Unexpected mechanisms of action for a cytokine receptor-blocking antibody

Timothy R Hercus, Sophie E Broughton, Matthew P Hardy, Tracy L Nero, Nicholas J Wilson, Michael W Parker, and Angel F Lopez

CSL362 is a humanized interleukin-3 (IL-3)-neutralizing monoclonal antibody with enhanced effector function that binds the α subunit of the IL-3 receptor (IL3Rα). The crystal structure of an IL3Rα:CSL362 complex shows that IL3Rα adopts “open” and “closed” conformations. CSL362 blocks IL-3 function through both IL3Rα conformations but via distinct and unexpected mechanisms.

The cytokine interleukin-3 (IL-3) regulates survival, proliferation, differentiation, and activation of cells of the hemopoietic and immune system (Fig. 1a). IL-3 signals through a receptor comprising the IL-3 receptor α subunit (IL3Rα), IL-5 receptor α subunit (IL5Rα), IL-5 receptor β subunit (IL5Rβ), interleukin-13 receptor α subunit 1 (IL13Rα1), interleukin-13 receptor α subunit 2 (IL13Rα2), interleukin-13 receptor α subunit 3 (D2 and D3) of the receptor, with 2 N-terminal domains; TKI, tyrosine kinase inhibitor.

Keywords: antibodies, cancer, cytokine receptor, signaling

Abbreviations: ADCC, antibody-dependent cell-mediated cytoxicity; AML, acute myeloid leukemia; ALL, B-cell acute lymphoblastic leukemia; CART, chimeric antigen receptor-transduced T cells; CML, chronic myeloid leukemia; GMRe, granulocyte-macrophage colony-stimulating factor receptor α subunit; IL-3, interleukin-3; IL3Rα, IL-3 receptor α subunit; IL5Rα, IL-5 receptor α subunit; IL13Rα1, interleukin-13 receptor α subunit 1; IL13Rα2, interleukin-13 receptor α subunit 2; LSPC, leukemic stem and progenitor cell; MDS, myelodysplastic syndromes; NK, natural killer cell; NTD, N-terminal domain; TKI, tyrosine kinase inhibitor.

© Timothy R Hercus, Sophie E Broughton, Matthew P Hardy, Tracy L Nero, Nicholas J Wilson, Michael W Parker, and Angel F Lopez

*Correspondence to: Nicholas J Wilson; Email: nick.wilson@csl.com.au; Michael W Parker; Email: mparker@svi.edu.au; Angel F Lopez; Email: angel.lopez@health.sa.gov.au

Submitted: 08/14/2014

Revised: 08/20/2014

Accepted: 08/22/2014

http://dx.doi.org/10.4161/23288604.2014.969129

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

www.landesbioscience.com Molecular & Cellular Oncology e969129-1
or a novel “open” conformation. The “closed” conformation closely resembled the receptor conformation adopted by related cytokine receptor subunits, including the interleukin-5 receptor α subunit IL5Rα and the interleukin-13 receptor α subunits IL13Rα1 and IL13Rα2, when bound to ligand. The main difference between the closed and open forms of the receptors was the angle between the NTD and D2, which showed a difference of approximately 40°. The open and closed forms of IL3Rα observed in the crystal structure likely represent the dynamic extremes of potential NTD conformations. A disulfide bond between C76 in the NTD and C194 in D2 and a hydrogen bond between S74 in the NTD and D196 in D2 place constraints on the degree to which the NTD can open, whereas interactions between A72 in the NTD and F198 in D2 provide a “doorstop effect” to limit further closing of the IL3Rα. Our data demonstrated that a likely consequence of the flexibility in the NTD is to allow subtle modulation of ligand binding and subsequent downstream signaling. IL5Rα, IL13Rα1, IL13Rα2, and the granulocyte-macrophage colony-stimulating factor receptor α subunit, GMα, also have a flexible linker between the NTD and D2, suggesting a similar mechanism of receptor modulation.

Our crystal structure revealed that CSL362 binds exclusively to the IL3Rα NTD through interactions involving the BC, DE, and FG loops and strand D of the NTD.8,10 Investigation of the functional IL-3 binding site in IL3Rα through homology modeling and mutagenesis studies indicated that the binding interactions of CSL362 and IL-3 with IL3Rα are largely non-overlapping, and prompted further analysis to understand how CSL362 is able to function as an antagonist of IL-3 function. In the closed IL3Rα complex, binding of CSL362 prevents IL-3 binding through steric interference whereas in the open IL3Rα complex CSL362 and IL-3 can potentially bind simultaneously. Using IL3Rα mutations that were proposed to force IL3Rα to adopt an “open-like” conformation, we showed that CSL362 and IL-3 can simultaneously bind to an IL-3 receptor complex where IL3Rα exists in an open-like conformation, but that the binding of CSL362 still blocks IL-3 receptor function.10 On the basis of these results we proposed that IL-3 signaling arises through the initial assembly of a 2:2:2, IL-3:IL3Rα:βc hexamer complex that provides high-affinity IL-3 binding. Subsequent formation of a higher-order complex that requires interactions between hexamers allows βc-associated JAK2 activation and is essential for signal transduction. Such higher-order complex formation was first reported for the GM-CSF receptor and is potentially a common feature of the βc family of receptors.2 Importantly, CSL362 can inhibit IL-3-induced receptor activation in either the classic closed form by directly blocking IL-3 binding, or in the novel open form by preventing higher order complex formation (Fig. 1b).
The dual mechanisms of CSL362-mediated IL-3 neutralization demonstrate quite distinct structural explanations that may be germane in understanding the blocking activity of other antibodies that block hormone receptor function.

Disclosure of Potential Conflicts of Interest
MWP and AFL are consultants for CSL Limited which is developing CSL362 and have received research support from CSL Limited. MPH and NJW are employees of CSL Limited.

Acknowledgments
This research was partly undertaken at the Australian Synchrotron, Victoria, and we acknowledge the technical assistance of the CSL Research Department.

Funding
This work was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia, from Cancer Australia and from the Australian Cancer Research Foundation. Funding from the Victorian Government Operational Infrastructure Support Scheme to St Vincent’s Institute is acknowledged. MWP is an NHMRC Research Fellow and SEB is a Postdoctoral Fellow supported by the Leukaemia Foundation of Australia.

References
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Hercus, TR; Broughton, SE; Hardy, MP; Nero, TL; Wilson, NJ; Parker, MW; Lopez, AF

Title:
Unexpected mechanisms of action for a cytokine receptor-blocking antibody.

Date:
2014-10

Citation:

Persistent Link:
http://hdl.handle.net/11343/208962

File Description:
Published version

License:
CC BY-NC