Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics

Yu-Jing Zhang¹, Hang-Wei Hu¹,* Min Gou¹, Jun-Tao Wang², Deli Chen¹, Ji-Zheng He¹,²*

¹ Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
² State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

*Author for correspondence: Ji-Zheng He, E-mail: jizheng.he@unimelb.edu.au or Hang-Wei Hu, E-mail: hang-wei.hu@unimelb.edu.au

Running head: Effects of different animal manures on soil ARGs
Abstract

Land application of animal manure is a common agricultural practice potentially leading to dispersal and propagation of antibiotic resistance genes (ARGs) in environmental settings. However, the fate of resistome in agro-ecosystems over time following application of different manure sources has never been compared systematically. Here, soil microcosm incubation was conducted to compare effects of poultry, cattle and swine manures spiked with or without the antibiotic tylosin on the temporal changes of soil ARGs. The high-throughput quantitative PCR detected a total of 185 unique ARGs, with Macrolide-Lincosamide-Streptogramin B resistance as the most frequently encountered ARG type. The diversity and abundance of ARGs significantly increased following application of manure and tylosin, with more pronounced effects observed in the swine and poultry manure treatments than in the cattle manure treatment. The level of antibiotic resistance gradually decreased over time in all manured soils but was still significantly higher in the soils treated with swine and poultry manures than in the untreated soils after 130 days’ incubation. Tylosin-amended soils consistently showed higher abundances of ARGs than soils treated with manure only, suggesting a strong selection pressure of antibiotic-spiked manure on soil ARGs. The relative abundance of ARGs had significantly positive correlations with integrase and transposase genes, indicative of horizontal transfer potential of ARGs in manure and tylosin treated soils. Our findings provide evidence that application of swine and poultry manures can enrich more soil ARGs than cattle manure, which necessitates the appropriate treatment of raw animal manures prior to land application to minimise the spread of environmental ARGs.
One-sentence summary: Swine and poultry manures are more enriched in ARGs than cattle manure, and can exert stronger selection pressure on soil resistome in soil microcosm incubations.

Keywords: animal manure; tylosin; antibiotic resistance genes; mobile genetic elements; public health

1 Introduction

The increasing prevalence of antibiotic resistance genes (ARGs) in environmental settings and their potential acquisition by human pathogens have become a global public health concern in the 21st century (Rossolini et al., 2014; WHO, 2014). Antibiotic-resistant infections are now responsible for more than half a million human deaths globally each year (Dominey-Howes and Labbate, 2014), while over 10 million deaths in 2050 is predicted if the antibiotic resistance issue is not tackled from now onwards. The over-prescription and abuse of antibiotics in clinical environments, and especially in livestock production, is considered the major cause leading to the global spread of antibiotic resistant bacteria (Sarmah et al., 2006). Environmental ARGs are subjected to potential transmission to human pathogens and commensals via the route of horizontal gene transfer (HGT; conjugation, transduction and transformation) mediated by mobile genetic elements (e.g., plasmids, integrons, and transposons) (Thomas and Nielsen, 2005; Heuer et al., 2011). Therefore, ARGs have been recognized as a novel type of environmental contaminant (Pruden et al., 2006) attracting
emerging efforts to understand the behaviors and mobility of ARGs in diverse environments and their links with clinically-relevant pathogens (Forsberg et al., 2012).

The global consumption of antibiotics substantially increased from 50 billion to 70 billion standard units between 2000-2010, among which 70-80% are applied to livestock industry, especially in poultry, swine, and cattle husbandry (Gelband et al., 2015). Tetracyclines, macrolides, and sulfonamides are three most commonly used antibiotics in livestock, and are also widely used in human medicines for treatment of infections (Jechalke et al., 2014b; Gelband et al., 2015). Along with the increasing consumption of antibiotics, it was found that veterinary antibiotics are poorly digested in the guts of animals, and a significant amount (30-90%) of them are released into the environment through animal urination and defecation (Zhang and Zhang, 2011). Use of veterinary antibiotics posed a strong pressure on the gut microbiomes by selecting antibiotic resistant bacteria through mutation or acquisition of ARGs (Tenover, 2006). An emerging body of studies have reported that there is a positive correlation between dosage of veterinary antibiotics and the occurrence of ARGs in manure and agricultural soils (Bibbal et al., 2007; Byrne-Bailey et al., 2009; Heuer and Smalla, 2007; Hölzel et al., 2010). Therefore, it is imperative to understand the impact of antibiotic usage on ARGs in veterinary settings and their fate after release into the environment.

The abuse of antibiotics in livestock production and the prevalence of ARGs in animal gastrointestinal tract have triggered global concerns that land application of animal manures may lead to the dissemination of ARGs in agro-ecosystems (Udikoviv-Kolic et al., 2014; Hu et al., 2016a). Apart from being recognized as a rich reservoir of ARGs phylogenetically
close to potential human pathogens (Heuer et al., 2011; Forsberg et al., 2012), manure can also provide nutrients for favoring the occurrence of HGT (Smalla et al., 2000). These manure-derived ARGs are in high risk of spreading into the food chain (Marti et al., 2013; Zhu et al., 2017), and may pose a potential threat to public health when vegetables grown in manured soils are consumed by humans. Recent studies have started to shed light on the transmission of manure-derived ARGs in agricultural soils following land application of animal manures (Jechalke et al., 2013, 2014a; Garder et al., 2014; Peng et al., 2015; Hu et al., 2016a; Luby et al., 2016). Most of these studies, however, focused on only single type of manure or a limited number of well-documented ARG types (Heuer and Smalla, 2007). To our knowledge, no studies have attempted to systematically compare the impacts of different sources of animal manures, in the presence or absence of antibiotics, on the temporal patterns of a broad spectrum of ARGs. An improved understanding of this knowledge is critical to prediction of ARG behaviours in soil environments, and development of appropriate manure treatment approaches to minimise the spread of environmental ARGs.

Therefore, the objective of this study is to compare the effects of amendment of three animal manure sources (swine, cattle, and poultry) on the temporal succession of a diverse array of ARGs in soil microcosms incubated with agricultural soils. Tylosin, as a macrolide antibiotic which is used in livestock industries for growth promotion and therapy (Sarmah et al., 2006; Apley et al., 2012), was spiked into manure to test their synergistic selection effects on antibiotic resistance. The high-throughput quantitative PCR array was performed to target 285 ARGs which confer resistance to all major classes of antibiotics; and 10 mobile genetic elements (MGEs) as a proxy for HGT potential of ARGs. We hypothesized that: (i)
amendment of different animal manure sources would differ in their impacts on the temporal succession of soil ARGs owing to their different intrinsic ARG profiles and selection pressure; (ii) Tylosin-spiked manure would further enhance the selection of soil ARGs and their HGT potential.

2 Materials and Methods

2.1 Soil and manure sampling

The soil used in this study was taken from a vegetable farm at Clyde (38°07′S, 145°19′E), Victoria, Australia. The soil in this site has a pH value of 7.2 and is classified as loamy sand. Total carbon and total nitrogen are 3.75% and 0.43%, respectively. Cattle manure and swine manure were collected from the Dookie Farm (36°25′S, 145°42′E), University of Melbourne, and poultry manure was taken from a chicken farm in Mornington, Melbourne. Manure samples were collected within three days after excretion without composting, and had no known history of antibiotic treatment. Soil and manure samples were kept on ice during transportation and stored at 4°C before analysis. The antibiotic tylosin used in the experiment was purchased from Sigma-Aldrich company (St Louis, MO, USA).

2.2 Soil microcosm incubations

Three sets of soil microcosm incubation experiments were established depending on the amendment of different animal manure sources, and each set included two treatments (Fig. S1). In the first treatment, manure was mixed thoroughly with sieved soils (<2 mm) to reach a final concentration of 80 mg g⁻¹ soil, which is corresponded to a typical agricultural amount of 60 m³ manure per hectare. In the second treatment, tylosin in aqueous solutions was spiked to the manure and the tylosin-spiked manure was mixed with soil to reach a concentration of
0.1 mg tylosin g⁻¹ soil and 60 m³ manure per hectare. The untreated soil sample with same water content was used as the control treatment. Soil microcosms were established in 250 ml vials with 20 g of soil or manured soil, loosely covered, and incubated in the dark at 25°C. The aerobic condition in the microcosms was maintained by opening the vials for air refreshing every three days. Soil moisture contents were maintained at 60% of the water filled pore space by adding sterilized water regularly. Soil microcosms were destructively sampled at eight time points on days 1, 7, 20, 35, 50, 70, 100, and 130 after manure application.

2.3 Soil physicochemical analysis and genomic DNA extraction

Soil total nitrogen and total carbon were measured using the classic Dumas method of combustion on the isotope-ratio mass spectrometry (Sercon Hydra, Crewe, United Kingdom). Soil pH were measured with a soil to water ratio of 1: 5 using the Orion Star A211 pH Meter (Thermo Scientific Inc., Melbourne, Australia). Soil water content was measured by oven-drying soils samples at 105°C for 24 h. DNA was extracted from soil and manure samples using the MoBio PowerSoil DNA extraction kit (MoBio Laboratories, Carlsbad, CA, USA) following the manufacturer’s instructions. The concentration and purity of the extracted DNA were assessed using the NanoDrop ND2000c spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

2.4 High-throughput quantitative PCR

High-throughput qPCR (HT-qPCR) was performed to determine the diversity and abundance of ARGs using the Wafergen SmartChip Real-time PCR system (Fremont, CA, USA). The Wafergen system is a high-throughput qPCR platform with the capability to run
5184 reactions with each volume of 100 nl using the SensiMix SYBR No-ROX reagent (Bioline, London, UK). Primers, DNA and reagents were dispensed into the 5184-nanowell SmartChip using a Multisample NanoDispenser (Fremont). The HT-qPCR array contained a total of 296 primer sets (Su et al., 2015; Hu et al., 2016b), including 285 primer sets targeting eight major classes of ARGs, 10 primer sets targeting MGEs, and one 16S rRNA gene as the internal control (Table S1). The specificity of all primers was verified through amplicon sequencing, BLAST search and amplification efficiency check (Looft et al., 2012; Johnson et al., 2016). The SmartChip was loaded into the Wafergen SmartChip Real-Time PCR Cycler using the thermal-cycling conditions as follows: 95°C for 10 min, followed by 40 cycles of 95°C for 30s and 60°C for 30s. Only well data with the amplification efficiencies within 1.7-2.3 were remained. A threshold cycle (Cₜ) value of 31 was used as the detection limit (Su et al., 2015). A comparative Cₜ method, also referred to as the ΔΔCₜ method of relative profiling, was performed to assess the temporal changes of ARGs across all the samples (Schmittgen and Livak, 2008).

2.5 Quantitative PCR analysis of the bacterial 16S rRNA gene

The absolute abundance of 16S rRNA gene was determined on a Bio-Rad CFX384 Real-Time PCR Detection System (Bio-Rad, Herculers, USA) using the primer set BACT1369F/PROK1492R (Suzuki et al., 2000). Each 10 µl reaction system included 5 µl SensiMix SYBR No-ROX reagent (Bioline), 0.4 µl of each primer (10 µM), 2 µl DNA template, and 2.2 µl nuclease-free PCR-grade water. Thermal-cycling conditions were as follows: an initial enzyme activation at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 15s and a final annealing and extension at 60°C for 1 min. A
plasmid containing correct inserts of the bacterial 16S rRNA gene fragment was used as standard curves in tenfold serial dilutions.

2.6 Co-occurrence analysis and network generation

The CoNet Cytoscape plug-in method was used to visualize the co-occurrence patterns of ARGs and MGEs in the network interface (Soffer et al., 2015). ARGs with a minimum occurrence of 3 across all soil samples were regarded as poorly represented ARG subtypes and discarded to reduce artificial correlation bias. The P-values were calculated based on two dissimilarity methods (Bray-Curtis and Kullback-Leibler) and two correlation methods (Spearman and Pearson) to control the potential of obtaining false-positive results. The significant pairwise correlations (P-value < 0.05) between the ARG and MGE subtypes were utilized to form their co-occurrence networks. The resultant co-occurrence network was visualized using the Frucherman Reingold algorithm on the interactive platform of Gephi (Bastian et al., 2009). A correlation with a correlation coefficient (ρ-value) > 0.8 and a significant level (P-value) < 0.05 were considered statistically robust (Junker and Schreiber, 2008).

2.7 Statistical analysis

One-way analysis of variance (ANOVA) was performed to analyse the effects of manure application and tylosin addition on the diversity, relative and absolute abundances of ARGs across different treatments. Pearson’s correlation test was performed to test the correlations between the relative abundance of ARGs and MGEs. Non-metric multidimensional scaling (NMDS) analysis based on the relative abundance of ARGs was
performed to visualize the Bray-Curtis dissimilarity matrices. The heatmap showing the overall HT-qPCR array data of ARGs with log-transformed relative abundances was generated with the “ggplot2” package in R platform. The Venn diagrams showing the unique and shared ARG subtypes across different treatments and manure sources were performed with the “gplots” package in R platform.

3 Results

3.1 Diversity of ARGs and MGEs in different treatments

The HT-qPCR array targeting 285 ARGs and 10 MGEs was performed to compare the effects of three types of animal manure with or without tylosin addition on the diversity of ARGs and MGEs in an agricultural soil. The ARGs detected in these samples encompass three major resistance mechanisms: antibiotic deactivation, efflux pump, and cellular protection, with antibiotic deactivation (39% of total ARGs) as the most common resistance mechanism (Fig. S2). The detected ARGs can potentially confer resistance to eight major classes of antibiotics, of which MLSB (20%) and aminoglycoside (19%) were the two most frequently detected ARG types (Fig. 1a). Other frequently detected ARGs included multidrug (18%), tetracycline (17%) and β-lactamase (13%) (Fig. 1a).

Untreated soil samples harbored the lowest ARG diversity (68.8 ± 2.7 on average) among all the treatments (Fig. 1b). The average numbers of ARGs detected in poultry manure (109.7 ± 5.9) and swine manure (109.0 ± 4.2) were significant higher than that in cattle manure (82.0 ± 5.0) (P < 0.05). Among all the manure-treated samples without tylosin, the number of detected ARGs ranged from 58 to 133 in individual samples and a significantly
higher ARG diversity was observed in poultry and swine manure-treated samples compared with cattle manure-treated samples (Fig. 1b, $P < 0.05$). Tylosin-spiked cattle manure also harbored the lowest diversity of ARGs among all manure-treated samples spiked with tylosin (Fig. 1b). The average numbers of detected MGEs were similar among all the samples but slightly higher in the manure samples (Fig. 1b).

Venn diagrams showed the number of unique and shared ARGs among different manure and soil samples (Figs. 1c and 1d). A total of 86 ARGs were shared among the three types of animal manures, and 22, 19 and 3 unique ARGs were observed in swine, poultry, and cattle manures, respectively (Fig. 1c). Untreated soil samples shared 129 ARGs with manure-treated samples, and amendment of poultry, cattle, and swine manures could introduce 32, 28, and 28 unique ARGs, respectively, into soils (Fig. 1d).

3.2 Abundance of ARGs and MGEs in different treatments

The comparative C_T method was used to calculate the relative abundances of ARGs and MGEs by normalizing to 16S rRNA gene in the same HT-qPCR array (Schmittgen and Livak, 2008). The relative and absolute abundances of ARGs in cattle manure samples were significantly lower compared with those in swine and poultry manure samples, with swine manure harbouring the highest abundance of ARGs (Figs. 2a and 2c). When animal manure was applied to the soil, the relative and absolute abundances of ARGs in soil samples treated with cattle and swine manure were significantly lower than those in poultry manure-treated samples (Figs. 2b and 2d). In manure-treated samples spiked with tylosin, the ARG abundances were consistently higher than those in samples without tylosin addition (Figs. 2b
The pattern of MGE abundances was quite similar to that of ARG abundances, with the lowest abundances found in cattle manure and cattle manure-treated soil samples (Fig. 2).

3.3 Temporal changes of ARGs and MGEs in manure-treated soils

Soil microcosms were destructively sampled at eight time points (days 1, 7, 20, 35, 50, 70, 100, and 130) during the incubation to explore the temporal changes of ARGs and MGEs in soils treated with three sources of animal manures with or without tylosin (Fig. 3). The numbers of detected ARGs in manure-treated soils gradually decreased over time during the incubation, regardless of whether or not tylosin was added (Fig. 3a). Interestingly, the ARG numbers in soils treated with cattle manure approached the background levels of ARGs in untreated soils at the end of incubation (day 130), but swine and poultry manure-amended soils had a significantly higher level of ARGs than untreated soils at day 130 (Fig. 3a). The relative abundances of ARGs in soils treated with poultry and cattle manures declined over time but were still higher than that in untreated soils, with a more pronounced selection effect observed in tylosin-amended samples (Fig. 3b). The tylosin-amended manure application showed consistently higher relative abundances of ARGs compared with their corresponding no-tylosin treatments (Fig. 3b). The ARG abundances in swine manure-treated samples declined sharply to background levels in untreated soils within 20 days of incubation, and then remained largely unchanged till day 130 (Fig. 3b).

The number and relative abundances of MGEs exhibited highly similar temporal patterns to ARGs across different treatments (Figs. 3c and 3d). Pearson’s correlation analysis
revealed that the relative abundance of total ARGs was significantly correlated with that of
total transposase genes ($P < 0.001$) and total integrase genes ($P < 0.001$) (Fig. 4). The
abundances of the eight major classes of ARGs were also significantly and positively
correlated with total transposase genes and total integrase genes, except MLSB and
vancomycin resistance genes (Table 1).

3.4 Temporal changes of individual subtypes of ARGs

The distribution and temporal changes of individual ARG subtypes across different
treatments were assessed at a higher resolution level in heatmap based on the log-transformed
relative abundance of each ARG subtypes (Fig. 5). The untreated soil samples showed the
lowest detection frequencies of ARGs, which remained largely stable during the incubation.
In general, manure application resulted in obvious increases in the relative abundances of a
majority of ARG subtypes, and the effect was more pronounced in manure spiked with
tylosin treatments. Poultry and swine manures had much stronger selection pressure on
enhancing the ARGs abundance than cattle manure. The NMDS ordination based on the
Bray-Curtis dissimilarity matrices revealed that soil samples treated with different animal
manures clustered separately, and samples treated with both manure and tylosin tended to
separate from those treated with manure only (Fig. 6).

These ARGs showed different temporal patterns during the incubation (Fig. 6): (i)
Some genes conferring resistance to aminoglycoside ($aacC4, aadA-01, aadA-02, aadA-1-02,$
$aadA2-01, aadA2-02$), FCA, MLSB ($ermY, lnuA-01$), multidrug ($oprD$) and tetracycline
($tetD-02$), which were present in untreated soil samples, became remarkably more abundant
in soils treated with manure and tylosin, especially in the poultry and swine manure treatments; (ii) Some genes conferring resistance to multidrug (\textit{yceL/mdtH-03}, \textit{yidY/mdtL-01}, \textit{yidY/mdtL-02}) and tetracycline (\textit{tetA-02}, \textit{tetB-01}, \textit{tetB-02}, \textit{tetC-01}), which were absent in untreated soil samples, appeared in manure and tylosin treated samples, and persisted until the end of the incubation; (iii) Several multidrug resistance genes (\textit{qacH-01}, \textit{qacH-02}, \textit{rarD-02}, \textit{tolC-01}, \textit{tolC-02} and \textit{tolC-03}) and vancomycin resistance genes (\textit{vanRA-02}, \textit{vanRB}) were abundant in three types of manures, however, decreased over time in all the manured soils and became undetected at the end of the incubation; (iv) Most β-lactam resistant genes kept relatively unchanged in soils amended with manure in the presence or absence of tylosin.

3.5 Co-occurrence patterns among ARGs and MGEs

The network analysis was performed to explore the co-occurrence patterns of ARGs and MGEs based on strong ($\rho > 0.8$) and significant ($P < 0.05$) correlations. The resultant network was composed of 73 nodes (ARG subtypes) and 209 edges (pairwise correlations) (Fig. 7a), and could be clearly separated into six modules (Fig. 7b). Each module consisted of different types of ARGs, except module IV which included exclusively five tetracycline resistance genes. The most densely connected node in each module was defined as the ‘hub’, for example, the ‘\textit{tolC-03}’ (multidrug resistance) and ‘\textit{aadA2-01}’ (aminoglycoside resistance) were the hubs for modules I and II, respectively (Fig. 7b). The module III had three equivalent hub genes \textit{vgb-01}, \textit{acrA-05} and \textit{yidY/mdtL-01}. It has been suggested that hubs could be regarded as indicator ARGs to represent the quantity of other co-occurring ARGs in the same module (Li et al., 2015). Interestingly, the \textit{intI1} gene (belonging to MGEs) had
intensive connections with multiple ARGs which can potentially confer resistance to multiple classes of antibiotics (Fig. 7a).

4. Discussion

4.1 Poultry and swine manures have stronger selection pressure on soil resistome than cattle manure

Animal manure has been long regarded as an important reservoir of ARGs, no matter whether or not the animals have been treated with antibiotics (Heuer et al., 2011; Hu et al., 2016a). Land application of animal manure, as a common agricultural practice, may introduce the inflow of a large amount of fecal microbiome including antibiotic resistant bacteria and potential human pathogens into the soil environment (Chee-Sanford et al., 2009; Heuer et al., 2011; Wang et al., 2015). Functional metagenomic analysis revealed that manure-derived ARGs can account for up to 70% of the total ARGs in soils following manure application (Su et al., 2014). Swine, cattle, and poultry manures are three major types of widely-used organic fertilizers worldwide (Wichmann et al., 2014), but no studies have systematically compared their effects on the temporal patterns of soil ARGs. In this study, we found that swine manure harbouried the highest diversity and abundance of ARGs, followed by poultry manure, while the diversity and abundance of ARGs in cattle manure were significantly lower than the other two manure types. This result supported previous findings that animal manure is a “hotspot” for environmental contamination with ARGs (Chee-Sanford et al., 2001; Sengeløv et al., 2003; Heuer and Smalla, 2007) even from antibiotic-free animals (Jackson et al., 2004; Looft et al., 2012; Udikoviv-Kolic et al., 2014; Hu et al.,
Our findings imply that attentions should be particularly paid to swine and poultry manures which need to be properly treated, i.e. by composting, to reduce the levels of ARGs before land application.

Although the untreated agricultural soil examined in this study had a diverse array of ARGs (Fig. 1b), its ARG abundances were significantly lower than all three types of animal manures. Therefore, manure application can dramatically increase the abundance of soil ARGs (Figs. 2b and 2d), and can also introduce a number of unique manure-derived ARGs into soil (Fig. 2). For example, swine manure is highly enriched in tetracycline, sulfonamide, MLSB, and β-lactam resistance genes, while poultry manure is enriched in multidrug, and aminoglycoside resistance genes, and thus application of these two manures substantially enhanced abundances of these genes, resulting in contrasting profiles of ARGs across the different manure treatments (Fig. 2). Cattle manure application had relatively slight impacts on soil ARG diversity compared to poultry and swine manures (Fig. 1), but still significantly increased soil ARG abundances, in particular, the abundances of aminoglycoside and multidrug resistance genes (Fig. 2). Therefore, different sources of animal manures could manipulate soil resistome in varying magnitudes, and different soil ARG profiles in manured soils would differ in their consequences for soil and public health. The differences in ARG profiles in the three manure sources could be attributed to the dietary, antibiotic use history, and indigenous gut resistome of the animals.

Despite the different ARG profiles in soils treated with different animal manure sources, the diversity and abundance of ARGs in all manured soils gradually decreased over time (Fig. 3). Notably, the abundance of ARGs in swine manure-amended soils dramatically
declined to the background levels of ARGs in untreated soils within 20 days, whereas ARGs in poultry and cattle manure-treated soils persisted in the entire course of incubation and were still more abundant than background levels at day 130. This finding has implications for agricultural management practice from the perspective of minimizing antibiotic resistance: raw swine manure can be applied to the field one month before the vegetable harvest, but raw poultry and cattle manures should be used at least three ~ four months before harvest, with poultry manure having the highest risk of ARGs spreading. The time-course reduction of ARGs following manure application may be explained by the gradual out-competition of manure-derived bacteria by the soil indigenous microbiomes, and the different conditions between animal gut and soil environments (Chee-Sanford et al., 2009; Hu et al., 2016a). A number of ARGs, such as aacC4 and aadA genes (aminoglycoside resistance); ermY and inuA-01 genes (MLS B resistance); oprD gene (multidrug resistance); and tetD-02 gene (tetracycline resistance), persisted until the end of the incubation, particularly in the poultry and swine manure treatments (Fig. 5). Therefore, these ARGs might have the highest potential to be captured by human pathogens and pose a threat to human health.

4.2 Antibiotic tylosin amendment imposed an additional selection pressure on ARGs

The use of human-made antibiotics in livestock production and human medicines was considered as the major reason for the exponentially increasing ARGs in environmental samples since 1940 (Knapp et al., 2010). Many previous studies have investigated the effects of manure collected from antibiotic-treated animals on the composition and mobility potential of ARGs in natural settings (Jechalke et al., 2014a; Jechalke et al., 2013; Luby et al., 2016). No studies have, however, provided comprehensive insights into the impacts of the antibiotic
Tylosin on the temporal patterns of a wide spectrum of soil ARGs. Tylosin belongs to the macrolide subclass in the MLSB class, which was the most frequently detected antibiotic resistance type in this experiment (Fig. 1a). Although it is supposed that tylosin has a short half-life of a couple of days in soils (Kolz et al., 2005), its impacts would last for a long period after its decomposition, as demonstrated by the persistence of ARGs for many years in the absence of the corresponding antibiotic (Johnsen et al., 2009). Therefore, it is not surprising to observe increased abundances of MLSB resistance genes in tylosin-spiked poultry and swine manure-treated soils until the end of the incubation (Fig. 2), indicating the direct selection effect of tylosin on the MLSB resistance type.

Erythromycin ribosome methylation (erm) genes encoding tylosin resistance by reducing the ability of tylosin from binding to the 50S ribosomal subunit (Leclercq and Courvalin, 1991; Weisblum, 1998), and they are detected in bacteria isolates of human origin which may constitute a health risk for human (Rollins et al., 1985). Three main erm genes have been described in staphylococci: erm(A) gene is located on transposon Tn554, erm(B) gene on transposon Tn551 and erm(C) gene on a plasmid (Saribas et al., 2006), suggesting the HGT potential of the erm genes. We detected 11 erm genes in this study, and these genes were obviously more abundant in the tylosin-amended treatments, especially in the poultry manure and swine manure treatments (Fig. 5). In the swine manure treatments, the relative abundances of erm genes were significantly higher in the tylosin-amended treatments compared with the tylosin-absent treatments (Fig. S3). Therefore, the presence of tylosin in animal manures can impose strong selection pressure on soil microbiome, and increase the propagation of tylosin-resistant bacteria.
Beyond the selection effect of tylosin on MLSB resistance genes, it is interesting to find that ARGs encoding resistance to almost all the major classes of ARGs were clearly enriched in tylosin-amended treatments compared with manured soils without tylosin (Fig. 2). This non-targeted selection phenomenon might be explained by the co-selection mechanisms (Hu et al., 2016b) in which genes encoding resistance to different antibiotics may reside in the same MGEs (plasmid, integrin, or transposon) or single genes can encode resistance to various classes of ARGs. As shown in the co-occurrence network (Fig. 7), genes conferring resistance to different categories of antibiotics were shared in the same module, suggesting that these ARGs might be carried by the same bacterial cells or MGEs, and they can change and transfer together under the selection pressure imposed by tylosin. Therefore, our findings caution that the addition of tylosin can select for a broad range of ARGs apart from MLSB resistance, and elongate the lifespan of ARGs throughout the whole incubation period (in poultry and swine manured soils).

4.3 The HGT potential of ARGs in soils treated with manure and tylosin

The HGT of ARGs among environmental bacteria of different taxa is an important pathway for resistance dissemination and the subsequent acquisition of resistance by human pathogens and commensals (Heuer et al., 2011; Forsberg et al., 2012). Previous studies have demonstrated that manure addition may promote the HGT potential of soil ARGs, because manure generally contains high loads of broad-host-range plasmids, which are important vectors of ARGs (Heuer et al., 2011). Antibiotics could stimulate the HGT of ARGs as well mostly via accelerating conjugation (Whittle et al., 2002; Ohlsen et al., 2003). Under the selection pressure of antibiotic, fecal microbes that cannot persist in the soil environment may
transfer ARGs to resident soil bacteria via HGT mediated by MGEs (Karami et al., 2007; Heuer et al., 2011). Once being transferred, the resistance traits are likely persistent in natural settings because native bacteria are generally better adapted to the soil environment (Chee-Sanford et al., 2009). Therefore, amendment of both manure and antibiotic is likely to interactively promote the HGT potential of ARGs in soils.

In this study, the abundances of both integrase and transposase genes were significantly and positively correlated with those of total ARGs and individual ARG types across all the treatments (Table 1), indicating that there is a risk for HGT of ARGs in the tested agricultural soils after manure/antibiotic application. Particularly, the relative abundances of MGEs were significantly higher in poultry manure treatment compared with untreated soil samples and other manure treatments, and this enrichment was even more remarkable in the presence of tylosin (Fig. 2). Therefore, ARGs in the poultry manure-treated soils may have greater HGT potential than those in other treatments. In addition, we found that the intI1 gene (belonging to MGEs) had intensive connections with multiple ARGs conferring resistance to multiple classes of antibiotics in the co-occurrence network, suggesting that class 1 integron may play important roles in dissemination of these co-occurring ARGs, which is also reported in previous studies (Gillings et al., 2015). Altogether, the enormous diversity of ARGs and MGEs in manure-treated agricultural soils provides a high likelihood of dispersal and HGT of soil ARGs, the actual frequencies of which should be tested in future studies.

5 Conclusions

In conclusion, by combining HT-qPCR ARG arrays with soil microcosm incubations, we provide comprehensive evidence that poultry and swine manures have stronger impacts
on the diversity, abundance and HGT potential of a wide spectrum of soil ARGs than cattle
manure. Such effects on soil resistome were enhanced by addition of the antibiotic tylosin,
which selected for increased resistance to multiple categories of antibiotics and prolonged the
persistence of ARGs during the incubation. Our findings have important implications for
public health if these enriched ARGs following manure application can be transferred into the
food chain through human consumption of the harvested vegetables, and necessitate the
appropriate treatment of raw animal manures (especially poultry and swine manures) to
minimise the dissemination of environmental ARGs

Acknowledgements

This work was financially supported by Australian Research Council (DP170103628,
DE150100870).

References

Table 1 Pearson correlations between the relative abundance of ARGs and MGEs in all the samples.

<table>
<thead>
<tr>
<th>Relative abundance of MGEs</th>
<th>Transposase</th>
<th>Integrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ARGs</td>
<td>0.617 (< 0.001)</td>
<td>0.733 (< 0.001)</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>0.926 (< 0.001)</td>
<td>0.826 (< 0.001)</td>
</tr>
<tr>
<td>β-lactamase</td>
<td>0.23 (< 0.001)</td>
<td>0.477 (< 0.001)</td>
</tr>
<tr>
<td>FCA</td>
<td>0.482 (< 0.001)</td>
<td>0.473 (< 0.001)</td>
</tr>
<tr>
<td>MLSB</td>
<td>0.242 (0.088)</td>
<td>0.239 (< 0.001)</td>
</tr>
<tr>
<td>Multidrug</td>
<td>0.885 (< 0.001)</td>
<td>0.943 (< 0.001)</td>
</tr>
<tr>
<td>Sulfonamide</td>
<td>0.840 (0.015)</td>
<td>0.194 (0.001)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.305 (< 0.001)</td>
<td>0.486 (< 0.001)</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>0.269 (< 0.001)</td>
<td>0.338 (0.072)</td>
</tr>
<tr>
<td>Other</td>
<td>0.514 (< 0.001)</td>
<td>0.194 (0.001)</td>
</tr>
</tbody>
</table>

Values showed in the table are the r-values derived from the Pearson analysis, and the P-values are showed in the brackets. The bold numbers represent significant correlations (P < 0.05).
Figure captions

Figure 1. (a) Classification of the 185 ARGs detected in all the samples based on the classes of antibiotic to which they confer resistance. (b) The average number of ARGs and MGEs detected in each treatment. Different letters above the bars indicate a significant difference (P < 0.05). Venn diagram shows the number of unique and shared ARGs among the three types of manures (c) and among the untreated soils and manured soils (d). (Abbreviations: FCA, fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol resistance genes; MLSB, Macrolide-Lincosamide-Streptogramin B resistance. CK, untreated soil samples; PM, poultry manure treatment; PMA, tylosin-amended poultry manure treatment; CM, cattle manure treatment; CMA, tylosin-amended cattle manure treatment; SM, swine manure treatment; SMA: tylosin-amended swine manure treatment; UPM, untreated poultry manure; UCM, untreated cattle manure; USM, untreated swine manure)

Figure 2. (a) Relative abundance of ARGs and MGEs detected across different treatments. (b) Absolute abundance of ARGs and MGEs detected across different treatments.

Figure 3. (a) The temporal changes of the average number of detected ARGs across the different treatments. (b) The temporal changes of the relative abundance of ARGs across the different treatments.

Figure 4. Correlation between the relative abundance of total ARGs and the relative abundances of transposase genes or integrase genes.
Figure 5. The heat map showing the temporal changes of the log-transformed relative abundance of ARGs across different treatments. Three columns at each sampling time point represent three independent replicates, and each row represents a specific ARG subtype.

Figure 6. Non-metric multidimensional scaling ordination plot depicts the Bray-Curtis dissimilarity matrices between soils based on the relative abundance of ARGs. The 2D stress value is 0.14, which indicated that the two-dimensional ordinations could well represent the data.

Figure 7. The networks depicting the co-occurrence patterns among the detected ARGs and MGEs. The nodes coded with different colors represent different classes of ARGs (a) and different modules (b). The edges connecting nodes correspond to statistically significant correlations between nodes. Node size is proportional to the number of connections between nodes (degree).
Fig. 2

(a) Relative abundance of ARGs and MGEs
(b) Relative abundance of ARGs and MGEs
(c) Absolute abundance of ARGs and MGEs
(d) Absolute abundance of ARGs and MGEs

- Aminoglycoside
- MLSB
- Tetracycline
- β-lactamase
- Multidrug
- Sulfonamide
- Vancomycin
- Other

- MGEs
Fig. 3

![Graphs showing changes in ARGs and MGEs over time](image-url)
Fig. 4

Transposase, Pearson's $r = 0.617, P < 0.01$

Integrase, Pearson's $r = 0.733, P < 0.01$
Fig. 5
Fig. 6
Author/s:
Zhang, Y-J; Hu, H-W; Gou, M; Wang, J-T; Chen, D; He, J-Z

Title:
Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics

Date:
2017-12-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/208831

File Description:
Accepted version