice Permission are often discussed in the
context of deontic rather than imperative logic. Given that the same puzzles appear in
both, one might expect a the solution to one to carry over to the other.
20. See (Mastop 2005: Chapter 4), Barker (2010), and Fusco (2015) for theories which
reject disjunction introduction and endorse the FC inferences. See Kamp (1978) and Fox
(2007) for theories which treat free choice as a pragmatic matter of implicature rather
than semantic entailment.
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contents. When one infers a conclusion one is considering
one member of a related set – and one must remember the
premises, or remember that the premises are still valid or true,
or whatever property is supposed to be preserved in inference
(Castaneda 1981: p.64).

Once we recognise Castañeda’s point, we see that no other particular
actions become commanded when a disjunction is introduced, beyond
what was commanded by the premises. Suppose for some imperative
position, f is ruled-in. With the classical negation rules, this is a com-
mand, meaning that f is permitted and ¬f is prohibited. So far all this
position requires is that the agent refrains from doing what is prohibited,
i.e they are commanded to f, for ¬f is prohibited. If f is permitted then it
is incoherent to prohibit f _ y. So the latter can be introduced. However,
once it is introduced the only particular action which is commanded is
still f. Showing that nothing more is commanded after a disjunction has
been introduced doesn’t yet show that nothing more is permitted how-
ever. The FC inferences say that both disjuncts are permitted (though not
together). That this doesn’t follow from our inference rules is fairly easy
to see. In the above example, the only particular action permitted is still
f rather than also y. So commanding someone to post the letter won’t
permit them to burn it.

We have shown that according to our rules no more commands nor
more permissions are introduced by disjunctions. To finish we will mo-
tivate first our rejection of the FC inference and our endorsement of dis-
junction introduction. Castañeda’s point earlier was that we must look at
premises and conclusions together, and his emphasis on how imperatives
are related to one another can be used again to reject the FC inferences:

There are several reasons why a disjunctive order, or a dis-
junctive norm, may not open a genuine choice between alter-
natives. Not being an insular thing each order and norm must
be related to the other orders or norms. Among such reasons
we have: (a) one disjunct may itself be self- contradictory; (b)
one disjunct may be physically impossible of realization; (c)
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one disjunct may be forbidden, wrong, or interdicted by an-
other order or norm. (Castaneda 1981: p.64)

The relevant relation I will focus on is that if the FC inferences are en-
dorsed then a disjunction and the negation of either of its disjuncts are
incompatible.

f _ y,¬f ) ?
I will give two examples, motivating the idea that a disjunctive impera-
tive and the negation of one of its disjuncts are compatible.

1. The Tricky Master: Suppose we have a household of a rich mas-
ter and a number of servants. The master’s attention to logic and
careful reasoning has been integral to her attaining her fortune and
these are virtues she wishes to instil in her servants. One day she
tells her servants to ‘Serve ice-cream or cake for dessert’. Later in
the day she tells them ‘Don’t serve cake for dessert’. The servants
infer that they are now bound to serve ice-cream for dessert. The
view we are opposing however is committed to saying that the mas-
ter is being inconsistent in commanding ‘f_y’ along with ‘¬y’ and
that the only way for her to be consistent is to withdraw her earlier
command. But if she is interpreted as doing so then the servants are
not bound to serve ice-cream for dinner, which they appear to be.

2. The Ignorant Master: Say some of these servants, fed up with their
master’s “logical” tricks, seek new employment. The new master
is happily ignorant of both logical laws and those of the land. He
frequently gives them disjunctive commands such ‘Spend Monday
reading or robbing the bank’, assuming that both options are on the
table. Little does he know that bank robbing is illegal and that all
of his servants are already bound by the imperative ‘Don’t rob the
bank!’. From the servants’ perspective their only option is to spend
Monday reading.

These are examples of coherently commanding a disjunctive imperative
and also the negation of one of the disjuncts, showing that we, with Cas-
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tañeda, ought to reject the idea that disjunctive imperatives always offer
a ‘genuine choice between alternatives’. We now motivate disjunction
introduction. In the declarative case, it generally goes against Gricean
maxims to explicitly introduce a disjunction into the conversation. De-
spite this, it is still a valid inference. That an explicit introduction of a
disjunctive imperative also goes against Gricean maxims ought not to
undermine the validity of the inference. For declaratives, we might ex-
plicitly make these inference when the disjunction is the antecedent of
a conditional. We have a analogous example for imperatives, but with
the conditional translated into a disjunction. Take the following line of
reasoning

1. Sing! [f] (Premise)

2. Either, neither sing nor dance, or do skip! [¬(f _ y) _ r] (Premise)

3. Sing or dance! [f _ y] (From 1.)

4. (So) Skip! [r] (From 2. & 3.)

which we represent formally below

f ` f
_R

f ` f _ y
¬L

f,¬(f _ y) `
KR

f,¬(f _ y) ` r r ` r
_L

f,¬(f _ y) _ r ` r

Here, disjunction introduction plays an important role in a disjunctive
syllogism, analogous to the declarative case. Were it rejected such forms
of reasoning would become invalid.

What we have shown in this section is that: (1) our inference rules
do not result in imperative absurdity, as disjunction introduction but not
free choice inferences are valid, and (2) that this alternative can be moti-
vated by situations where imperative disjunctions do not offer a genuine
choice between the disjuncts and those where imperative disjunction in-
troduction plays a role in our reasoning.





CHAPTER FOUR

Plural Composition

4.1 Summary and Introduction

In Chapter 1 three arguments were introduced and the aim set of re-
sponding to them throughout the thesis. The first argument was one by
Jasper Liptow concluding that pragmatist theories of meaning are set to
fail, because they cannot account for the shared propositional content of
different sentence types. Liptow assumed that all sentence types must
share a core propositional content. We then examined an argument of
Michael Dummett’s concluding that this must be so. Dummett assumed
both that meaning is compositional and that word meaning is invariant
across sentence types. Lastly an argument of Jerry Fodor & Ernie Lep-
ore’s was presented, and which concluded that pragmatist theories of
meaning could not meet requirements of compositionality. The thesis
then began addressing them in reverse order. In Chapter 2 we showed
that, contra Fodor & Lepore, a compositional pragmatist (inferentialist)
proof-theoretic semantics can be given for atomic declarative sentences
and their components – predicates and names. Next, in Chapter 3, we set
out a normative pragmatist theory of sentential level imperative content,
which was governed by norms of commanding and prohibiting, on anal-
ogy with assertion and denial. There we went part way to responding
to Dummett’s objection, by showing that the meanings of logical con-
nectives could be invariant across sentence types, while also keeping the
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meaning of logically complex expressions compositional. In this conclud-
ing chapter, we will combine last chapter’s story about imperatives with
Chapter 2’s about subsententials, to give an account of how the sentential
content of imperatives is composed out of that of their parts, yet without
requiring a propositional core that imperatives share with declaratives.
We then extend this to a language with both imperatives and declara-
tives, showing how they can interact without sharing such a core. This
responds to Dummett’s argument, showing that we need not adhere to
the kind of invariance of word meaning that he claims is necessary. In
doing so, we then show Liptow’s argument to be unsound because prag-
matists need not require there to be a shared propositional core to all
sentence types.

4.2 Imperatives

Here we set out a compositional semantics for imperatives but which
does not feature a ‘propositional core’. We start off with ‘bare’ or ‘un-
marked’ imperatives, which do not feature a subject, and then introduced
‘marked’ imperatives with a subject. Most of the central points of this
are taken from Rosja Mastop’s update semantics for imperatives (Mastop
2005: Chapter 5).

4.2.1 Bare Imperatives

Bare or unmarked imperatives are those such 9. a) and b) which do not
feature a subject represented at sentence level.

9. a) Hide!

b) Find Wally!

English imperatives are often of this form, in that they do not require an
explicit subject. Rather than merely being a feature of English, this is ‘ex-
tremely common, if not universal’ (Konig and Siemund 2007: 304). In this
chapter, we will take this feature at face value and use it to do some of



§4.2 IMPERATIVES 85

the work in explaining why imperatives are not truth-evaluable, an idea
which we motivated in the previous chapter. We set out a syntax and se-
mantics where subjectless imperatives are treated as the basic form, and
where this plays a role in them not expressing propositions at a sentence
level. We begin with a simple language, similar to that of Chapter 2,
made up of n-place imperative predicates Pn, and names t. Sentences
are, as expected, of the form Pn(t1...tn). These imperatives may be zero-
place and represent the predicate (verb) parts of 9.a) and b). If H0 and
F1 stand for the predicates ‘Hide’ and ‘Find’, and w for the name ‘Wally’
then 9. a) and b) will be represented by

10. a) H0

b) F1(w)

We use math calligraphy font for imperative predicates (why we do not
use Greek will become apparent when we add in declaratives). Predicate
argument subscripts and brackets will be left out when it results in no
ambiguity.

Given this syntax, the semantics for this language can also be taken
over from Chapter 2. We assign names instances of the subsenten-
tial identity axiom [Ids] and symmetric inference rules corresponding to
non-branching concept clusters, and assign predicates asymmetric rules
corresponding to branching concept clusters. For example, given the
names ‘Wally’ and ‘Waldo’, linking them via symmetric rules will en-
sure that commanding [prohibiting] imperatives of the form F(wally)
and F(waldo) are interchangeable.

Figure 4.1: Wally-Waldo Cluster & Rules

wally

waldo X, F(wally) ` Y
waldoL

X, F(waldo) ` Y
X ` F(wally), Y

waldoR
X ` F(waldo), Y

X, F(waldo) ` Y
wallyL

X, F(wally) ` Y
X ` F(waldo), Y

wallyR
X ` F(wally), Y
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In the case of predicates, asymmetric rules between ones such as ‘Run’
[R] and ‘Move’ [M], ensure that whenever it is is incoherent to prohibit
the former it is also incoherent to prohibit the latter, but not the reverse.

Figure 4.2: Partial Run-Move Cluster & Rules

R

M

P
X ` Ra, Y MR
X ` Ma, Y

X,Ma ` Y
RL

X,Ra ` Y

Successful uses of bare imperatives shift or update the addressee’s
practical commitments – what is permitted, prohibited, and commanded.
As agents themselves are not part of the practical commitment, they do
not need to be represented at the sentence level as imperative subjects.
For example, if I am committed to feed the cat, then what gets added to
my To-Do List isn’t ‘Kai feeds the cat’ but ‘Feed the cat’.21 Our practical
commitments may be simple and built out of only a predicate, like ‘run’,
‘jump’, and ‘hide’. Alternatively, they might be complex in the way ‘feed
the cat’ is, where it is composed out of the predicate ‘feed a’ and the sin-
gular term ‘the cat’. Due to this structure they are however not apt for
being asserted or denied. For they do not relate a predicate to a name in
the sense of predicating a property of an object. Predicates (or commit-
ments to act) are not themselves the kind of thing that can be true or false,
making the imperatives which express them non-truth apt.

4.2.2 Marked Imperatives

Marked imperatives are those such as 11.a) and b) which explicitly mark
the addressee or subject of the imperative.

11. a) Wally hide!

21. The point that simple imperatives do not require a subject is argued in detail by
Mastop (Mastop 2005: Chapter 2, Chapter 5).
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b) Odlaw find Wally!

Our view so far, adopted from Mastop, is that the basic, “bare”, form
of imperatives require no subjects. Again drawing from Mastop’s up-
date semantics, we show how in the case of marked imperatives with
subjects, the imperative subject plays a different role from its declara-
tive counterpart. In the case of declaratives, predicates take their subjects
as arguments. In contrast, imperatives subjects, Mastop argues (Mastop
2005: Chapter 5, Section 5.6), act as operators scoping over predicates.
The central idea is that ‘Wally’ in 11a) makes explicit who the addressee of
the imperative is – the agent whose practical commitments are being up-
dated. In English, at least, our imperatives appear to be second-personal.
That is, the person being spoken to and the addressee of the imperative,
in the sense of the one whose practical commitments are being affected,
are one and the same. A second-person subject or addressee is sometimes
taken as constitutive of imperatives, distinguishing them from other con-
structions such as ‘hortatives’ and ‘jussives’ which appear to have first- or
third-person subjects (Konig and Siemund 2007: p.303, 313). In our set-up
however, there is no in-principal reason for all imperatives to be second-
personal in this way. Several languages have sentence types which can
be used for commands when marked for the second-person but with dif-
fering force when marked for the first- or third-person (Xrakovskij 2001).
First-personal imperatives are typically used to either express intentions
or seek permission (Aikhenvald 2010: p.74). We might think of the first
as publicly taking on a practical commitment and the second as an in-
stance where somebody does not have the authority to update their own
practical commitments in some domain. Third-person imperatives come
closest to ‘Let’ constructions in English such as

12. Let Odlaw try and find Wally!

Third-person imperatives can be interpreted as updating the practical
commitments of someone who is not actually present. This may appear
odd, as without being present they are not to know that their commit-
ments have changed. A shift in someone else’s commitments however,
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can have an effect on one’s own. If I acknowledge the legitimacy of 12.,
namely that Odlaw is now permitted to find Wally, then that will effect
how I may relate to Odlaw. Perhaps I am no longer permitted to sanction
him, should he try and find Wally.22

In order to represent marked imperatives, we extend the language of
the previous section so that if f is a bare imperative and a name, then
a(f) is a marked imperative. We then use the contexts from the previ-
ous chapter to represent their semantics, with the underlying idea being
that imperative subjects make explicit the addressee or target, in a broad
sense, of the imperative. We again define a context ha, bi of a speaker a
and a addressee b. We understand the addressee as the one whose prac-
tical commitments are being updated by the imperative. The contextual
imperative fha,bi represents the imperative f made by a to b. We then
assign marked imperatives the following inference rules:

G, fha,bi ` S
markLG, b(f)ha,bi ` S

G ` fha,bi, S
markRG ` b(f)ha,bi, S

These make marked imperatives behave as expected. Coherencies and
incoherencies of commanding and prohibiting are preserved between f

as addressed to b and b(f). This shows how while bare imperatives may
not require subjects, when imperatives subjects do occur, they play a dif-
ferent role to their declarative counter-parts. Imperative subjects make
explicit the targets or addressees of imperatives and scope over predi-
cates. In contrast, declarative subjects represent the object of which a
property is predicated and is an argument of the predicate.

4.3 Imperatives and Declaratives

In this section we have reached the point of being able to fully respond
to Dummett’s objection against content pluralism. In doing so we also

22. Although no formal semantics for ’Let’ constructions will be given here, Mastop,
whose work serves as a model for mine, does so in (Mastop 2005: Chapter 5, Section
5.6)
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provide a response to Liptow’s criticism of pragmatic theories of mean-
ing. First, we show how a language of names, predicates, atomic declar-
atives and imperatives can be content plural, compositional, and assign
the same meanings to the subsentential vocabulary. Second, we show
what limit positions look like for a language with mixed subsententials.

4.3.1 Mixed Inference Rules

We now combine the declarative subsentential language from Chapter
2 with the imperative subsentential language sketched in the previous
section. We show that it is content plural, compositional, and assigns the
same meanings to subsentential vocabulary. As in the previous section,
this approach is adopted from Mastop (Mastop 2005: Chapter 5).

We begin by defining a syntax for a simple language L. L is made
up of names, n-places predicates, and atomic sentences. For each pred-
icate there are two symbols, corresponding to its declarative and imper-
ative form. For each imperative predicate Pn�0 there is a correspond-
ing declarative predicate Pn+1 with one more argument place. In order
to better represent them as being forms of the same predicate, rather
than Greek for imperatives we use the maths calligraphy font to distin-
guish them from declaratives. Bare imperatives sentences are of the form
Pn�0(t1, ..., tn) and declarative sentences of the form Pn+1(t1, ..., tn). As in
the previous section, if f is a bare imperative and a is a name, then a(f)
is a marked imperative. To each sentence S we add a context ha, bi of a
speaker a and addressee b, with Sha,bi representing S said by a addressed
to b.

We now define a mixed subatomic system, which as previously is a
triple of our language L, a set of inference rules R, and an assignment
function v. We restrict R and v in a similar way to before. Note that L is
a contextual language as described above. We limit R to inference rules
between expressions of the same syntactic type – names to names, pred-
icates to predicates, sentences to sentences, etc. v is then restricted such
that expressions form concept clusters, and the rules assigned to expres-
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sions are instances of the general rules forms from Chapter 2. Names are
assigned instance assigned instances of the subsentential identity axiom
and symmetric (non-branching) inferences rules, whereas predicate are
assigned asymmetric (branching) inference rules. The rules assigned to
sentences, are again a function of those assigned to their constituents, in
the manner of Chapter 2, Section 2.4.3.

We make one novel restriction on v. This is that we assign rules to
predicates in a type-neutral way. This means that an imperative predi-
cate Pn�0 and its declarative form Pn+1 both receive the same inference
rules. This is similar, although not strictly the same, as our sentence-type
neutral rules for logical connectives in the previous chapter. To illustrate,
take the predicates ‘Run’ and ‘Move’, represented in their respective im-
perative and declarative forms by the pairs R0, R1 and M0, M1. The
following inference rules are assigned type-neutrally to the predicates:

X ` R,Y
MR

X ` M,Y
X,M ` Y

RL
X,R ` Y

What MR tells us is that if it is incoherent to rule-out ‘Run’ then it is
incoherent to rule-out ‘Move’. In the declarative case, this will be a rela-
tion between denying that something runs and that it moves, whereas in
the imperative case it is between prohibiting someone from running and
moving. It is the same inference rules governing the predicate regardless
of what form it takes. This is the sense in which predicates ‘mean the
same thing’ regardless of what sentence type they are part of.

Lastly, we have inference rules governing ruling-ins and ruling-outs
in general and then declaratives and imperatives in general. The first
are the structural rules of the classical multiple conclusion sequent cal-
culus – contraction, weakening, and cut. As all our inferences assigned
to expressions in the language are instances of the general form of mate-
rial inference rules and these are cut free, then so is our subatomic sys-
tem. Second, we adopt the perspective shifting rules from the previous
chapter. As we did there, we apply both to declarative but only the first
to imperatives. Declaratives clash regardless of speaker and addressee,
whereas imperative clashes are located around a single addressee. This



§4.3 IMPERATIVES AND DECLARATIVES 91

further maintains the difference between declaratives and imperatives
despite their constituents sharing meanings.

A subatomic system of this form is an example of a language with
subsentential structure, and which is content plural, compositional, and
respects sameness of meaning across different sentence types. It is con-
tent plural, because sentences of different types are governed by funda-
mentally different norms of use. Declaratives are governed by norms of
assertion/denial, and imperatives by those of commanding/prohibiting,
with the former but not the latter being agent-neutral in the way they
change the conversational score. Corresponding to their respective
agent-neutrality and agent-relativity, their contents have differing inter-
nal structures. Agents or subjects in the declarative case form a necessary
part of the sentence level representation, whereas imperative subjects are
not required. When imperative subjects are present, they make explicit
the addressee of the imperative, rather than a part of the action it puts
on the addressee’s To-Do List. The subatomic system is compositional,
in the same way as the language from Chapter 2 was, in that the in-
ference rules assigned to sentences are a function of those assigned to
their constituents and the way they combine. Lastly, it respects sameness
of meaning in the sense described above, where names and predicates
are assigned the same inference rules regardless of the sentence types of
which they are constituents, despite our predicate symbols being split
into their imperative and declarative forms.

4.3.2 Mixed Limit Positions

In the previous chapter, we saw how sentential imperative and mixed
contextual limit positions worked. In these, the imperative parts of the
language ended up being relativised to addressees, whereas the declara-
tive parts applied to the whole position. The question here is what their
subsentential equivalents look like.

We keep the previous restrictions on the extensions of names and
predicates, though now relative to contexts, and where the predicates
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may be of either imperative or declarative form:

1. For any two names a and b, if whenever Faha,bi is to the left [right]
Fbha,bi is also, then v(a) = v(b);

2. For any predicate F if Faha,bi is on the left [right] then v(a) 2 v(Fha,bi)
[v(a) /2 v(Fha,bi)];

As in the previous chapter, the perspective shifting rules allow for us to
speak of imperatives relative to a specific addressee and declaratives for
the whole conversation. In the case of 1., because the same names appear
in both imperative and declarative sentences, then they receive the same
extensions. 2. however splits into two cases for F’s respective declarative
and imperative forms, F and F . Their extensions will not be the same.
First, because they will differ in argument places. F will have n � 0 ar-
gument places whereas F will have n + 1. Second, being on the left or
the right, ruling-in or -out, for imperatives and declaratives are separate,
unless coordinated by connectives. Correspondingly, what it means for
an object to be in the extension of some predicate are in each case quite
different things. In the declarative case, it indicates that the objects sat-
isfy some property or relation. Whereas for imperatives, it indicates that
the object is to be acted on in a particular way by a particular agent. If
F is ’Find’, then objects in its extension are to be found by a particular
person – these will differ between agents. Contrast with F, which will
have pairs of finders and found objects. This difference in extensions is
not, however, a problem for our theory. The meanings of predicates on
our theory are the inference rules which they are assigned, rather than
their extensions, and imperative and declarative versions of a predicate
are assigned the same inference rules.

We can of course imagine situations where our imperative and declar-
ative predicate extensions come closer to lining up. These are ones where
every object which is to be acted on by an agent is acted on by that agent.
Less awkwardly, ones where if Odlaw is commanded to find Wally, he
does so. Call these limit positions ‘compliant’:



§4.4 CONCLUSION: PLURAL COMPOSITION 93

Complicance A limit position X : Y is compliant iff 8P(t�0, ..., tn)ha,bi
whenever P(t�0, ..., tn)ha,bi 2 X [2 Y], then P(b, t�0, ..., tn)ha,bi 2 X

[2 Y].

In compliant limit positions, for every n-tuple of objects in the extension
of an imperative predicate relative to some agent, the n+1-tuple of those
objects, but beginning with that agent, are in the extension of the corre-
sponding declarative predicate [See Appendix C.5]:23

Compliant Extensions For all compliant limit positions X : Y, if
8x, v(t�0, ..., tn) 2 v(Phx,bi), then 8x8y, v(b, t�0, ..., tn) 2 v(Phx,yi).

This allows us to talk in our metalanguage about situations where agents
fulfil imperatives. It is left to further work to introduce this sort of vocab-
ulary into the object language. This would be an important step for the
kind of theory advocated here, because rival theories of imperatives of-
ten understand their meaning in terms of fulfilment conditions (Boisvert
and Ludwig 2006) or deontic modals (Kaufmann 2011).

4.4 Conclusion: Plural Composition

We are now in the position of having responded to all three arguments
set out in Chapter 1. These were

1. Liptow’s argument against semantic pragmatism;

2. Dummett’s argument against content pluralism; and

3. Fodor & Lepore’s argument against inferentialism.

We responded to these in reverse order:

23. Limit positions are used here, but this could be done with non-maximal positions,
so long as: (i) for each negation on the left, its negand is on the right and vice versa; (ii)
For each conjunct on the left, both conjuncts are also, and for each on the right, at least
one conjunct is also; and (iii) Dual for disjunction.
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3. Fodor & Lepore’s argument was that inferentialist theories of con-
tent, of which ours is a species, cannot meet requirements of composi-
tionality, due to them being inherently holistic. In Chapter 2 we showed
how an inferentialist semantics for languages made up of atomic sen-
tences, names, and predicates could on a narrow notion of meaning be
compositional and on a broader one still be recursive (productive and
systematic). Expressions were divided into clusters and assigned infer-
ence rules based on these. These inference rules were all of a general
form, which ensured that, locally, clusters neither gained (soundness) nor
lost (completeness) information. The global equivalents (cut and general
identity proofs) also held for the whole language. We then drew on Bran-
dom’s inferentialist distinction between names and predicates. On the
basis of this we assigned symmetric inference rules to names and (pos-
sibly) asymmetric ones to predicates, resulting in the same structure as
standard extensional model theoretic semantics. The narrow, and com-
positional, notion of meaning was treating the inference rules assigned to
an expression as its meaning, while the broader notion included relations
which extended beyond a single concept cluster, such as inclusion in limit
positions. Either way, the semantics met Fodor & Lepore’s challenge.

2. Dummett argued that given (a) compositionality of meaning, and
(b) uniformity of word meaning across sentence types, sentence level
meaning must all be of the same type. If the type of sentence level
meaning composed differed, then this would have to result from a dif-
ference in word meaning, violating (b), or from something other than its
constituents, violating (a). A related issue was logical constants having
the same meaning, despite applying to different sentence types. We re-
sponded to this second concern in the previous chapter, by showing that
logical constants can be given the same inference rules, despite applying
to two sentence types, once declaratives and imperatives are each given
their own kind of ’ruling-in’ and ’ruling-out’. Declaratives are used for
assertions and denials, ruling-in and -out ways the world could be. In
contrast, imperatives are used for commanding and prohibiting, ruling-
in and -out actions for particular agents. This then set the stage for us
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showing in this chapter, how the same can be done for subsententials,
by drawing on the results from Chapter 2. Declaratives and imperatives
were first differentiated in terms of their subsentential structure, with
simple forms of the former but not the latter requiring an explicit sub-
ject. “Bare” imperatives simply expressed actions or practical commit-
ments, which are added to someone’s To Do List, and those with subjects
make explicit the addressee. For languages with subsentential structure
and both declaratives and imperatives, we divided predicates into their
declarative and imperative forms, but assigned the same inference rules
to both. This met Dummett’s requirement of uniformity of meaning, be-
cause meaning is here understood as inference rules rather than exten-
sions. The latter, but not the former, will differ in our semantics. As the
semantics is built on that from Chapter 2, it is compositional. Thus, it
meets both of Dummett’s requirements, and yet is content plural.

1. The argument of Liptow’s which we began with was, essentially,
that semantic pragmatism was bound to fail because it couldn’t be con-
tent monist. Liptow assumed that different sentence types must still
share a propositional core. Based on this assumption, he then argued
that pragmatists could not recover the shared core from the uses of these
sentences. For they systematically differ in the way they affect the con-
versational score (their pragmatic force). Having responded to the sec-
ond and third arguments, we have now made sense of a content pluralist
pragmatist semantics, which doesn’t assume that all sentence types share
a propositional core. In doing so, we’ve seen that pluralism and prag-
matism about semantic content come together as a natural fit. Possess-
ing different kinds of content explains the way different sentence types
systematically affect the conversational score, and meaning being tied to
norms of use doesn’t require that there be only one kind of content from
the outset.

Representationalists are where we left them at the end of Section 1.5.1
of the first chapter. There we identified an impasse, with representation-
alists appearing to be committed to the following trilemma:



96 PLURAL COMPOSITION §4.4

1. Sentence meaning determines truth-conditions (is propositional);

2. The difference between declaratives and non-declaratives appears
to be included in the content they embed; and

3. Novel semantics predicates such as ‘answered’ and ‘obeyed’ appear
to:

a) be tied to use rather than representation; or

b) collapse into truth conditions.

In order to accommodate 2., representationalists seem to need to adopt
novel semantic predicates. However if 3.a) is accepted, then they must
reject 1, yet this is the cornerstone of representationalism. Aside from
this, if 3.b) is correct, then there is no difference in kind between declar-
ative and non-declarative meaning. For it follows from 1. that sameness
of truth-conditions leads to sameness of meaning. Yet 2., the difference
in declarative and non-declarative meaning, was the reason for adopting
these novel semantic predicates in the first place. These issues are not
faced by those in the pragmatist camp. We’ve seen how pragmatists can
naturally explain differences in sentence meaning types, without also be-
ing committed to the claim that deep down, it must all be propositional.
This allows us to recongnise, with Belnap, that declaratives are not eno-
ugh:

My thesis is simple: systematic theorists should not only stop
neglecting interrogatives and imperatives, but should begin
to give them equal weight with declaratives. A study of the
grammar, semantics, and pragmatics of all three types of sen-
tence is needed for every single serious program in philoso-
phy that involves giving important attention to language (Bel-
nap 1990).
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APPENDIX A

Identity

Here we show that general identity proofs for rules of our general forms
hold (see Chapter 2, Section 3.4.4).

Figure A.1: General Identity for Parents

(i) One Parent, Many Children

C1 ` C1 Cn ` Cn PR
C1, ..., Cn ` P

PL
P ` P

(ii) Many Parents, One Child

C ` C
PL

Pj ` C
Pi ` Pi PL2Pi, Pj `

Pn ` Pn PL2Pn, Pj `
PL

Pj, Pj, Pj ` Pj
WL⇥2

Pj ` Pj

Figure A.2: General Identity for Children

(i) One Parent, Many Children

P ` P
CL

C1, ..., Cn ` P
CR

C1, ..., Cn ` Ci

(ii) Many Parents, One Child

P1 ` P1 CR
P1 ` C

Pn ` Pn CR
Pn ` C

CL
C ` C





APPENDIX B

Cut Elimination

We now show that our rules meet general conditions sufficient for cut
elimination (see Chapter 2, Section 3.4.4). These are variants of those
found in Belnap (1982) and Restall (2005b).

B.1 Definitions

First some definitions:

Parameter Parameters are those formulas which are held constant in the
premises and conclusion of a rule. I.e all formula except those in-
troduced or eliminated by the rule.

Parametric Class Two formulas are a part of the same parametric class
if they are represented by the same letter in a presentation of the
rule (e.g the instances of A in an inference of contraction,) or if they
occur in the same place in a structure (e.g in an antecedent X).24

Principal A formula is principal if it is not a parameter.

Parent Some formula A is the parent of another B iff A and B are princi-
pal formulas in an inference in the premise and conclusion sequent

24. This definition is taken almost word for word from (Restall 2005b: p.167)
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respectively. E.g in [CL]

X, P1 ` Y ... X, Pn ` Y
CLX, C1, ..., Cn ` Y

P1 through to Pn are parents of C1, ..., Cn.

Child Some formula A is the child of another B iff B is a parent of A.

Ancestor If B is a parent of C then B is an ancestor of C. If A is an ancestor
of B and B is an ancestor of C then A is an ancestor of C.

Descendent Some formula A is the descendent of another B iff B is an
ancestor of A.

B.2 Conditions for Cut Elimination

The following are sufficient conditions for cut elimination:

1. Cut/Identity: cut on an identity sequent can be directly eliminated.

• This can be seen from the two cases of cutting on the left or
right of an identity sequent:

····· p1

X ` S, Y

····· p2

S ` S
CutX ` S, Y =)

····· p1

X ` S, Y

····· p1

S ` S

····· p2

X, S ` Y
CutX, S ` Y =)

····· p2

X, S ` Y

2. Regularity: If a cut formula is parametric in an inference immedi-
ately before the cut, the cut may be permuted above the inference.

• This holds for each of our rules. In each case the derivation
reduces to one in which we push the instance of [Cut] above
the other rule. See the following:
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For Weakening [K]:

····· p1

X ` S, Y

····· p2

Z, S ` W
LKZ, S, K ` W

CutX, Z, K ` Y, W =)

····· p1

X ` S, Y

····· p2

Z, S ` W
KLX, Z ` Y, W

KRX, Z, K ` Y, W

For [CL]

····· p2

X, P1 ` S, Y

····· pn

X, Pn ` S, Y
CLX, C1, ..., Cn ` S, Y

····· p1

X, S ` Y
CutX, C1, ..., Cn ` Y =)

····· p2

X, P1 ` S, Y

····· p1

X, S ` Y
CutX, P1 ` Y

····· pn

X, Pn ` S, Y

····· p1

X, S ` Y
CutX, Pn ` Y

CLX, C1, ..., Cn ` Y

For [CR]

····· p1

X ` S, Y

····· p2

X, S ` Pi, Y
CRX, S ` Ci, Y

CutX ` CiY =)

····· p1

X ` S, Y

····· p2

X, S ` Pi, Y
CutX ` Pi, Y

CRX ` Ci, Y

For [PL1]

····· p1

X, C1, ..., Cn ` S, Y
PL1X, Pi ` S, Y

····· p2

X, S ` Y
CutX ` Y =)

····· p1

X, C1, ...Cn ` S, Y

····· p2

X, S ` Y
CutX, C1, ..., Cn ` Y

PL1X, Pi ` Y

For [PL2]

····· p1

X ` Pi, S, Y
PL2X, Pj ` S, Y

····· p2

X, S ` Y
CutX, Pj ` Y =)

····· p1

X ` Pi, S, Y

····· p2

X, S ` Y
CutX ` PiY

PL2X, Pj ` Y
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For [PR]

····· ps

X ` S, Y

····· pc1

X, S ` C1, Y

····· pcn

X, S ` Cn, Y

····· pp1

X, Pi, S ` Y

····· ppn

X, Pn, S ` Y
PRX, S ` Pj, Y

CutX ` Pj, Y

=)

····· ps

X ` S, Y

····· pc1

X, S ` C1, Y
CutX ` C1, Y

····· ps

X ` S, Y

····· pcn

X, S ` Cn, Y
CutX ` Cn, Y

····· ps

X ` S, Y

····· pp1

X, Pi, S ` Y
CutX, Pi ` Y

····· ps

X ` S, Y

····· ppn

X, Pn, S ` Y
CutX, Pn ` Y

PRX ` Pj, Y

3. Position-alikeness of parameters: Two formulas in the same pa-
rameter class are in the same position (either antecedent position or
consequent position).

• This holds for each of our rules. As can be seen, no formulas of
the same parameter class appear on both sides of the turnstile.

4. Non-proliferation of parameters: parametric classes have only one
member below the line of an inference.

• This holds for each of our rules. As can be seen, no parameter
class has more than one member in the endsequent.

5. Eliminability of matching principal constituents: An instance of
cut in which the cut formula is principal in both inferences immedi-
ately before the cut may be traded in for a cut (or cuts) on ancestors
of the cut formula.

• We demonstrate by cases. In the first case, both instances
of the cut formula were introduced via rules from the same
concept cluster. In cut elimination for logical vocabulary this
is the only case to consider.
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For [C]

····· pRi

X ` Pi, Y
CRX ` Ci

····· pL1

X, P1 ` Y

····· pLn

X, Pn ` Y
CLX, C1, ..., Cn ` Y

CutX, C1, ..., Cn�i ` Y =)

····· pRi

X ` Pi, Y

····· pLi

X, P1 ` Y
CutX ` Y

[Repeated ] KL
X, C1, ..., Cn�i ` Y

For [P] there are two cases. The first using [PL1] and the
second using [PL2].

Using [PL1].

····· pR1

X ` C1, Y

····· pRn

X ` Cn, Y

····· pL1

X, Pi ` Y

····· pLn

X, Pn ` Y
PRX ` Pj, Y

····· pL1n

X, C1, ..., Cn ` Y
PL1X, Pi ` Y

CutX ` Y

=)

····· pRi

X ` Ci, Y

····· pL1n

X, C1, ..., Cn ` Y
[Repeated ] Cut

X ` Y
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Using [PL2].
····· pR1

X ` C1, Y

····· pRn

X ` Cn, Y

····· pL1

X, Pi ` Y

····· pLn

X, Pn ` Y
PRX ` Pj, Y

····· pLj

X ` Pi, Y
PL2X, Pj ` Y

CutX ` Y

=)

····· pRi

X ` Pi, Y

····· pLi

X, Pi ` Y
CutX ` Y

This holds because for each of our general rule forms if some formula
B, on one of the left or the right, is a premise (parent) for introducing
another formula A on the left [right], then A on the right [left] will be a
premise (parent) for introducing B on the other of the left or the right.

The second case to consider is when the left and right instances of
the cut formula are introduced via rules from different concept clusters,
yet at least one of their parents are introduced via a rule from the same
concept cluster as used to introduce the cut formula. Because this is an
instance of introducing and eliminating a formula within the same con-
cept cluster we apply LSC and cut on an instance of the cut formula in the
same position but of a lower grade. Take our earlier example structure:

Figure B.1: Example Structure

D

BA

C

F G

E

IH

Suppose we have the following instance of cut where each instance of
the cut formula A are introduced via rules from different concept clusters.
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If either of the derivations p1 and p2 end in a rule which belong to the
same concept clusters as [AR] or [CL] respectively, then we can cut on
the premises of that rule instead.

····· p0
1

X ` A, Y

····· p00
1

X, D ` Y
CRX ` C, Y

ARX ` A, Y

····· p0
2

X, A ` Y
DL1X, D ` Y

A,BLX, A, B ` Y
CutX, B ` Y =)

····· p0
1

X ` A, Y

····· p0
2

X, A ` Y
DL1X, D ` Y

A,BLX, A, B ` Y
CutX, B ` Y

=)

····· p0
1

X ` A, Y

····· p00
1

X, D ` Y
CRX ` C, Y

ARX ` A, Y

····· p0
2

X, A ` Y
CutX ` Y

KLX, B ` Y

In our last case, the parents of each instance of the cut formula are not
introduced via rules within the same concept cluster as those used to
introduce the cut formula. For example a case with A from the above
structure again as the cut formula

····· p1

X ` F, Y
CRX ` C, Y

ARX ` A, Y

····· p2

X ` E, Y
DL2X, D ` Y

A,BLX, A, B ` Y
CutX, B ` Y

We can eliminate cut in these instances by using two features of our gen-
eral rules. The first is that if we can get from A on one of the left or the
right, to B on one of the left of the right in n steps, then we can get from B
on the other of the left or the right to A on the other of the left or the right
in n steps. This is the result of the feature of our rules identified in our
first case and our concept clusters being chained together, as represented
by our trees. Because of this we can extend either of the derivations end-
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ing in our cut formula by n steps to an endsequent containing one of
the formulas n steps up the other derivations, but on the other side (right
rather than left, left rather than right). Using the above example we could
extend the derivation ending in X ` A, Y so as to cut on E

····· p2

X ` E, Y

····· p1

X ` F, Y
CRX ` C, Y

ARX ` A, Y B ` B
DRX ` D

EL2X, E ` Y
CutX ` Y

Alternatively we could extend the derivation ending in X, A, B ` Y so
as to cut on F

····· p1

X ` F, Y

····· p2

X ` E, Y
DL2X, D ` Y

A,BLX, A, B ` Y
CL1X, C, B ` Y

FL1X, F, B ` Y
CutX, B ` Y

In both cases the cut has the same grade as before, because in each case
we have extended one derivation by n steps and shortened the other by
n steps. The second feature we use is that all derivations must begin with
an instance or instances of Id. So this process of extending one derivation
and shortening another must at some point reach an instance of Id. We
then appeal to the first condition on cut elimination, and eliminate the
cut on Id directly.
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B.3 Cut Elimination Theorem

Cut Elimination Theorem: Given a derivation in which the rule
[Cut] is applied, we may effectively transform this derivation
into one in which cut is not used.

Normally we here perform an induction based on the complexity of the
cut formula S, where complexity or grade is equal to logical complexity
of the formula (the number of logical symbols in it). This corresponds (in
a cut free proof) to the number of logical inference rules used in deriving
it. We instead formulate a measure of material complexity or grade. The
idea is that the material complexity of a formula is the number of material
rules used in deriving it.

• The grade g of an instance of Id = 0

• The grade g of an instance of a material rule = the sum of the grade
of its parents.

• The grade g of a cut formula = the sum of its left and right instances
in the premise of the rule.

Our hypothesis is:

• Cut on S: If the premises of a Cut-rule in which an S is the Cut-
formula are derivable, so is the conclusion.

We show that if Cut on S0 holds for each ancestor of S then Cut on S holds
for S also. Suppose we have an instance of cut:

····· p1

X ` S, Y

····· p2

Z, S ` W
CutX, Z ` W, Y

First we consider the cases where S is active. If either of p1 or p2 are
instances of Id (i.e are beginnings of derivations) we apply condition 1.
Cut/Identity to directly eliminate cut. Next, we consider the case where
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the cut formula S is introduced via a rule. If it is weakened in we can also
directly eliminate cut:

····· p1

X ` S, Y

····· p2

Z ` W
#1.1Z, S ` W

CutX, Z ` Y, W =)

····· p2

Z ` W
KLX, Z ` W

KRX, Z ` Y, W

If S is introduced via a material rule then we apply condition 6. Elim-
inability of matching principal constituents. Each time we trade in a prin-
cipal cut on S for a cut (or cuts) on its parents (ancestors) we reduce the
material complexity (grade) of the cut formula. As we continue to push
principal cuts upwards we will either hit on instance of Id in which case
we can eliminate cut directly or a parametric cut.

Lastly, we consider the case where S is parametric. Take the class S

of occurrences of S in p1 by tracing up p1 and selecting each paramet-
ric instance of S which is in the same position as (congruent with) S in
the conclusion of p1. We then use condition 2. Regularity and condition
4. Non-proliferation of parameters to push the cut upwards past each of
the members of S, cutting on (at least one of the premises/parents) of a
principle instance of S. Non-proliferation of parameters ensures that all
position-alike occurences of S will be in S and Regularity ensures that we
can push the cut upwards in each case. What results is a proof where
there are no more parametric cuts on members of S, although there may
be more principal cuts than before. We then do the same for the occur-
rences of the cut formula in p2. Again, what results may contain more
instances of cut than before but all of which will be principal. We then
apply the above method for eliminating principal cuts.



APPENDIX C

Limit Positions

Here we show the proofs for the limit position facts. The facts are num-
bered to follow from Restall’s Fact 5 (see Chapter 2, Section 2.2). For the
context of Fact 6 see Chapter 2, Section 3.5, for Fact 7 and the Subsenten-
tials Fact, see Section 4.4 for Fact 8 see Chapter 3, Section 4.3, and for Fact
9, see Chapter 4, Section 3.2.

C.1 Definitions

We reproduce Restall’s limit position definitions:

POSITION Given a collection of sentences, with a consequent relation
` satisfying the rules of the classical sequent calculus, a pair [X : Y]
of sets of sentences is a position when X 0 Y (Restall 2009: p.,246).

LEFT AND RIGHT, IN A POSITION The LEFT COMPONENT of the
position [X : Y] is X. The RIGHT COMPONENT is Y. These are the
formulas explicitly on the left and in the right, respectively. We say
that A is to TO THE LEFT of [X : Y] if and only if X ` A, Y. A is to
THE RIGHT OF [X : Y] if and only if X, A ` Y (Restall 2009: p.,247).

EXTENSION OF POSITIONS [X0 : Y0] extends [X : Y] if every formula
in X is in X0, and every formula in Y is in Y0 (Restall 2009: p.,248).
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LIMIT POSITIONS Given a language L, a LIMIT POSITION is a pair
[X : Y] of sets of sentences such that (a) whenever X ⇢ X and
Y ⇢ Y are finite sets of formulas, [X : Y] is a position, and (b)
X[Y = L (Restall 2009: p.,249).

C.2 Proof of Fact 6

Given these an our general rules, Fact 6. follows:

FACT 6: For any limit position LP
(i) A parent Pi is to the left of LP iff all its children C1...Cn are
to the left of LP and all other parents Pj...Pn�i are to the right
of LP.
(i’) A parent Pi is to the right of LP iff either some child Ci is
to the right of LP or some other parent Pj is to the left of LP.
(ii) A child C is to the left of LP iff a parent P is to the left of
LP.
(ii’) A child C is to the right of LP iff all its parents P1...Pn are
to the right of LP.

Proof :
For (i), X ` Pj iff X ` Ci, Y...X ` Cn, Y and X, Pi ` Y...X, Pn�j ` Y.
Left to right follows from [CR] and [PL2].
Right to left follows from [PR]. This is local soundness and completeness
for P on the right.

For (i’), X, Pi ` Y iff either X, Ci ` Y or X,` Pj, Y.
Left to right. Suppose Pi is on the right. If no child Ci is on the right, then
all children C1, ..., Cn are on the left. I.e X ` C1, Y...X ` Cn, Y. If no other
parent Pj is to the left, then all other parents Pj, ..., Pn � i are to the right.
I.e X, Pj ` Y...X, Pn � i ` Y. But if this is the case, then via [PR] X ` Pi, Y.
But then Pi would be on both the left and the right. So either one child Ci

is on the right or one other parent Pj is on the left.
Right to left. This follows via local soundness and completeness from the
other direction. For the first case, suppose some child Ci is one the right.
If Pi is not on the right, then X ` Pi. Next via [CR] we have X ` Ci. But
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then Ci is on both the left and the right, which can’t be. So Pi isn’t on the
left, which means it’s on the right. For the second case, suppose another
parent Pj is on the left. Then X ` Pj. If Pi is not on the right, then it is on
the left. I.e X ` Pi. But from X ` Pj via [PL2] we have X, Pi ` Y. But then
Pi is on both the left and the right, which it can’t be. So Pi must be on the
right.

For (ii), X ` Ci iff X ` Pi.
Left to right. Suppose Ci is on the left. If no parent Pi is on the left, then
each parent P1, ..., Pn must be on the right. I.e X, P1 ` Y...X, Pn ` Y. But
then via [CL] X, C1, ..., Cn ` Y. This means that Ci is on the right, which it
can’t be while also being on the left. So some parent Pi must on the left.
Right to left. Suppose that some parent Pi is on the left. If Ci isn’t on
the left, then it’s on the right. I.e X, Ci ` Y. From weakening we derive
X, C1, ..., Cn ` Y and then apply [PL1] resulting in X, Pi ` Y. But then Pi

in on the right, which it can’t be while also being on the left. So Ci must
be on the right.

For (ii’), X, Ci ` Y iff X, P1 ` Y...X, Pn ` Y.
Left to right. Suppose Ci is on the right. If every parent P1, ..., Pn isn’t on
the right, then at least one is on the left. So, for some parent X ` Pi, Y. But
if so, then via [CR] X ` Ci, Y. This would mean that Ci were on the left,
which it can’t be while also being on the right. So each parent P1, ..., Pn

must be on the right.
Right to left. Suppose every parent P1, .., Pn is to the right. I.e X, P1 `
Y...X, Pn ` Y. Then via [CL] X, C1, ..., Cn ` Y. So not every child can be to
the left. Suppose some child Cj is to the left, then X ` Cj, Y. But from (ii)
above we saw that if a child is to the left then some parent is to the left.
But all parents are to the right. So Cj can’t be to the left. Therefore, it’s to
the right. Cj was arbitrary and so all children, including Ci must be to the
right.
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C.3 Proof of Fact 7 and Subsententials Fact

FACT 7
(i) For symmetric concept clusters, if the parent [child] is to
one of the left or the right, then the child [parent] is the same.

Proof : FACT 7 follows from FACT 6. In a symmetric concept cluster
there is only one parent and one child. (i), (ii), (iii), and (iv) of FACT 6
become:

(i) The parent P is in the left iff the child C is on the left;
(i’) The parent P is the right iff the child C is on the right;
(ii) The child C is on the left iff the parent P is on the left;
(ii’) The child C is on the right iff the parent P is on the right.

Here (i) and (ii) merely swap the order of the biconditional, as with (i’)
and (ii’). These taken together are just what FACT 7 (i) says.

Subsententials Fact
(i) For any two names a and b which share a concept cluster,
v(a) = v(b);
(ii) For any predicates F and G, if F is a parent of G, then
v(F) ✓ v(G). If these are members of an upwards branching
cluster then v(F) ⇢ v(G).

Proof : The Subsententials Fact follows from facts 6 and 7, along with our
restrictions on a model theoretical valuation function v:

1. For any two names a and b, if whenever Fa is to the left [right] Fb

is also, then v(a) = v(b);

2. For any predicate F if Fa is on the left [right] then v(a) 2 v(F) [
v(a) /2 v(F)];

For (i), it follows from FACT 7 that if a and b share a concept cluster
then a is on the right [left] iff b is also. From restriction (1), then v(a) =
v(b).
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For (ii), if v(F) 6✓ v(G) then 9x, x 2 F ^ x /2 G. It follows from FACT
6, that if F is a parent of G, then whenever Ga is on the right, then so is
Fa. Remember that for any finite language L, we define limit positions
relative to its (possibly) infinite extension L+ where every object has a
name. The second restriction then becomes a biconditional, meaning that
membership of the extension of a predicate always corresponds to some
sentence being on the left. Therefore if v(a) /2 v(G) then v(a) /2 v(F) and
¬9x, x 2 F ^ x /2 G. So v(F) ✓ v(G). In the case where F and G are
part of an upwards branching cluster, then G may be on the left without
F being so also. So v(F) ⇢ v(G).

C.4 Proof of Fact 8

FACT 8: For any contextual mixed position CMP:
(i) A contextual declarative Dha,bi is to the left [right] iff all of
its contextual variants are.
(ii) A contextual imperative Iha,bi is to the left [right] iff all of
its speaker variants are.

Proof of (i). Left to right. Suppose Dha,bi is on the left of some contex-
tual mixed limit position CLP. Then X ` Dha,bi, Y. We then apply the
[1stR] deriving X ` Dhc,bi, Y for some arbitrary c. This speaker contex-
tual variant is therefore also to the left and because c was arbitrary so is
any speaker contextual variant. We then apply [2ndR] to our first contex-
tual variant on the left, deriving X ` Dha,ci, Y. Therefore this addressee
contextual variant is also to the left and because c was arbitrary so is any
addressee variant. We could also do the same to any speaker variant.
Thus any contextual variant which is speaker and an addressee variant
is also to to the left. Any variant is either a speaker or addressee variant.
So any variant is also to the left.
Right to left. Suppose some contextual variant of Dha,bi, Dhc,di is to the
left. Therefore X ` Dhc,di, Y. We first apply [1stR] deriving X ` Dha,di, Y.
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Then we apply [2ndR] deriving X ` Dha,bi, Y. Therefore, Dha,bi is also to
the left.

The proof for being on the right is the same however using the L rules.
Proof of (ii). The same as proof of (i) however only using the 1st rules.

C.5 Proof of Fact 9

Fact 9: Compliant Extensions
For all compliant limit positions X : Y, if v(t�0, ..., tn) 2
v(Pha,bi), then 8x8y, v(b, t�0, ..., tn) 2 v(Phx,yi).

Proof : Fact 9 follows from Fact 8, the restrictions on model-theoretic
v, and the definition of compliance.

Complicance A position X : Y is compliant iff 8P(t�0, ..., tn)ha,bi when-
ever P(t�0, ..., tn)ha,bi 2 X [2 Y], then P(b, t�0, ..., tn)ha,bi 2 X [2 Y].

Suppose for a compliant limit position X : Y, v(t�0, ..., tn) 2 v(Pha,bi).
Then from our second restriction on v, the imperative P(t�0, ..., tn)ha,bi is
to the left. For if it were not on the left, i.e on the right, then v(t�0, ..., tn) /2
v(Pha,bi). From X : Y being compliant, the declarative P(b, t�0, ..., tn)ha,bi
is also to the left. Again from the second restriction on v, v(b, t�0, ..., tn) 2
v(Pha,bi). From Fact 8 (i), any contextual variant of P(b, t�0, ..., tn)ha,bi is
also to the left. So from the second restriction on v,8x8y, v(b, t�0, ..., tn) 2
v(Phx,yi).



APPENDIX D

Sequent Rules and Semantic
Restrictions

This appendix is a reference for all the sequent rules and restrictions on
(sub)atomic systems.

D.1 Sequent Rules

Figure D.1: Structural Rules

Id
f ` f

G ` f, S G, f ` S
Cut

G ` S

G ` S
KR

G ` f, S
G ` S

KL
G, f ` S

G ` f, f, S
WR

G ` f, S
G, f, f ` S

WL
G, f ` S
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Figure D.2: Connective Rules

G ` f, S G ` y, S ^R
G ` f ^ y, S

G, f ` S ^L1G, f ^ y ` S
G, y ` S ^L2G, f ^ y ` S

G ` f, S _R1G ` f _ y, S
G ` y, S _R2G ` f _ y, S

G, f ` S G, y ` S _L
G, f _ y ` S

G ` f, S ¬R
G,¬f ` S

G, f ` S ¬R
G ` ¬f, S

Figure D.3: General Material Rules

(i) First Rules

X ` Pi, Y
CR

X ` Ci, Y

X, C1, ..., Cn ` Y
PL1X, Pi ` Y

X ` Pi, Y
PL2X, Pj ` Y

(ii) Second Rules

X, P1 ` Y ... X, Pn ` Y
CL

X, C1, ..., Cn ` Y

X ` C1, Y ... X ` Cn, Y X, Pi ` Y ... X, Pn ` Y
PR

X ` Pj, Y

Figure D.4: Identity Rules

(i) Subsentential Identity

IdsFa ` Fa

(ii) Contextual Identity

Idc
Sha,bi ` Sha,bi
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Figure D.5: Perspective Shifting Rules

X, Sha,bi ` Y
1stL

X, Shc,bi ` Y

X ` Sha,bi,Y
1stR

X ` Shc,bi,Y

X, Sha,bi ` Y
2ndL

X, Sha,ci ` Y

X ` Sha,bi,Y
2ndR

X ` Shc,bi,Y

Figure D.6: Marked Imperatives

G, fha,bi ` S
markL

G, b(f)ha,bi ` S
G ` fha,bi, S

markR
G ` b(f)ha,bi, S

D.2 Restrictions on (Sub)Atomic Systems

D.2.1 System Definitions

Atomic System An atomic system is a triple of a language [L] made up
of atomic propositions, a set of substitution rules [R], and an assign-
ment function [v]: {L, R, v}.

Subatomic System An atomic system is a triple of a language [L]
made up of names, n-place predicates, and sentences of the form
‘Pn(t1, ..., tn)’, a set of substitution rules [R], and an assignment
function [v]: {L, R, v}.

Contextual System A contextual system is either an atomic or subatomic
system, where the language [L] is extended with speaker-addressee
contexts ha, bi such that each sentence S is assigned a context to
form the contextual sentence Sha,bi.
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D.2.2 Semantic Restrictions

LSC The rules for each concept cluster are instances of the general rule
forms.

Symmetry For names, each concept cluster has only one parent and one
child.

Identity Each name in the language is assigned an instance of the iden-
tity axiom Ids (or Idc for contextual systems).

Compositionality For sentences, rules are assigned by substituting the
predicate of the sentence into the rules for its names and names
into the rules for its parents.

Agent Neutrality and Relativity Declarative sentences are assigned
both pairs of perspective shifting rules. Imperative sentences are
only assigned the first.

Uniformity of Meaning Predicates are assigned the same inference
rules regardless of type.
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