3D PRINTED MODELS FOR PREOPERATIVE REHEARSAL TO IMPROVE OPERATIVE OUTCOMES PRIOR TO COMPLICATED AORTIC SURGERY

JASON TONIOLO, ANDREW WOO, NATHANIEL CHIANG, JASON CHUEN

AUSTIN HEALTH 3D PRINTING LABORATORY & DEPARTMENT OF VASCULAR SURGERY

THE UNIVERSITY OF MELBOURNE DEPARTMENT OF SURGERY

@jason_toniolo @ozvascdoc @3dMedLab
DISCLOSURES

• NO RELEVANT DISCLOSURES

• ... BUT I AM OPEN TO OFFERS
STANDARD EVAR IS NOW FIRST-LINE FOR AAA REPAIR – BUT INCREASINGLY COMPLEX!

• Despite clearly defined manufacturers’ instructions for use (IFU) clinicians regularly use EVAR grafts outside of anatomical criteria
• There is always a desire to “stretch the indication”
• There is a widening pool of “complex AAA” requiring treatment: juxtarenal, suprarenal, thoracoabdominal, aortoiliac, revision surgery
• Preoperative simulation and rehearsal can reduce procedure time and improve success
3D PRINTING CAN PROVIDE COMPLEX AAA MODELS

- High-resolution CTA -> Software 3d Models
 - OsiriX MD ($500), 3dSlicer (Open Source)
- 3d shell created, 3d printed and assembled
 - FormLabs Form 2 SLA 3d Printer ($5000)
 - Clear Photopolymer Resin ($300)
- Coated in lacquer to improve transparency
- Fixed to benchtop for direct vision access and fluoroscopic imaging
- Trial cannulation of vessels by expert and non-expert surgeons and surgical trainees blinded to surgical procedure

@jason_toniolo @ozvascdoc @3dMedLab @Austin_Health
POSITIVE RESULTS & BENEFITS

• Sample patient: 4-vessel Chimney EVAR
• Successful prediction of cannulation challenges
 • Failed negotiation of 18F sheath via right axillary artery
 • Failed introduction of two simultaneous 7F sheathes via right axillary artery
 • Unstable positioning of left renal artery Viabahn® stent due to early left renal bifurcation

• Improved anticipation of required equipment and catheters with expected reduction in wastage
• Excellent fluoroscopic visibility (ultimately)

@jason_toniolo @ozvascdoc @3dMedLab @Austin_Health
NEGATIVE RESULTS & CHALLENGES

• 3D Print and assembly of an entire aortic tree is time-consuming
 • Print time 40 hours
 • Assembly >25 person-hours
• Fragile model, limited material characteristics limit simulation
 • Rigidity, Deformation
 • Compliance, Lubricity
• Challenging to produce pressurised flow model (Work in Progress)
CONCLUSIONS

• Low-cost materials, software and hardware can produce an effective, 3d printed vascular tree for training and preoperative simulation.

• In house production is currently time-consuming but will improve

• Equipment, materials, experience and technique will improve model fidelity
Author/s:
Chuen, J; Toniolo, J; Woo, AWZ; Chiang, N

Title:
Use Of 3d Printed Models For Pre Operative Rehearsal Prior To Complicated Aortic Surgery

Date:
2018-02-01

Citation:
Chuen, J; Toniolo, J; Woo, AWZ; Chiang, N, Use Of 3d Printed Models For Pre Operative Rehearsal Prior To Complicated Aortic Surgery, 2018

Persistent Link:
http://hdl.handle.net/11343/212249

File Description:
Published version