Uncertainties in runoff projections in southwestern Australian catchments using a global climate model with perturbed physics

Pilar Barria¹, Kevin J.E. Walsh¹, Murray C. Peel², David Karoly¹

¹School of Earth Sciences, University of Melbourne
²Department of Infrastructure Engineering, University of Melbourne,

Corresponding author’s address: Pilar Barria, School of Earth Sciences, University of Melbourne 3010 Victoria, Australia. E-mail: pbarria@student.unimelb.edu.au

For submission to Journal of Hydrology

May 2015
Abstract

Future projections of water supply under climate change scenarios are fundamental for efficient water resource planning. However, runoff projections are affected by uncertainties in the modelling process that limit their utility to decision makers. The main source of uncertainty in runoff projections are the Global Climate Models (GCMs) used to produce future climate projections. The impact on projected runoff of this uncertainty has mainly been assessed through comparison of multi-model runs of future climate with little exploration of uncertainties inside the models due to different parameterisations. Here we investigate the uncertainty response of projected runoff due to perturbed physics parameter variations within a GCM using a novel 2500 member ensemble from the HadCM3L model. Our research evaluates the uncertainties in runoff modelling for southwest Western Australia, a Mediterranean climate region which has experienced reductions in precipitation during the last decades. Results for future projections in southwest Western Australian catchments indicate reductions in modelled precipitation between 0% to 40% and increases in temperature that fluctuate between 0.5°C and 3°C by 2050-2080 compared to 1970-2000, which lead to reductions in projected runoff of between 10% and 80%. This range of uncertainty for projected runoff is larger than that calculated for previous estimates of within-model uncertainties of runoff. The perturbed physics approach indicates that current water management assessments underestimate uncertainties in runoff projections.

Keywords

Climate change, water resources, temperature, precipitation.
1. Introduction/Background

Uncertainties in the modelling of the climate system and thus in projections of future changes (Deser et al., 2012; Deser et al., 2014; Hawkins and Sutton, 2009; Hawkins and Sutton, 2011; Kang et al., 2013; Tebaldi and Knutti, 2007) and their impact on hydrology are an active area of research (Peel and Bloschl, 2011; Peel et al., 2015). The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) (Stocker et al., 2013) includes a review of the main uncertainties in the understanding of the climate system and identified them as crucial in climate change analysis. The IPCC recognized that uncertainties in projections of natural forcing, simulations of clouds in atmosphere-ocean coupled general circulation models (AOGCMs) along with resolution issues in modelling the climate limit the skill of projections on both global and regional scales.

The main source of uncertainties in runoff modelling of future climate arises from the predictions of climate variables (Ardoin-Bardin et al., 2009; Chiew et al., 2009; Chiew et al., 2008; Prudhomme and Davies, 2008a; Xu et al., 2011), such as precipitation and temperature. These uncertainties can be partitioned in three groups: the internal variability of the climate system, the model uncertainty, or uncertainties in the Global Climate Models (GCMs) and the scenario uncertainty (Hawkins and Sutton, 2009; Hawkins and Sutton, 2011). However there are also uncertainties associated with the downscaling and bias correction techniques used to translate the coarse data from the GCM scale to the regional scale of the runoff models, and also in the hydrological model used to simulate runoff.
Quantifying GCM uncertainties is computationally expensive. Currently, two main approaches have been used to assess the uncertainties in GCM analyses: between-GCMs and within-GCMs analysis (Parker, 2013; Peel et al., 2015). The IPCC assessments and the GCMs run in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5; Taylor et al. (2009)) are the main sources of data that researchers have used in multi-model or between-GCM analyses of uncertainties in climate modelling. An alternative approach employs a “perturbed physics” analysis which explores the impact of parametric uncertainty in climate modelling. This involves using the same model but changing in each simulation a selected set of the parameters that characterize the model physics (Parker, 2013), giving an estimate of the range of possible projections from a single model that might be produced by a plausible range of values of the adjustable parameters within the model. This represents what we define here as “within-GCM” uncertainty when combined with uncertainties due to internal variability and initial conditions. This project uses Climateprediction.net data, which is the largest freely available source of climatic data that explores within-GCM uncertainty using perturbed physics. In the Climateprediction.net experiment the model parameters that represent the atmospheric and ocean physics and the sulphur cycle were perturbed between their minimum and maximum plausible values to obtain an ensemble of different parameter values that were then used to create a large ensemble of model runs (Frame et al., 2009).

Within-GCM uncertainties have so far been assessed through statistical methodologies such as bootstrapping techniques (Prudhomme and Davies, 2008a; Prudhomme and Davies, 2008b), stochastic generation of data (Peel et al., 2015) and hierarchical modelling and Markov chain Monte Carlo simulation techniques (Bastola et al., 2011; Nawaz and
These methodologies involve the generation of multiple replicates of the time series of the climate variables, precipitation and temperature, in which ideally each run has slightly different initial conditions and different trends, all of them physically plausible.

So far, hydrological assessments of climate change have mainly explored the impact of between-GCM uncertainties in runoff modelling. In particular in Australia, CMIP3 model results have been directly used to assess changes in water supply in southwest Western Australia (SWA) (Silberstein et al., 2012) and in south-east Australia (Chiew et al., 2009), and concluded that uncertainties between GCMs are large, with a range of results of around 30% with respect to the median. Teng et al. (2012) compared runoff projections using CMIP3 and CMIP5 data over Australia showing that uncertainties are very large using both sets of GCM runs, and giving differences of about 50% between the 10th and the 90th percentile of projections.

Regarding within-GCM uncertainties, Peel et al. (2015) stochastically replicated precipitation and temperature data from 5 CMIP3 GCM runs 100 times to approximate them for 17 worldwide catchments. The 100 stochastic replicates were passed through a hydrologic model and the standard deviation of the mean annual runoff (MAR) as a percentage of the mean MAR was on average 10.1%, which translates into an uncertainty in MAR of ~20% (2 standard deviations) for each GCM. However, Peel et al. (2015) indicated that their results are likely to underestimate the true within-GCM uncertainty because they only stochastically replicated the noise around the GCM data trend, not the trend itself.
In contrast, perturbed physics experiments allow the generation of simulations of climate variables with different initial conditions and also different trends, all of them physically plausible. To date, there have not been any hydrologic assessments that explore within-GCM uncertainties using the perturbed physics approach. This paper aims to establish the impact on runoff of perturbed physics in a multi-thousand member ensemble of GCM runs with gradually increasing projections of greenhouse gas concentrations (a so-called “transient” experiment). We seek to quantify the true within-GCM uncertainty in runoff projections, used in water availability climate change impact assessments, through the novel approach of using a GCM with perturbed physics. We aim to compare true within-GCM uncertainty from CPDN projections against current approximate statistical approaches or multi-model ensembles. In particular, it is of interest to study these uncertainties in runoff projections in SWA, a region that has already experienced negative trends in precipitation, and where future water resources are endangered (Hennessy et al., 2007).

The IPCC Fifth Assessment Report (AR5) (Stocker et al., 2013) details studies that project significant decreases in precipitation for the period 2081-2100 compared to 1986-2005 in the Mediterranean climate regions of the southern hemisphere: Central Chile, South Africa and SWA (Moss et al. 2008). Current warming trends and future projections of climate variables may impact water resources with important consequences for ecosystems, agricultural and domestic water supply. The present work presents results for southwest Western Australia, due to the current negative trends in precipitation and the projections of drier conditions for this area, however this methodology can be extended to other regions.

1.1 Region of analysis: Southwest Western Australia
SWA is the land area located west of 118°E and south of 32°S (Li et al., 2005), where the majority of Western Australia's population resides (Australian Bureau of Statistics, 2014). According to the Köppen-Geiger Classification (Peel et al., 2007), SWA experiences a temperate, Mediterranean climate with a dry and hot summer and wet winter. Almost 80% of precipitation occurs during May to October. Mean annual rainfall in SWA ranges from 500 mm in the north to 1230 mm in the southern coastal area (Silberstein et al., 2012).

Precipitation in this region is driven by mid-latitude frontal systems associated with the position of the subtropical ridge. This centre of high pressure moves northward (north of SWA) in winter months (after May), and then moves southward during spring months (Charles et al., 2010). In winter months, when the centre of high pressure lies to the north of SWA and the SAM (Southern Annular Mode) is in its negative phase, synoptic features and cold fronts can reach SWA, thus increasing precipitation events. A negative trend in SWA winter precipitation since the mid 1960s has been observed by several researchers (Allan and Haylock, 1993; Ansell et al., 2000; Cai and Cowan, 2006b), while some others identify the shift starting in the mid 1970s (Charles et al., 2010; Frederiksen and Frederiksen, 2007; Hennessy et al., 2007; IOCI, 2012; Petrone et al., 2010; Timbal, 2004). The observed reduction in precipitation after the shift is estimated as being between 10% - 15% (Charles et al., 2010). One of the likely causes of the reduction in precipitation is the positive trend in the SAM (Allan and Haylock, 1993; Cai and Cowan, 2006a; Delworth and Zeng, 2014; IOCI, 2002). Using a K-means algorithm to cluster rainfall patterns, Raut et al. (2014) showed that the positive trend in SAM is linked to the reduction of the frequency of strong fronts in June, and the presence of weak fronts in June-July. These two features account for a half and a third of the total reduction of rainfall in winter months (June-July-
August) respectively when the El Niño Southern Oscillation Phenomenon (ENSO) is neutral. Regarding climate change projections, according to Silberstein et al. (2012), based on an ensemble of 15 GCMs, a median decline of 8% in rainfall is projected for SWA by 2030 compared to precipitation between 1975 and 2007, which leads to a reduction of 25% in streamflow. Given this background, we have focused our attention on projections of runoff in this region, mainly interested in quantifying how uncertain the projections are when estimated from a GCM with perturbed physics.

As climate is a fundamental driver of water availability, the impacts of climate change on water resources and in particular the uncertainties in the projections of runoff are a fundamental area of study. In this paper we present a methodology to analyse uncertainties in runoff modelling using a perturbed physics ensemble from one GCM, which is a novel data set that represents the within-GCM uncertainties. We present a plausible range of runoff projections over three catchments located in SWA, using a multi-thousand ensemble of the GCM with perturbed physics. We compare the results over one catchment analysing within-GCM uncertainties using the stochastic approximation of Peel et al. (2015) and the perturbed physics approach.

2. Data

Three different sources of data are used in this work. First, monthly precipitation and temperature from a GCM with perturbed physics are employed, which gives an ensemble of projected future climates. Second, observed monthly precipitation and temperature measured over Australia are used as input for a hydrologic model. Third, observed monthly
runoff are used to calibrate a hydrologic model. The characteristics of the data are presented in the following subsections.

2.1 GCM with perturbed physics

Data from the Climateprediction.net (CPDN) project (Rowlands et al., 2012) were used for projecting the future climate in the area of study. CPDN provides an ensemble of GCM results with perturbed physics that allows us to explore the within-GCM uncertainties in runoff modelling. The CPDN experiment consists of a GCM run thousands of times with different but realistic perturbations to the parameters of the model's physics, using the personal computers of volunteers. These thousands of simulations were used in this paper to simulate runoff and to analyse the uncertainties associated with perturbed physics in the global climate model.

CPDN uses the HadCM3L GCM, which is a version of the HadCM3 model (Gordon et al., 2000) but with a reduced ocean resolution. The resolution of the model is 2.5° latitude by 3.75° longitude with 19 levels in the vertical in the atmosphere. The ocean resolution has 20 vertical levels and a resolution of 2.5° latitude by 3.75° longitude. The simulations cover the period from 1920 to 2080 (Rowlands et al., 2012).

The CPDN project runs HadCM3L with 10 different versions of the ocean model and 153 different atmospheric parameter configurations, which means 1530 versions of the model with different perturbed physics. The model was spun up for 200 years and subjected to flux adjustment to represent the climate in 1920. Then each individual ensemble was run under control forcing (pre-industrial or representative of 1900 conditions) and transient forcing (time-varying concentrations of greenhouse gases) for the period between 1920 and
2080. In this work we used the simulations starting in 1940 as the flux adjustment does not reproduce a stable climate in the first 20 years of simulations (Rowlands et al., 2012). The researchers used both anthropogenic and natural forcing. The anthropogenic forcing corresponds to the A1B scenario (Nakicenovic et al., 2000), which simulate emissions of greenhouse gases and aerosols for a future world of rapid economic growth, assuming that there will be a balance in the use of non-fossil and fossil sources in the energy system, along with an interactive tropospheric sulphur cycle, which through parameterization simulates the radiative effects of sulphate aerosol produced by industrial processes. The natural forcing is represented by changes in solar activity and volcanic eruptions, which are expressed using stratospheric sulphate aerosol.

2.2 Temperature and Precipitation

Gridded monthly observed precipitation and temperature data were used to calibrate the hydrological model used to simulate runoff. The gridded dataset used in this project is the Australian Water Availability Project (AWAP) (Jones et al., 2009). AWAP uses in-situ observations and provides gridded data at a scale resolution of 0.05°x0.05°, which we resampled to a 0.25°x0.25° for our analysis.

ARCGIS 9.3 was used to delineate the catchment boundaries using the two-second Shuttle Radar Topography Mission (SRTM) Smoothed Digital Elevation Model (DEM-S) version 1.0 (Geoscience Australia, 2010). AWAP data were superimposed over the catchment polygon and area-weighted temperature and precipitation values were calculated for each catchment.

2.3 Runoff data
Monthly runoff data used to calibrate the hydrological model over southwest Western Australian catchments were taken from the stream gauging sites monitored by the Western Australian government's Department of Water (see the Government of Western Australia, Department of Water, at http://wir.water.wa.gov.au/SitePages/SiteExplorer.aspx).

In order to avoid using runoff data with inconsistencies over time, the runoff monthly time series were checked through the analysis of seasonal variation curves and double mass curves. The latter are scatter plots comparing the cumulative monthly runoff under analysis with cumulative monthly runoff in adjacent catchments. The cumulative monthly runoff was also compared with cumulative monthly precipitation and cumulative monthly temperature from different stations located close to the catchment under study (not shown). When data are consistent, a straight line is expected without jumps or changes in the slope. Through those analyses, we conclude that the observed runoff is consistent over time, and that it can be used to model runoff for climate change assessments.

2.4 Catchments in SWA

The analysis was conducted over three catchments in the area of study (SWA), the Donnelly, Denmark and Helena rivers. The location, catchment area and climatic characteristics of these three catchments are presented in Table 1 and Figure 1.

The Donnelly catchment is a high quality system located in the Warren region of southwest Western Australia. Due to its isolated location, it has not been affected by saline intrusion, and is therefore an important resource for agricultural activities in the region but it also hosts ecosystem refuges (Morgan and Beatty, 2006). Denmark catchment is located in the southeast extreme of the study area, the Great Southern region of Western Australia. The
main land use in the north portion of the catchment is grazing and annual pastures. Currently, salinity issues impede the use of the catchment for supply of drinkable water. Finally, the Helena catchment is located in the northeast of the region, draining the Darling Plateau and passing through the Darling Scarp and the Coastal Plain, where it becomes a tributary of the Swan River which supplies drinking water to the Goldfields region, Kalgoorlie and Perth. These three catchments were selected on the basis of their importance for drinking water supply, support of economic activities in the region and for the ecosystems they host. Differences in precipitation regimes and temperatures were also considered in the selection process. The Helena River is the driest catchment with 665 mm of observed mean annual precipitation. The Donnelly River is the wettest catchment with 1004 mm of observed mean annual precipitation, while the Denmark catchment has 835 mm of annual precipitation.

3. Methodology

We follow a three stage methodology often used in projections of water resources research, but here introduce the novel approach of assessing the impact of perturbed physics on runoff projections, and comparing against results obtained from previous methods developed in this field. First, the perturbed physics GCM data are evaluated over the region of study. Second, a bias correction to the GCM data is applied to scale the GCM data and match each observed catchment data, and finally a calibrated hydrological model is used to simulate runoff for the future using the GCM precipitation and temperature data.

3.1 Evaluation of CPDN output
We evaluated the ability of the CPDN data to represent the climate of SWA, first comparing the raw precipitation and temperature with observed data. Then, we compared the relation between ENSO and SAM with precipitation and temperature using observed datasets and the CPDN data in order to evaluate whether the CPDN model output data represent the relation between the main drivers of climate in the region and the variables in the study.

The CPDN data were released in "Giorgi regions", based on the regions analysed by Giorgi et al. (2001) that include both land and sea. Thus to compare land-based AWAP precipitation and air temperature at 1.5 metres to CPDN data required the application of correction factors. The procedure consisted of calculating a scale factor that represents the difference between the air temperature at a height of 1.5 metres from HadCRUT3v (Brohan et al., 2006; Jones, 1994) over the same spatial extent as the CPDN Giorgi region (which include land and sea), and the HadCRUT3v temperature over just the land in this region. This factor was calculated and applied seasonally to the AWAP data. The scaled AWAP temperature data were then compared to the CPDN ensemble. Monthly gridded precipitation data from the Global Precipitation Climatology Project (Adler et al., 2003) were used to calculate similar scaling factors for precipitation to account for the difference in precipitation in the CPDN Giorgi region and precipitation over just land. The scaled AWAP precipitation was then compared to the CPDN data.

ENSO (El Niño Southern Oscillation) and SAM are the main drivers of precipitation and temperature variability in Australia (Arblaster et al., 2011; Hendon et al., 2013). In SWA it is of particular interest for evaluating the relation between SAM and precipitation, because of the influence the SAM has had on reductions in rainfall (Raut et al., 2014). The
Climateprediction.net dataset was evaluated to determine its skill in simulating large scale circulation patterns and their relationship with local variables over the area of study. Three correlation coefficients (Kendall, Spearman and Pearson) were used to analyse the relation between the variables in this region and circulation patterns over the observed period (1940-2000).

The Southern Annular Mode is defined as the difference in the normalized zonal average mean sea level pressure between 40°S and 65°S. Gong and Wang [1999] developed an Index that measures SAM, the regional Antarctic Oscillation Index, detailed in Equation 1.

$$\text{AOIR}_t = \frac{\text{MSLP}_{40\degree S}(t) - \bar{\text{MSLP}}_{40\degree S}(t)}{\sigma_{\text{MSLP} \ 40\degree S} \ \text{(season)}} - \frac{\text{MSLP}_{65\degree S}(t) - \bar{\text{MSLP}}_{65\degree S}(t)}{\sigma_{\text{MSLP} \ 65\degree S} \ \text{(season)}}$$ (1)

Where AOIRt is the Antarctic Oscillation Index for month t, MSLP40°S is the mean sea level pressure (MSLP) at 40°S averaged over all longitudes, MSLP65°S is the MSLP at 65°S averaged over all longitudes and the whole period of time under analysis for month t, $\bar{\text{MSLP}}_{40\degree S}(t)$ is the MSLP at 40°S averaged over all longitudes and the whole period of time under analysis for month t, $\sigma_{\text{MSLP} \ 40\degree S} \ \text{(season)}$ is the standard deviation of MSLP at 40°S averaged over all longitudes for a particular season, and $\sigma_{\text{MSLP} \ 65\degree S} \ \text{(season)}$ is the standard deviation of MSLP at 65°S averaged over all longitudes for a particular season.

We used an approximation to the AOIR index in this paper, in order to fit the Giorgi regions in which CPDN data were released. The approximation consists of replacing the $\text{MSLP}_{40\degree S}(t)$ by the MSLP averaged over all SWA (-38°S to -28°S, 110°E- 125°E) and $\text{MSLP}_{65\degree S}(t)$ by the MSLP over the Antarctic region (-90°S to -55°S, 0°e to 360° E).
The index used to represent ENSO variability is the Niño 3.4 index, which was calculated following the methodology described by NCAR (2013). The first stage was computing the total area averaged SST from the Niño 3.4 region (5°N-5°S, 120°W-170°W). Then the anomalies were calculated by subtracting the monthly mean SST for the period 1950 to 1979 from the data. Finally the series were smoothed with a 3-month running mean. Anomalies higher/lower than 0.5°C/-0.5°C are defined as El Niño and La Niña respectively.

3.2 Bias Correction Methodology

GCM data have a different spatial scale (hundreds of kilometres) to the catchment scale and generally require downscaling and bias correction. In this project a Quantile-Quantile methodology (Themeßl et al., 2011), which is a type of statistical downscaling method, is used. The procedure is based on matching the empirical cumulative distribution functions of the GCM simulations to the empirical cumulative distribution function of the observations. This is a direct method because the predictor and the predictand are the same variable (temperature or precipitation) and has the advantage of being parameter-free because the empirical cumulative distribution is matched for each variable. Themeßl et al. (2011) described the methodology of correction using the following equations for the calibration period (in this case the period in which observed runoff data are available for each catchment), which in this project will be applied on a monthly basis for each catchment:

\[Y_{\text{cor},t,catchment} = X_{\text{raw},t,catchment} + CF_{t,catchment} \]
\[CF_{t,catchment} = ecdf^{\text{obs,cal}-1}_{\text{moy,catchment}}(P_{t,catchment}) - ecdf^{\text{mod,cal}-1}_{\text{moy,catchment}}(P_{t,catchment}) \]
\[P_{t,\text{catchment}} = \text{ecdf}_{t,\text{catchment}}^{\text{mod,cal}}(X_{t,\text{catchment}}^{\text{raw}}) \]

Where \(Y_{t,\text{catchment}}^{\text{cor}} \) is the bias corrected (\textit{cor}) GCM variable over the catchment under study for month \(t \), \(X_{t,\text{catchment}}^{\text{raw}} \) is the raw GCM variable over the catchment under study for month \(t \), \(CF_{t,\text{catchment}} \) is the correction factor calculated during the calibration period for month \(t \), \(\text{ecdf}_{moy,\text{catchment}}^{\text{mod,cal}} \) is the empirical cumulative distribution function for the GCM variable in a particular month of the year (\textit{moy}) for the calibration period (\textit{cal}), and \(\text{ecdf}_{moy,\text{catchment}}^{\text{obs,cal}} \) is the empirical cumulative distribution function for the observed variable in a particular \textit{moy} for the calibration period.

The difference between the inverse \text{ecdf} (\text{ecdf}^{-1}) of the simulation and the observation over the calibration period for every probability represents the bias correction. An example is presented in Figure 2, in which each grey line represents the inverse \text{ecdf} for one of the 2500 CPDN simulations of precipitation for December (1920-2000) and the red line represents the inverse \text{ecdf} of observed AWAP precipitation for December (1920-2000). The red arrow represents the correction for one simulation, which is the difference between the simulated and observed inverse \text{ecdfs} for that particular probability. For future projections, the same correction factors are applied to every simulation, matching the simulated values of the variable for the projection with the calibration period. For new extremes in the modelled period (values that have not been observed during the calibration period), higher or lower than observations, the correction factor of the highest or the lowest observed value is applied respectively.

3.3 Perm Model Description
The hydrological model used in this work is PERM (Peel et al., 2015). A schematic diagram of the model structure is presented in Figure 3. This is a lumped conceptual monthly model that uses as input monthly precipitation and temperature data observed or modelled over the catchment. PERM has five model parameters that require calibration: the rate of snowmelt and potential evapotranspiration (ETrate, mm/°C/month); the proportion of snowmelt volume to runoff (Melt); the soil moisture storage capacity (Smax, mm); the baseflow linear recession parameter (K); and the interception storage capacity (Imax, mm). The model considers three main stores: the vegetation interception store (IC), the soil moisture store (SMS) and the snow store (ACCUM). When temperature is > 0°C then all precipitation enters the interception store. Once the maximum capacity (Imax) is reached any remaining precipitation becomes throughfall (TFall) to the soil moisture store. Snow only accumulates when temperature is ≤ 0°C and the snow begins to melt once temperature rises > 0°C. Melting snow either becomes runoff (SnowF) or infiltrates (SMI) into the soil moisture store. Runoff is calculated through a volume balance and considers snow flow, partial area flow (PAreaF), soil moisture excess flow (SMF), once the soil moisture store reaches its maximum value (Smax), and base flow (BF). Evaporation from the interception store (AET\textsubscript{INT}) and soil moisture store (AET\textsubscript{SOIL}) are calculated as a linear function of temperature and water availability. In this analysis, snow does not occur in the three catchments being modelled, which effectively reduces PERM to a four parameter model as the Melt parameter becomes redundant due to ACCUM being zero. An automatic pattern search optimization method was used to calibrate the five model parameters (see Peel et al., 2015 for details). Ten different parameter sets were used as starting points to increase the likelihood of finding the global optimum of parameter values. The calibration sought to minimise the objective function defined as the sum of squared differences between the
estimated and observed annual runoff. Although the model is run on a monthly time step, it will be used to simulate annual runoff for future climates. Therefore, penalties were applied to the objective function (OBJ) in order to ensure that the calibrated model reproduces summary statistics of observed annual runoff.

Peel et al. (2015) summaries these penalties as:

If the estimated and observed mean annual runoff differ by;

- More than 5% then OBJ = OBJ x 5
- More than 10% then OBJ = OBJ x 25
- More than 20% then OBJ = OBJ x 125

If the estimated and observed annual coefficient of variation differ by;

- More than 5% then OBJ = OBJ x 5
- More than 10% then OBJ = OBJ x 25
- More than 20% then OBJ = OBJ x 125

The evaluation method used for the model is a K-Fold cross-validation (Efron and Tibshirani, 1993), with K=3. The entire time series is divided in three groups, two of them are used to calibrate and the third one to evaluate the model performance. This process is repeated 3 times until all thirds have been used to evaluate model performance. The metrics used to evaluate model performance are the Nash & Sutcliffe Efficiency value (Nash and Sutcliffe, 1970), which compares observed and modelled annual runoff, and the annual R^2 (square of the correlation coefficient) between observed runoff and modelled runoff.

Details of the calibration methodology can be found in Peel et al. (2015).

4. Results
Modelled and observed temperature, precipitation and runoff for the three catchments under study are presented in this section. First we evaluate the ability of un-bias corrected CPDN data to simulate the climate of the study region during the observed period. Then, we investigate how uncertainties in precipitation and temperature from CPDN translate into uncertainties in runoff projections for the next decades. Finally, the perturbed physics results are compared against an approximation based on stochastic generation of data.

4.1 Evaluation of CPDN data

Seasonal and annual raw (not bias corrected) precipitation and temperature simulated by the CPDN project were compared to scaled observed AWAP data in order to assess how these GCM runs simulate SWA climate. The scale factor was introduced to make the observed data, which has been measured over land only, consistent with the raw CPDN data that includes both land and ocean. After incorporating the scale factor a good agreement between observed and modelled data was observed for annual and seasonal climate variables. The annual values are presented in Figure 4 for precipitation and Figure 6 for temperature. In these figures, we plot in grey all the CPDN simulations of annual precipitation and temperature for the period between 1940 and 2080, including in blue the median of the simulations and the 5 and 95 percentiles. The red line shows the observed AWAP annual precipitation and temperature between 1940 and 2000. In Figure 5 and Figure 7, we show histograms of annual medians and standard deviations of precipitation and temperature respectively simulated by CPDN between 1940 and 2000 (the observed period) and the annual median and standard deviation obtained from AWAP data. In terms of temperature the annual median of the CPDN simulations for the observed period (1940-2000) underestimates by 0.23°C the observed annual median of temperature during the
same period. Substantial differences are observed in the annual standard deviation over the same period, with CPDN underestimating annual standard deviation of temperature by 0.14°C relative to the observed value (see the results presented in Table 3). In terms of precipitation we found that the annual median of CPDN simulations between 1940 and 2000 differs by 6.2% from the observed data, and the CPDN annual standard deviation underestimates the observed value by 45%, (Table 4).

In Figure 4 the median of the CPDN simulations of annual precipitation is similar to the median value of the scaled observed (AWAP) annual precipitation, and the median of the simulations reproduce the reductions in observed precipitation since mid 1960s (Allan and Haylock, 1993; Ansell et al., 2000; Cai and Cowan, 2006b). Results presented in Figure 6 indicate that the median of the CPDN simulations of annual temperature approximately fits the scaled observed annual temperature, and that the median of the simulations is consistent with the positive trend in scaled observed temperature. From these results we conclude that CPDN is better at reproducing annual temperature over SWA than annual precipitation, and that the medians of the climate variables are better simulated than the variability, measured by the standard deviation. Prior to the hydrologic modelling we resolve these differences using the bias correction methodology described in section 3.2.

In order to evaluate whether the CPDN data represent the relation between the main drivers of climate in the region, we compared the relation between ENSO and SAM with precipitation and temperature using observed data and CPDN data. ENSO is one of the main drivers of rainfall in Australia (Allan, 1988; Nicholls et al., 1997; Wang and Hendon, 2007). Nicholls et al. (1997) indicated that the relation between ENSO and rainfall over Australia shows a considerable multi-decadal variability, driving wet and dry periods in its
different phases (El Niño and La Niña). However, the main area of influence of ENSO in terms of precipitation is north and eastern Australia (Nicholls and Lavery, 1992; Risbey et al., 2009), with no significant influence over SWA, since SAM is the main driver of precipitation in that zone (Raut et al., 2014). ENSO inter-decadal variability has been also found to be associated with variations in surface temperature in Australia (Power et al., 1999a; Power et al., 1999b). Power et al. (1999a) found a correlation of 0.1 between annual temperature and SOI (Southern Oscillation Index) when the Inter-decadal Pacific Oscillation (IPO) is over the threshold of 0.5. Therefore, we just explored the correlation between annual and winter precipitation and SAM, and annual temperature and ENSO.

The median of the correlation coefficients between SAM and annual and winter precipitation obtained using three different methodologies (Spearman, Kendall and Pearson correlation) for all the CPDN simulations are presented in Table 2. These correlations are statistically significant at the 95% level. The mean correlation between annual SAM and annual precipitation, considering all the statistical significant simulations and three methodologies, is -0.3, while for winter SAM and winter precipitation it is -0.52. We also calculated correlations between the SAM index as defined by Nan and Li (2003) and annual and winter observed precipitation (AWAP) considering Pearson, Kendall and Spearman correlation coefficients. The correlation between observed winter precipitation and winter SAM is statistically significant at -0.39. These results are presented in Table 2. The influence of SAM on SWA precipitation is greatest in the winter season as this is the period in which precipitation is mostly concentrated in this region. The medians of statistical significant correlation coefficients, for the three methodologies, between annual ENSO and annual temperature in SWA are presented in Table 2. The mean of the three medians is
0.26, which is larger than the correlation of 0.16 (not statistically significant) obtained from the observed NIÑO 3.4 Index and AWAP data.

Our results indicate that CPDN reproduces the observed negative correlation between annual precipitation, winter precipitation and SAM, which is the main driver of the changes in precipitation during the last decades. After this analysis we conclude that CPDN represents appropriately the climate of SWA, and is suitable for studying the uncertainties in future projections in this region.

4.2 Runoff Modelling

The PERM model was calibrated for each catchment using observed area-weighted temperature and rainfall from the AWAP data as input to PERM for the period in which observed runoff data are available. For the Donnelly River at Strickland, 32 years of observed runoff data in the period 1961-1992 were used to calibrate the model. Twenty eight years of observed runoff were used for modelling the Helena River at Ngangaguringuring, which corresponds to the period between 1973 and 2000 and finally 40 years of observed runoff were available in the Denmark River at Kompup, which corresponds to the period between 1961 and 2000. PERM is run on a monthly time step, however we assess model performance during calibration and evaluation on an annual basis. In the following analyses the majority of runoff results presented are for annual data with some seasonal data. Therefore, our evaluation of PERM’s performance at annual intervals is consistent with our later analysis.

The calibrated parameters and the performance of the model for every catchment is given in Table 5, the coefficient of determination (R^2) and the annual Nash & Sutcliffe coefficient of
efficiency (N&SE) represent the evaluation of the model skill in simulating runoff in the catchments, where a value of 1 in each of them means a perfect match. The model was evaluated using a K-Fold cross-validation with K=3 (Efron and Tibshirani, 1993), where the evaluation N&SE was calculated from the 2 thirds not used to calibrate the model. Results of the model performance during calibration and evaluation are presented in Table 5 and Table 6 respectively. We found good model performance during calibration and evaluation for the Donnelly River at Strickland and the Denmark River at Kompup, but poorer performance for the Helena River at Ngangaguringuring. Despite this poorer performance we decided to include the Helena river in our analysis because it is an important catchment, one of the tributaries that supply water to Perth and because it is a dry catchment, thus more susceptible to climate change impacts.

The calibrated model was then run 2500 times using the bias corrected precipitation and temperature data from CPDN to simulate runoff from 2000 to 2080 under the A1B scenario in each catchment in SWA. When performing the bias correction methodology we found that for precipitation the ecdf of monthly future simulations of winter CPDN is drier or is shifted to less precipitation than the ecdf of precipitation during the observed period. The main difference lies in the extreme lower quantile, where the ecdf of precipitation of future simulations presents a shift to lower precipitation than the observed and in some cases to higher extremes as well. For temperature the ecdf of monthly temperature shows a shift to higher temperatures with higher hot extremes. The CPDN precipitation and temperature monthly ecdfs for the observed and future (2000-2080) periods are available in Figure S1 of the Supplementary material.

After introducing the bias correction we found that the difference between the medians of the simulated temperatures (CPDN) and the observed annual temperature (AWAP) for the
period between 1961 and 1992 (which corresponds to the period in which observed runoff data are available in Donnelly catchment) is 0.02 °C. The difference in the standard deviation of the CPDN simulations of annual temperature and observed annual temperature (AWAP) is 0.01°C, much lower than the 0.14°C difference for the raw series. For precipitation the differences for the same period are 0.79% and 3.7% for median and standard deviation respectively, improving considerably the 6.2% and 45% obtained from raw data. See this information in Table 3 and Table 4.

Bias corrected annual precipitation and temperature CPDN simulations were compared against observed data (the AWAP weighted average) for each catchment, with the results for Donnelly catchment presented in Figure 8 (precipitation) and Figure 9 (temperature). The bias corrected methodology was applied to the complete period of record, but the correction was developed only over the period of observed runoff data available in each catchment, which in Figures 8 and 9 corresponds to the period between 1961 and 1992. In these figures, grey lines correspond to the 2500 bias corrected simulations from CPDN, blue lines are the median, 5 and 95 percentiles of the data and the red line the AWAP observations. In both cases a good graphical agreement between the observed data (red line) and the median of the CPDN data (blue line) was obtained for the period in which the bias correction was developed (period in which runoff data were available).

According to Figure 9, positive trends for temperature in Donnelly River at Strickland have been seen during the observed period (1940-2000) and faster increases are shown in the later period (2000-2080), which can be noticed from the blue lines that represent the median and the 5 and 95 percentiles. This result was also observed in Helena and Denmark catchments for annual and for seasonal results. Conversely, negative trends in annual precipitation are shown (Figure 8) during the observed period (1940-2000) and faster
decreases are expected for the later period (2000-2080) for Donnelly catchment, which can be seen from the blue lines that represent the median and percentiles of the simulations. These results were also observed in Helena and Denmark rivers (not shown). The decrease in precipitation is concentrated in the winter season, with changes in summer precipitation being almost negligible (not shown), which is in agreement with the literature (Alexander et al., 2007; Charles et al., 2010; Nicholls and Lavery, 1992).

We show the annual runoff simulations using the CPDN climate data in Figure 10. Similar results were obtained for the other two catchments so we present the figures for Donnelly catchment only. From Figure 10, negative trends in Donnelly at Strickland runoff are observed in the projections for the period 2000-2080, concordant with the trends in precipitation, the main driver of runoff in the area. This result was also observed in the Helena River at Ngangaguringuruing and Denmark River at Kompup. The projections of annual precipitation, annual runoff, seasonal precipitation and seasonal runoff were computed for the period 2050-2080 and compared to 1970-2000 for all catchments, then we computed histograms including all the simulations. The histograms for seasonal differences in the Donnelly catchment are presented in Figure 11. Since similar results were obtained for the other two catchments, just results for Donnelly River at Strickland are shown.

Decreases in precipitation with a median of around 20% are projected for precipitation in winter, spring and autumn, which leads to decreases in runoff of around 50% for winter and autumn. The response of spring runoff to reduced precipitation is larger than the other seasons, which might be driven in part by reduced catchment wetness at the beginning of spring following reduced precipitation in autumn and winter and for the increases in temperature and potential evapotranspiration during these months. Summer precipitation
shows no real change but has a large spread of results, which is explained due to the summer rainfall in these catchments being negligible. A large spread in the projections of runoff is also observed, with a median decrease of around 50%, which is caused by the combination of reduced precipitation in most seasons and higher temperatures in all seasons.

Histograms of annual runoff and rainfall difference for the three catchments are presented in Figure 12. In all catchments a reduction in annual precipitation with a median of around 20% is expected, which leads a reduction in runoff of more than double (~50%). The Helena catchment, which is the driest catchment among the three, is the most sensitive to changes in precipitation, with a median reduction in runoff of around 65%, driven by a reduction in rainfall with a median of around 20%. The results indicate that the drier the catchment, the more sensitive the response in runoff to changes in precipitation and the larger the spread of the projections, which is consistent with the understanding of runoff sensitivity to changes in precipitation increasing as the humidity ratio decreases (Dooge, 1992; Dooge et al., 1999; Sankarasubramanian et al., 2001).

4.3 Comparison of within-GCM uncertainties from stochastic generation of data

Here we present a comparison of results from a GCM with perturbed physics to that from the stochastic generation of GCM data in order to identify any differences in the quantification of uncertainties in precipitation and runoff modelling for the Donnelly catchment. The GCM perturbed physics results from the previous section are shown in box-plot form (Figure 13) for annual precipitation and runoff over the Donnelly catchment. Stochastic generation results are drawn from Peel et al. (2015), where monthly precipitation
and temperature data from 5 GCMs, selected for their good performance in simulating observed climate (McMahon et al., 2015), were stochastically replicated 100 times each. The stochastic methodology of Peel et al. (2015) is to de-trend the GCM data, replicate the de-trended data (both the signal and the noise around the trend) and add the trend to the stochastic data to form the stochastic replicate of the GCM run. Thus each stochastic replicate for a given GCM has the same trend but different stochastic data around the trend. Peel et al. (2015) indicated that they expected their stochastic method to under-estimate the true within-GCM uncertainty due to not replicating the trend. Results in Figure 13 indicate that the range of uncertainty using perturbed physics is larger than that using stochastic generation of data. The boxplots present the range of different simulations of rainfall and runoff, where the 25th and 75th percentiles are represented in the box, and the 97.5th and 2.5th percentiles in the lines. Considering the differences between the 75th and the 25th percentiles as a percentage of the median, a 12% range in precipitation for the 2035-2064 period is obtained using stochastic generation, compared to a 22% range using CPDN data for the same period. These results are amplified when analysing runoff: a range of 28% of the median runoff modelled for the period between 2035 and 2064 using stochastic generation is considerably smaller than the 57% range for the same variable and the same period using perturbed physics GCM data.

4.4 Comparison of within-GCM uncertainties from GCM perturbed physics

As our main interest is quantifying uncertainties in water projections due to within-GCM uncertainties we have mostly focused on the whole range of plausible projections rather than the spread of results caused by a single parameter. However, we also explored single
parameter uncertainties relative to the entire CPDN ensemble for a few parameters that we identified as important for the simulation of precipitation.

Regarding uncertainties in input forcing in the GCM, Rowlands et al. (2012) presented an analysis of the main drivers of uncertainties in the CPDN simulations. They performed a linear variance decomposition of all the CPDN ensemble grouping the physical parameters into three groups. Solar, volcanic and sulphur cycle parameters were grouped as forcing parameters, with climate sensitivity used as a proxy for atmospheric physics and vertical diffusivity as representative of ocean physics. Their results showed that the atmospheric physics parameterizations accounted for most of the uncertainty among the ensemble (50% during the last 20 years), followed by uncertainties in forcing and in last position the ocean parameters. This was explained as due to the longer time-scale responses of oceans in the climate system.

As an exploratory analysis we calculated the histograms of the differences in runoff for the periods between 2050-2080 and 1970-2000 for the different plausible values of five parameters: \(\text{rhcrit} \) (critical relative humidity for cloud formation), \(\text{cw_land} \) (threshold cloud water content for rain over land), \(\text{eacf} \) (large-scale cloud coverage when the specific humidity in the grid box is equal to the saturation value), \(\text{ct} \) (accretion constant – time constant for conversion of cloud droplets to rain) and \(\text{vf1} \) (cloud ice fall speed). All parameters were selected for their importance in the GCM parameterization of rainfall, which is the main driver of runoff in SWA.

In Figure 14 we present histograms of change in mean annual runoff obtained by selecting different values of the parameter \(\text{rhcrit} \), which shows the spread of runoff change and the
median change relative to the whole ensemble of CPDN. Figures for the other parameters are contained in the Supplementary information. The histograms in Figure 14 show the whole ensemble of simulations in blue (2500) and the simulations using each one of the different \(rhc_{\text{crit}} \) values in grey. We also plotted the median of the whole ensemble (red line) and the median of the group of simulations obtained using an \(rhc_{\text{crit}} \) value (red dotted line). The three different values of \(rhc_{\text{crit}} \) produce results with differences in median of 9%. The median of the reductions in runoff for the lowest \(rhc_{\text{crit}} \) is -46%, and for the highest \(rhc_{\text{crit}} \) is -55%. The spread of simulations moves to higher reductions in runoff when \(rhc_{\text{crit}} \) is larger.

This is due to the importance of \(rhc_{\text{crit}} \) for cloud formation – as \(rhc_{\text{crit}} \) increases cloud formation becomes harder, which results in less precipitation and less runoff. Among all the parameters analysed, \(rhc_{\text{crit}} \) produced the largest impact on runoff reductions, showing how important parameterisations of cloud formation are for projections of climate and runoff.

5. Discussion and Conclusions

In this paper we have studied how uncertainties in the parameters specified within-GCM physics parameterisations translates into uncertainties in runoff projections. Our results show that uncertainties in projections of runoff, precipitation and temperature for the second half of this century using perturbed physics in a single GCM are very large. Uncertainties in GCM parameterisations in precipitation and temperature translate into even larger uncertainties in runoff projections (approximately doubled), with a hydrological sensitivity of around 2.5, which is consistent with the values calculated by Chiew (2006) and Jones et al. (2006). It is important to emphasize that these uncertainties correspond just to uncertainties within a single GCM, without considering uncertainties in emissions scenario, downscaling/bias correction, hydrological modelling or vegetation response to CO\(_2\).
enrichment. However, due to the large number of perturbations and initial conditions explored in the CPDN data, it is possible that these simulations match some simulations produced by other GCMs, covering between-GCM uncertainties as well. The impact on runoff of within-GCM uncertainty due to perturbed physics has not previously been analysed, so these results are useful to compare with studies that assess only multi-model uncertainties.

In this study, plausible projections in annual precipitation indicate a reduction between the years 2050-2080 compared to 1970-2000 that range between 0% and 40% for the Donnelly and Denmark Rivers and between 0% and 50% for the drier Helena catchment. The range of projected decrement in annual precipitation drives a runoff decrement between 10% and 80% over the same period, and this reduction is also larger in the Helena catchment (0%-90%). A reduction of around 22% in annual and winter precipitation leads to a decrease of 50% in runoff which is a larger reduction than that found using stochastic generation of data, as an approach for assessing within-GCM uncertainties.

Winter reductions in precipitation and runoff for every catchment are very similar to the annual changes, mainly because around 80% of annual precipitation falls in winter months in these catchments. Summer and spring runoffs are most sensitive to changes in precipitation due to increases in temperature during these months and the drier conditions in the catchment resulting from the reduced autumn and winter rainfall, which increase sensitivity to changes in precipitation, as reported by Chiew (2006).

According to the results shown in this paper, the CPDN projects reductions in precipitation for the period 2050-2080 in all the catchments, and the hydrological model results indicate
larger reductions in runoff for the same period for the three catchments. However some differences between catchments were observed. The driest catchments are more sensitive to changes in precipitation: for example, the Helena River in which the change in modelled runoff is more than double the change in precipitation. This is concordant with the results presented by Dooge et al. (1999) and Sankarasubramanian et al. (2001) which indicated that the drier the catchment the more sensitive the runoff to changes in precipitation. The Helena River result is very important as it is representative of the area around Perth, the largest city in Western Australia, and these reductions would have a significant impact on surface water resources available for water supplies.

The perturbed physics GCM results showed that uncertainties, quantified as the range between 25th and the 75th percentiles in the histogram of plausible projections using CPDN data, are approximately double those from stochastic generation of GCM data. This confirms that the stochastic approximation of within-GCM uncertainty of Peel et al (2015) underestimates true within-GCM uncertainty as expected. In both cases the range of projections for runoff is larger, more than double the range in precipitation projections, indicating the sensitivity of runoff to precipitation.

The difference between the 10th and 90th percentiles of modelled annual runoff for the period between 2046-2065, compared to 1961-2000, using CPDN data averaged over the three catchments is around 78%, which is much larger than the 50% obtained by Teng et al. (2012) using the GCM ensembles runs available in CMIP3 and CMIP5 for Australian catchments.
Considering the analysis of uncertainties due to the variation of single parameters in the GCM physics parameterizations, we found that of the five atmospheric parameters investigated the parameter representing critical relative humidity for cloud formation produced the largest changes in terms of precipitation and runoff. \(\text{Rcrit} \) produced reductions in the median of runoff projections that fluctuated between -46% and -55%, indicating the importance of this parameter to cloud formation processes in the GCM.

As we said before, our work present some limitations. First of all the GCM output is available in a monthly basis, then we bias corrected the data for every catchment monthly, but we did not consider the biases in other time scales and among multiple variables. Recent work from Mehrotra and Sharma (2015) indicates that by bias correcting the climatic variables in a joint structure and considering different time scales (daily, monthly and seasonally) better results are observed in the representation of persistence properties and distributions of the variables. Second, we calibrated a lumped hydrological model which does not consider vegetation response to CO2 enrichment, and then we assume that the catchments will present the same soil and vegetation conditions in the future, not considering changes and influences of vegetation which could result in an underestimation of uncertainties. Still, CPDN data with its limitations is a powerful tool for understanding and studying the impacts of parameterizations in a GCM in climatic and runoff projections, reaching the main aim of our study satisfactorily.

Finally, the results from the perturbed physics approach indicate that current studies of future runoff under climate change, which solely consider between-GCM variability, tend to underestimate the uncertainty in runoff. The methodology presented here can be extended to other catchments located in other regions, and future work in central Chilean catchments is planned as part of this project.
6. Acknowledgements

The research was funded, in part, by the Australian Research Council (ARC) Centre of Excellence for Climate System Science (grant CE110001028) and ARC research grant FT120100130. Additional funds were provided by scholarship Becas Chile.

We would like to express our gratitude to UK-based University of Oxford, Rutherford Appleton Laboratory and Open University for providing the GCM data, which can be accessed from the website of the project http://www.climateprediction.net. We are also grateful to the Australian Water Availability Project for providing the observed hydrometeorological data used in this work, which can be accessed from the website http://www.csiro.au/awap. We also thank the two anonymous reviewers whose comments helped improve the manuscript.

IOCI, 2002. Climate variability and change in south west Western Australia. IOCI Panel: 34.

IOCI, 2012. Western Australia’s Weather and Climate: A Synthesis of Indian Ocean Climate Initiative Stage 3 Research. CSIRO and BoM, Australia: 117.

List of tables and Figures

Table 1 Mean annual precipitation and temperature in the catchments

Table 2 Correlation coefficients between Southern Annular Mode, ENSO, precipitation and temperature observed and simulated by CPDN

Table 3 Differences in median and standard deviation of AWAP temperature and CPDN temperature

Table 4 Differences in median and standard deviation of AWAP precipitation and CPDN precipitation

Table 5 PERM calibration results

Table 6 PERM evaluation results

Figure 1 Location of the catchments in southwest Western Australia, along with mean annual rainfall (1970-2000)

Figure 2 Bias correction methodology for precipitation in Donnelly River at Strickland during December

Figure 3 PERM model scheme

Figure 4 Comparison of raw CPDN annual precipitation and scaled AWAP annual precipitation for SWA. Grey lines represent the 2500 simulations of precipitation from CPDN. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual precipitation is plotted with a red line
Figure 5 Histogram of median of simulated (CPDN) annual precipitation (mm) for the period between 1940 and 2000. Comparison of median of observed data (AWAP), as indicated with the open star, and the median of all the simulations during the same period, indicated with an asterisk.

Figure 6 Comparison of raw CPDN annual temperature and scaled AWAP annual temperature for SWA. Grey lines represent the 2500 simulations of temperature from CPDN. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual temperature is plotted with a red line.

Figure 7 Histogram of the median of simulated (CPDN) annual temperature (°C) for the period between 1940 and 2000. Comparison of median of observed data (AWAP) as indicated with the open star and the median of all the simulations during the same period, indicated by an asterisk.

Figure 8 Bias corrected annual precipitation over Donnelly River at Strickland (with respect to observed period 1961-1992). Grey lines represent the 2500 simulations of bias corrected precipitation from CPDN project. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual precipitation is plotted with a red line. The bias correction was developed over the observed period 1961-1992.

Figure 9 Bias corrected annual temperature over Donnelly River at Strickland. Grey lines represent the 2500 simulations of bias corrected temperature from CPDN project. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual temperature is plotted with red line. The bias correction was developed over the observed period 1961-1992.
Figure 10 Simulated annual runoff over Donnelly River at Strickland. Grey lines represent the 2500 simulations of runoff using PERM model run with bias corrected precipitation and temperature from CPDN. 95th, 5th percentiles and median of the simulations are presented as blue lines and observed runoff is plotted with a red line.

Figure 11 Histograms of seasonal changes in precipitation and runoff over Donnelly River at Strickland.

Figure 12 Histograms of annual changes in precipitation and runoff in all of the catchments.

Figure 13 Boxplot of uncertainties in precipitation and runoff using CPDN data and stochastic generation, in the Donnelly River at Strickland for the period 2035 - 2064.

Figure 14 Histograms of annual changes in runoff considering all the simulations of CPDN and the groups of simulations with different perturbations of the parameter rhcrit. Red line represents the median of the whole ensemble and dotted red line the median of the simulations for a particular perturbation of rhcrit.
Table 1 Catchment location, area, and mean annual precipitation and temperature

<table>
<thead>
<tr>
<th>River Station</th>
<th>Latitude (°)</th>
<th>Longitude (°)</th>
<th>Area (km²)</th>
<th>Precipitation (mm)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helena River at Ngangaguringuring</td>
<td>-31.94</td>
<td>116.4</td>
<td>327</td>
<td>665</td>
<td>17</td>
</tr>
<tr>
<td>Donnelly River at Strickland</td>
<td>-34.33</td>
<td>115.77</td>
<td>780</td>
<td>1004</td>
<td>15.2</td>
</tr>
<tr>
<td>Denmark River at Kompup</td>
<td>-34.87</td>
<td>117.32</td>
<td>502.4</td>
<td>835</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Table 2 Correlation coefficients between Southern Annular Mode, ENSO, precipitation and temperature observed and simulated by CPDN

<table>
<thead>
<tr>
<th></th>
<th>CPDN annual precipitation - SAM</th>
<th>CPDN winter precipitation - SAM</th>
<th>CPDN annual temperature - ENSO</th>
<th>Observed Annual precipitation - SAM</th>
<th>Observed winter precipitation - SAM</th>
<th>Observed annual temperature - ENSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spearman</td>
<td>-0.33</td>
<td>-0.57</td>
<td>0.3</td>
<td>-0.30</td>
<td>-0.46</td>
<td>0.17</td>
</tr>
<tr>
<td>Kendall</td>
<td>-0.23</td>
<td>-0.4</td>
<td>0.21</td>
<td>-0.19</td>
<td>-0.31</td>
<td>0.12</td>
</tr>
<tr>
<td>Pearson</td>
<td>-0.34</td>
<td>-0.6</td>
<td>0.27</td>
<td>-0.27</td>
<td>-0.41</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 3 Differences in median and standard deviation of AWAP temperature and CPDN temperature

<table>
<thead>
<tr>
<th></th>
<th>Median AWAP data (°C)</th>
<th>Median CPDN data (°C)</th>
<th>Dif Median (°C)</th>
<th>Standard dev. AWAP data (°C)</th>
<th>Standard dev. CPDN data (°C)</th>
<th>Dif. Standard Dev. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Temperature over SWA</td>
<td>16.09</td>
<td>15.86</td>
<td>-0.23</td>
<td>0.45</td>
<td>0.31</td>
<td>-0.14</td>
</tr>
<tr>
<td>Bias corrected Temperature over Donnelly River at Strickland</td>
<td>15.20</td>
<td>15.18</td>
<td>-0.02</td>
<td>0.42</td>
<td>0.43</td>
<td>+0.01</td>
</tr>
</tbody>
</table>
Table 4 Differences in median and standard deviation of AWAP precipitation and CPDN precipitation

<table>
<thead>
<tr>
<th></th>
<th>Median AWAP data (mm)</th>
<th>Median CPDN (mm)</th>
<th>Dif Median (%)</th>
<th>Standard dev. Median AWAP data (mm)</th>
<th>Standard dev. Median CPDN data (mm)</th>
<th>Dif. Standard Dev. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Precipitation over SWA</td>
<td>429.24</td>
<td>402.69</td>
<td>6.19</td>
<td>100.33</td>
<td>54.58</td>
<td>45.60</td>
</tr>
<tr>
<td>Bias corrected Precipitation over Donnelly River at Strickland</td>
<td>1003.9</td>
<td>995.93</td>
<td>0.79</td>
<td>150.46</td>
<td>156.02</td>
<td>3.70</td>
</tr>
</tbody>
</table>

Table 5 PERM calibration results

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Parameters</th>
<th>Evaluation</th>
<th>Annual Modelled and Observed Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Smax</td>
<td>ET rate</td>
<td>K</td>
</tr>
<tr>
<td>Helena River at Ngangaguringuring</td>
<td>200</td>
<td>60</td>
<td>0.41</td>
</tr>
<tr>
<td>Donnelly River at Strickland</td>
<td>767.81</td>
<td>7.56</td>
<td>0</td>
</tr>
<tr>
<td>Denmark River at Kompup</td>
<td>936.56</td>
<td>12.22</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Table 6 PERM evaluation results

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Annual N&SE MAR (mm)</th>
<th>Obs. MAR (mm)</th>
<th>Mod. MAR (mm)</th>
<th>Dif Obs. and Mod. MAR (%)</th>
<th>Obs. Cv</th>
<th>Mod. Cv</th>
<th>Dif Obs. and Mod. Cv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helena River at Ngangaguringuring</td>
<td>0.60</td>
<td>6.41</td>
<td>6.10</td>
<td>4.93</td>
<td>0.89</td>
<td>0.88</td>
<td>0.84</td>
</tr>
<tr>
<td>Donnelly River at Strickland</td>
<td>0.92</td>
<td>162.72</td>
<td>162.98</td>
<td>0.16</td>
<td>0.43</td>
<td>0.41</td>
<td>5.00</td>
</tr>
<tr>
<td>Denmark River at Kompup</td>
<td>0.70</td>
<td>58.93</td>
<td>57.92</td>
<td>1.70</td>
<td>0.58</td>
<td>0.56</td>
<td>4.83</td>
</tr>
</tbody>
</table>

Figure 1 Location of the catchments in southwest Western Australia, along with mean annual rainfall (1970-2000)
Figure 2 Bias correction methodology for precipitation in Donnelly River at Strickland during December

Figure 3 PERM model scheme
Figure 4 Comparison of raw CPDN annual precipitation and scaled AWAP annual precipitation for SWA. Grey lines represent the 2500 simulations of precipitation from CPDN. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual precipitation is plotted with a red line.
Figure 5 Histogram of median of simulated (CPDN) annual precipitation (mm) for the period between 1940 and 2000. Comparison of median of observed data (AWAP), as indicated with the open star, and the median of all the simulations during the same period, indicated with an asterisk
Figure 6 Comparison of raw CPDN annual temperature and scaled AWAP annual temperature for SWA. Grey lines represent the 2500 simulations of temperature from CPDN. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual temperature is plotted with a red line.

Figure 7 Histogram of the median of simulated (CPDN) annual temperature (°C) for the period between 1940 and 2000. Comparison of median of observed data (AWAP) as indicated with the open star and the median of all the simulations during the same period, indicated by an asterisk.
Figure 8 Bias corrected annual precipitation over Donnelly River at Strickland. Grey lines represent the 2500 simulations of bias corrected precipitation from CPDN project. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual precipitation is plotted with a red line. The bias correction was developed over the observed period 1961-1992.
Figure 9 Bias corrected annual temperature over Donnelly River at Strickland. Grey lines represent the 2500 simulations of bias corrected temperature from CPDN project. 95th, 5th percentiles and median of the simulations are presented as blue lines and AWAP annual temperature is plotted with red line. The bias correction was developed over the observed period 1961-1992.
Figure 10 Simulated annual runoff over Donnelly River at Strickland. Grey lines represent the 2500 simulations of runoff using PERM model run with bias corrected precipitation and temperature from CPDN. 95th, 5th percentiles and median of the simulations are presented as blue lines and observed runoff is plotted with a red line.
Figure 11 Histograms of seasonal changes in precipitation and runoff over Donnelly River at Strickland
Figure 12 Histograms of annual changes in precipitation and runoff in all of the catchments
Figure 13 Boxplot of uncertainties in precipitation and runoff using CPDN data and stochastic generation, in the Donnelly River at Strickland for the period 2035 - 2064.
Figure 14 Histograms of annual changes in runoff considering all the simulations of CPDN and the groups of simulations with different perturbations of the parameter rhcrit. Red line represents the median of the whole ensemble and dotted red line the median of the simulations for a particular perturbation of rhcrit.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Barria, P; Walsh, KJE; Peel, MC; Karoly, D

Title:
Uncertainties in runoff projections in southwestern Australian catchments using a global climate model with perturbed physics

Date:
2015-10-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/214155

File Description:
Submitted version