Acknowledgements

This report was produced for the National VET E-learning Strategy by Associate Professor Shelley Gillis and Berwyn Clayton at the Work-based Education Research Centre, Victoria University, in collaboration with Andrea Bateman from Bateman & Giles Pty Ltd.

This work, along with the six pilot e-validation programs reviewed, was commissioned and financed as part of the National VET E-Learning Strategy (Strategy). Ms Kerry Manikis from the Industry System Change business activity oversaw the project for the Strategy, along with the stakeholder representatives on the Industry Advisory Group. Members of this Group, along with Kerry Manikis, provided valuable support and feedback for this study.

This study was also made possible thanks to the active cooperation and trust of the six registered training organisations and their industry partners. Their generosity in sharing their experiences and insights has been greatly appreciated.
Table of Contents

Industry e-validation of assessment exemplars ... 1
Acknowledgements .. 2
Table of Contents ... 3
List of Tables .. 4
Executive summary ... 5
1. Introduction .. 7
2. Findings and lessons learnt ... 9
 2.1 The focus ... 9
 2.2 The industry partners ... 13
 2.3 The validation process ... 14
 2.4 Resourcing considerations .. 19
3. Conclusion .. 22
References .. 25
Appendix A ... 26
 Industry E-Validation of Assessment Exemplars – Headings 26
Contact Information .. 29
List of Tables

Table 1: RTOs, qualifications and competencies covered ... 9
Table 2: Rationale for selection of units .. 10
Table 3: Assessment methods and sources of evidence to be validated ... 11
Table 4: Validation focus: Tools versus sampled students' work ... 12
Table 5: Major aims and objectives of each exemplar ... 13
Table 6: Industry Partner Categories ... 13
Table 7: Validation approaches used .. 15
Table 8: Phases and steps in the validation process .. 18
Table 9: Type of technology used ... 19
Executive summary

Aims and objectives

Six registered training organisations (RTOs) were commissioned, under the National VET E-learning Strategy, to engage industry employers and stakeholders to take part in the validation of assessments through the use of technology (referred to as e-validation). Each program was to utilise e-learning systems, e-learning tools and e-learning infrastructure to engage industry; and to collect and capture the processes and outcomes of their validation.

The Work-based Education Research Centre at Victoria University, in collaboration with Bateman & Giles Pty Ltd was engaged to independently review the six pilot programs. Below is a summary of the major findings and recommendations that stemmed from this review.

Major findings

- The six pilot programs focused on a range of units of competency/qualifications (ranging from Certificate II to Diploma) within six industry areas (i.e., automotive, metal fabrication, coal seam gas mining, children’s services, aged care and sport, recreation & fitness). Units/qualifications tended to be selected by each RTO on the basis of their perceived high risk.

- The RTOs engaged a range of industry partners in their e-validation programs, including a range of enterprises of varying size, professional associations, large employer groups and Industry Skills Councils. Selection of industry participants in the pilot studies appeared to be pragmatic decisions based upon existing networks and partnership arrangements.

- Although the pilot studies were limited to testing a consensus and/or partnership approach to e-validation (as the processes had to be managed/coordinated by the RTOs), the lessons learnt from this study could be applied to independent and/or external approaches to validation.

- The focus of the e-validation tended to be limited to the review of assessment tools, with only two of the six RTOs also examining evidence of students’ work as part of the validation activity. This was largely due to the RTOs not necessarily having access to samples of students’ work at the time of the pilot studies. Of those RTOs who included samples of students’ work in the validation process, the evidence tended to be static electronic images (eg completed forms, photographs).

- The pilot studies have demonstrated that e-validation can be efficiently undertaken using a range of technology much of which is readily accessible, easily used and inexpensive. Furthermore, it has demonstrated that technology can be successfully used to:
 - engage geographically remote industry and RTO representatives in the validation process
 - facilitate and document systematic validation processes in accordance with the National VET Regulator Standards (NVR 15.5).
• Each of the RTOs considered the pilot programs as successful and plans were in place to roll-out the program to other qualifications/units within their scope of registration.

• The pilot studies revealed that if industry engagement in e-validation is to be sustainable, consideration needs to be given to:

 o The competing demands on industry participants - where RTOs will need to be flexible and respond to contingencies within enterprises

 o The removal of language barriers that can be generated by “VET Speak” in terms of the development of resources, materials and discussions among industry participants

 o Professional development needs of VET practitioners and industry representatives – in relation to the use of technology, as well as the processes and principles underpinning assessment and validation

 o The level of risk associated with the qualifications/units – with such processes limited to high risk qualifications in the first instance.

Recommendations

• **Recommendation 1:** Follow-up studies be undertaken to document the processes and lessons learnt from each of the six RTOs in their rollout of the e-validation processes to other qualifications.

• **Recommendation 2:** An acknowledgement be made in policy documents that validation can take make forms, including face to face and through the use of technology.

• **Recommendation 3:** The findings of this study be disseminated to ASQA to showcase how technology can be used to facilitate and document systematic validation processes in accordance with the National VET Regulator Standards for RTOs (i.e., NVR 15.5).

• **Recommendation 4:** Consideration be given to the professional development needs of VET practitioners and industry representatives in assessment, validation of assessment and the use of technology in the validation process.

• **Recommendation 5:** To be sustainable, any mandatory requirements to have strong industry engagement in the validation process be limited to those qualifications/units of competency deemed to be high risk qualifications.
1. Introduction

Despite systematic validation being an essential requirement within the National VET Regulator Standards for RTOs (see NVR 15.5), numerous key stakeholders have continued to raise concerns with the quality and consistency of assessments being undertaken by RTOs for the purposes of issuing nationally recognised VET qualifications. In an attempt to improve industry confidence in such qualifications, six RTOs were commissioned, under the National VET E-learning Strategy, to engage industry employers and stakeholders to take part in the validation of assessments through the use of technology, referred to hereon as e-validation. The RTOs commissioned to undertake the pilot studies were:

- Kangan Institute of TAFE who focused on units of competency within the automotive industry, as part of the Certificate III in Automotive Vehicle Body
- TAFE NSW - New England Institute who focused on aged care units of competency from the Certificate III in Aged Care
- Tasmanian Skills Institute who focused on units of competency from the Certificate III in Children’s Services and Diploma of Children’s Services qualifications
- SkillsTech Australia who focused on units of competency within the coal seam gas industry as part of the Certificate II in Process Plant Operations and Certificate III in Process Plant Operations
- TAFE NSW - Sydney Institute who concentrated on units of competency from the Certificate III in Fitness and Diploma of Sport and Recreation
- Canberra Institute of Technology who selected units of competency from the Certificate III in Engineering - Fabrication Trade

Each of the six pilot programs was to utilise e-learning systems, e-learning tools and e-learning infrastructure to not only electronically engage industry, but to electronically collect and capture the processes and outcomes of their validations. Participants were encouraged to access the NQC Code of Professional Practice for Validation and Moderation (NQC 2009a) and the Validation and Moderation: Implementation Guide (NQC, 2009b) when designing their validation processes. According to the NQC (2009a) validation is defined as:

“… a quality review process. It involves checking that the assessment tool produced valid, reliable, sufficient, current and authentic evidence to enable reasonable judgements to be made as to whether the requirements of the relevant aspects of the Training Package or accredited course had been met. It includes reviewing and making recommendations for future improvements to the assessment tool, process and/or outcomes”. (NQC 2009a, p 7)

At the completion of each pilot program, the RTOs were required to produce an exemplar report to showcase the processes and outcomes of the e-validation as well as document the lessons learnt.

1 Note that this is a superseded qualification.
The six industry e-validation of assessment exemplars are available from the E-learning for Industry website at http://industry.flexiblelearning.net.au.

The Work-based Education Research centre at Victoria University, in collaboration with Bateman & Giles Pty Ltd were engaged to independently review the six pilot programs. In particular, the team were engaged to:

- Establish a standardised reporting framework to be used by each RTO when preparing their exemplars (see Appendix A for the reporting framework designed)
- Provide technical advice on validation to the pilot teams throughout the duration of the study via:
 - participation in the monthly webinar meetings which were co-ordinated by the Industry System Change Business Manager
 - attendance at the National VET e-learning Strategy event in Melbourne, including follow-up discussions with each pilot group
 - reviewing the draft exemplar reports with provision of written feedback to each group (if required) to improve the conciseness, clarity and transparency of each individual exemplar report for publication purposes
- Produce an overall summary report which:
 - summarises the major findings from each of the pilot programs and lessons learnt
 - determine the implications for policy and practice.

This report first summarises the common features of the six e-validation programs piloted in terms of the unit/qualification focus, industry areas, partnership arrangements and assessment methods validated. It then attempts to summarise the common steps and activities undertaken by each RTO to prepare and conduct the e-validation. Next, the resourcing implications for the industry partners are discussed in terms of professional development needs, technology requirements, financial and workload implications. Finally, the benefits of the program and its implications for policy and practice are discussed.
2. Findings and lessons learnt

This section outlines the major features and findings from each of the six pilot programs as well as identifies lessons learnt by the RTOs. It should be noted that throughout this section, the tables reflect the inferences drawn from the independent reviewers’ analyses of the exemplar reports, and therefore may not necessarily reflect the opinion or intent of the RTOs participating in the study.

2.1 The focus

As can be seen in Table 1, the six pilot programs represented each of the eastern states and one territory. There were no pilot programs conducted in South Australia, Northern Territory or Western Australia. It can also be seen that each of the pilot programs focused on a range of units of competency/qualifications from different industry areas (e.g. automotive, aged care), ranging from Certificate II to Diploma qualifications.

Table 1: RTOs, qualifications and competencies covered

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Focus</td>
<td>Automotive</td>
<td>Metal Fabrication</td>
<td>Coal seam gas mining</td>
<td>Children’s services</td>
<td>Aged Care</td>
<td>Sport, Recreation and Fitness</td>
</tr>
<tr>
<td>AQF qualification type</td>
<td>Cert III</td>
<td>Cert III</td>
<td>Cert II</td>
<td>Cert III & Dip</td>
<td>2 x Cert III in different specialists areas</td>
<td>Cert III & Dip</td>
</tr>
<tr>
<td>Total No. of Units validated</td>
<td>2</td>
<td>7</td>
<td>16</td>
<td>Cert II (2) Dip (6)</td>
<td>15</td>
<td>Cert III (2) Dip (2)</td>
</tr>
</tbody>
</table>

When asked to justify the selection of the unit(s)/qualification(s) for piloting the e-validation processes, 4 of the 6 RTOs stated that it was largely due to the perceived high risk nature of the qualification (i.e., Aged Care (TAFE NSW New England), Children’s Services (Tasmania Skills Institute), sports, fitness and recreation (TAFE NSW Sydney Institute) and coal seam gas mining (SkillsTech Australia)). Although there were no uniform criteria used to determine high risk among the RTOs, it tended to be associated with high enrolment numbers, low completion rates, various delivery modes (e.g., distance), different delivery locations (e.g., off-shore) and/or safety/well-being considerations of either the learners and/or their peers in the workplace. To standardise the process for identifying high risk units within its own RTO, TAFE NSW Sydney Institute developed a risk assessment matrix for prioritising units of competency for validation purposes.

Both SkillsTech Australia (i.e., coal seam mining gas focus) and TAFE NSW New England (i.e., aged care) selected the complete qualification to be validated in their pilot programs. In regard to TAFE NSW New England, each of the units within the Certificate II in Aged Care

National VET E-learning Strategy
was independently validated. Whereas, despite the acknowledgement from SkillsTech Australia that they were focusing on a high risk qualification which contained 16 units of competency, it was argued that the validation panel would focus on “broad and holistic assessment issues and approaches for the overall qualification, rather than choosing to unpack specific competencies” (p.3). Unfortunately, there was insufficient information in the exemplar to ascertain how the whole qualification was validated without unpacking the units of competency that underpinned the qualification.

Kangan and CIT selected core units of competency within their qualifications. For example, Kangan selected two core units within the Certificate III in Automotive Vehicle Body because they were delivered and assessed solely within the workplace by an RTO assessor. It was thought that their “industry partners would be more interested in participating in an e-validation project that focussed on assessments that occur in the workplace rather than units with assessment tasks completed in the training room” (Kangan, 2013, p.3). It should be noted that to ensure objectivity in the validation process, samples of students’ work were gathered from different workplaces to those represented on their validation panel. Whilst CIT also concentrated on core units, they selected 7 units within the qualification that were clustered into a holistic assessment.

A summary of the reported rationale for selection of the units by each of the participating RTOs has been presented in Table 2.

Table 2: Rationale for selection of units

<table>
<thead>
<tr>
<th></th>
<th>Kangan</th>
<th>CIT</th>
<th>Skills Tech Aust.</th>
<th>Tasmania Skills Institute</th>
<th>TAFE NSW – New England</th>
<th>TAFE NSW – Sydney Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Risk qualification/unit</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Core units</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessed within workplace</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New holistic tools recently developed</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To examine the potential for rolling out the e-validation processes being piloted in these studies to other industry areas/qualifications, it was not only important that the six pilot studies focus on different industry areas/competencies (as can be seen in Table 1), it was also important to ensure that a range of assessment methods and evidence sources were subject to e-validation. The intention was to determine whether there were any specific challenges associated with capturing electronic evidence of student performance as well as the tools for purposes of e-validation. Table 3 provides a summary of the assessment methods and sources of evidence that each of the six RTOs reported underpinned their validation processes.
Table 3: Assessment methods and sources of evidence to be validated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Evidence</td>
<td>Workplace Tasks/demonstrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Observation checklists/forms/records</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Photographs</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Workplace forms/products</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Workplace Simulations</td>
<td>Observation Checklist</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Workplace Forms</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Role plays</td>
<td>Observation Checklists</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projects/practical tasks</td>
<td>Product produced /photograph.</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Portfolios</td>
<td>Testimonials, photos, reports etc</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge and Understanding</td>
<td>Written tests/exams</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Written Responses</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Interviews</td>
<td>Verbal responses</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Assignments/ case studies</td>
<td>Written reports</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Presentation</td>
<td>Slides, notes and observations</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*Note that this is for illustrative purposes only, based upon available evidence documented explicitly in each RTOs exemplar report.
It can be seen in Table 3 that a range of assessment methods were used to assess against the units specified in Table 1, which meant that the pilot studies had the potential to capture a range of different sources of evidence for validation purposes. However, only two of the six RTOs included students’ work in their validation processes (see Table 4), with the majority of RTOs focusing on validation of the assessment tools only. One RTO, SkillsTech Australia did not explicitly validate the assessment tools nor students work per se in their validation, but instead focused on the gaining feedback from their enterprise on their current partnership arrangement, the authenticity of the simulated training and assessment environment, the anticipated future needs of the industry and the enterprise’s expectations of employees upon graduation from SkillsTech Australia.

It should also be noted that with Tasmania Skills Institute and TAFE NSW New England it was not possible to have access to a sample of the students’ work as the focus of the validation in both instances was on the introduction of new assessment tools.

Of the two RTOs who did include samples of students’ work in their validation processes, evidence of students performance appeared to be limited to static electronic images (e.g., Completed forms, photographs of the product built) as opposed to motion based evidence of students’ live performance (e.g video evidence of student performing tasks). For example, CIT designed an integrated holistic project for assessing the 7 units of competency and they then photographed a sample of the students’ work and uploaded the images with their project checklist for validation purposes. Student work was identified for inclusion in the validation package by selecting a sample of work that represented a range of achievement levels, as determined by the assessor.

Similarly, Kangan included samples of students’ written work (for the theory component) and photographs of the student performing the tasks in its validation processes. Although it is not clear in the exemplar reports from these two RTOs why the evidence was limited to static type, it may have been due to concerns associated with maintaining confidentiality of the students or the pilot study’s time constraints. It is unlikely that the decision not to include video evidence was technology related as Kangan developed a video for their industry partners to explain the aims and processes to be undertaken in the e-validation study.

<table>
<thead>
<tr>
<th>Kangan</th>
<th>CIT</th>
<th>Skills Tech Aust.</th>
<th>Tasmania Skills Institute</th>
<th>TAFE NSW – New England</th>
<th>TAFE NSW – Sydney Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Tools</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Students work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination of above</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not clearly specified</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Each RTO was also requested to explicitly state what their intended aims and objectives were for undertaking the e-validation pilot study. A summary of the major aims and objectives reported by each RTO has been presented in Table 5.
As can be seen in Table 5, all of the pilot studies aimed to use technology to increase engagement and commitment of industry in the validation process. Although only directly stated by three RTOs in their exemplar reports, discussions with all the RTOs throughout the implementation of the pilot studies, revealed that a major driving force for participation in the study was to also examine the extent to which technology could be used to establish cost-effective processes for undertaking systematic validation to meet compliance requirements.

2.2 The industry partners

Given that the RTOs ultimate aim was to increase industry engagement in the validation of the RTO-based assessments, this then raises the question as to who were the industry partners and how were they selected. Table 6 displays the industry partner categories for each of the six RTO pilot studies.

<table>
<thead>
<tr>
<th>Table 5: Major aims and objectives of each exemplar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kangan</td>
</tr>
<tr>
<td>Use technology to engage/collaborate industry</td>
</tr>
<tr>
<td>Collaborate with other RTOs</td>
</tr>
<tr>
<td>Establish workflow</td>
</tr>
<tr>
<td>Maintain compliance</td>
</tr>
<tr>
<td>Strengthen existing partnerships with industry</td>
</tr>
</tbody>
</table>

It can be seen that there were a variety of organisations that partnered with the RTOs, including enterprises of varying size, professional associations, large employer groups and Industry Skills Councils. Selection of industry participants in the pilots appeared to be pragmatic decisions based upon utilising existing networks and partnership arrangements. For example, Kangan selected from...
its existing network, medium size automotive repair workshops that typically employed their apprentices and were involved in on-the-job training.

One RTO, Tasmania Skills Institute selected industry representatives who were already trained and assessed as competent against the assessment units within the TAE10 Training Package (in addition to having the relevant childcare qualifications as well as strong working knowledge of the industry) given the tight timeline for the pilot study. SkillsTech Australia selected to work with a single enterprise, Santos, as they already had a strong working relationship with this large employer and stated that they could not include other enterprises “because of confidentiality and embargos” (SkillsTech Australia, p.9). It was interesting to note that 3 of the 6 RTOs also partnered with other RTOs who delivered the same qualification, in addition to industry.

2.3 The validation process

2.3.1 The approach

Each of the pilot programs were required to describe how they validated their assessments with their industry partners. According to the NQC (2009a, 2010), there are four major approaches to conducting validation and each is presented below in terms of increasing scrutiny and rigour:

- assessor partnerships – refers to the sharing of assessment tools and outcomes within a small group of assessors who act as critical friends to each other to identify improvements to the tool and/or assessor judgements.
- consensus – refers to a more formal process of reaching agreement on modifications required to the tool and/or judgement, typically involving a group of assessors reviewing their own and their colleagues’ assessment tools and outcomes.
- external – refers to an externally coordinated process of review in which the external body has the authority to review and monitor the assessment processes and outcomes of an RTO at the industry level.
- statistical – refers to the statistical adjustment of the RTO-based assessments in accordance with candidates’ performances on a common external task (e.g., exam).

According to the NQC (2010b, p.17) “having external representatives on a validation panel that has been established and coordinated by the RTO does not constitute an external validation”. Instead, it would be classified as either an ‘external partnership model’ or a ‘consensus model with external representation’, where the RTO could be confident that its standards are comparable to at least those organisations/individuals represented on the validation panel.

It should also be acknowledged that unlike the pilot studies being conducted as part of the National Partnership Agreement by each of the jurisdictions (see Bateman & Gillis, 2012, 2013), the six pilot programs in this study did not have to meet the requirements of independent validation (i.e. where the validation process has to be coordinated by a disinterested, unbiased or impartial third-party). Instead, the six RTOs were required to self-manage the validation processes being piloted, and at the same time, engage industry in the process. Therefore, by definition, the six RTOs in this study were limited to selecting either the ‘assessor partnership’ or ‘consensus approach’ to validation.
The consensus model proved to be the most popular approach to validation as four of the six RTOs adopted this approach with the use of technology. A summary of the validation approaches adopted by each of the six RTOs has been presented in Table 7.

Table 7: Validation approaches used

<table>
<thead>
<tr>
<th>Approach</th>
<th>Kangan</th>
<th>CIT</th>
<th>Skills Tech Aust.</th>
<th>Tasmania Skills Institute</th>
<th>TAFE NSW – New England</th>
<th>TAFE NSW – Sydney Institute*</th>
</tr>
</thead>
<tbody>
<tr>
<td>External assessor partnership</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus with External</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>representation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterprise consensus validation</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry representative per panel</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>2.4</td>
<td>3</td>
</tr>
</tbody>
</table>

As can be seen in Table 7, CIT utilised an external partnership model for its e-validation where the CIT staff member collaborated one-on-one with the industry validators. SkillsTech Australia had partnered with a large enterprise (Santos) to undertake e-validation of a qualification that had been “specifically designed to Santos specifications for Santos employees” (SkillsTech Australia, 2013, p.3). Given that the panel also represented Santos-only employees, the approach adopted by SkillsTech was classified as an enterprise based model (see Bateman & Gillis 2012).

Table 7 also reports the number of industry representatives that were included in each validation panel. It can be seen that those who utilised a consensus approach tended to have around 3-4 industry representatives per validation panel. The numbers in the table do not take into account the numbers of RTO staff members who were involved as part of the validation team.

2.3.2 Major phases and steps

Despite the different approaches to validation being piloted among the six RTOs, there was a commonality in the steps in the processes implemented. These have been summarised in Table 8 and are grouped under four major phases: Planning, Induction, Review and Recording & Reporting. Each will be considered next.

Planning

All six RTOs acknowledged the importance of the planning phase. That is, preparing all documentation required for validation, establishing and testing the technology with industry partners and scheduling meetings to best accommodate participants was seen as a crucial step to be performed prior to engaging industry in the e-validation process. As stated by Tasmania Skills Institute, the ‘aim was to make it as easy as possible for industry partners to participate’ …and it “worked on the premise that if the pilot didn't work then we had lost this industry for ever” (Tasmania Skills Institute, 2013, p.13). A number of the RTOs also established a steering/reference group to oversee the project (e.g., CIT, SkillsTech Australia and Kangan).

Induction
Although different strategies were implemented, each of the RTOs also placed high importance on the induction of the industry representatives to the e-validation process. For instance, Tasmania Skills Institute selected industry partners within the childcare sector who had previously attained the ‘assessment units’ and ‘developing assessment tools’ unit of the TAE qualification, on the assumption that they would have the necessary assessment expertise to participate in the validation process. In contrast, TAFE NSW - New England provided formal training in assessment validation (the unit TAEASS403B *Participate in assessment validation*) to its aged care industry representatives.

Some of the RTOs established project websites. Kangan developed a website that was designed to brief their industry/enterprise partners on the project aims, roles and responsibilities of key players as well as provide a brief overview of the requirements for assessment and validation process, using as much as possible, non-academic/VET language. A similar website was created for SkillsTech Australia designed specifically for its enterprise partner Santos. Hence, the importance of providing quality information and streamlining the process to make it as time-efficient as possible for industry were major driving forces behind the design of all of the pilot programs.

Review

In relation to the review phase, all of the RTOs had their industry partners independently review the assessment tools and/or samples of students’ work in the first instance. This typically entailed the RTO:

- e-mailing the files directly to the industry representatives
- providing access to the documents via a digital repository (e.g., Dropbox, Google drive, Equella) and/or via utilising the RTO’s existing learning management systems (e.g., Moodle)
- distributing USB sticks to each industry representative
- provision of hard copy versions of all materials in the mail to its industry partners.

Some RTOs, for example, Tasmania Skills Institute not only emailed an information pack to its industry representatives but also sent hard copies in the mail so that the participants would not be required to print or organise the files from their email. Hence, this RTO aimed to make the process as easy and time efficient as possible for its childcare industry representatives, which increased their industry partners’ commitment to the process as demonstrated by the following testimonials.

> “By having the documentation prior to the conference and available in hardcopy enhanced our understanding and therefore our involvement.”
>
> Aged Care participant – Tasmania Skills Institute

> “I wish to again compliment [the facilitator] on her organisation and follow up with all members of this project. It was fantastic working in such a well organised project.”
>
> Aged Care participant – Tasmania Skills Institute

For those organisations who piloted a consensus approach to e-validation, consensus was reached in various ways. For instance, some of the RTOs utilised web conferencing software to bring remote validators together to discuss the assessment tools. The Tasmania Skills Institute utilised an
interactive Smartboard, with its in-built web conferencing facilities, as this equipment was already located within their industry partners’ workplaces. Similarly, Kangan utilised Google Hangout to support an online validation meeting in which industry participants participated in a video connection in real time to discuss their individual reviews and to reach consensus on any tool amendments required.

Instead of expecting participants to be available at the same time to validate assessment tools, TAFE NSW Sydney Institute utilised free shared document review software packages such as Adobe Acrobat Review tools and Google docs. This enabled the validators to remotely review the assessment tools at their own convenience and at the same time, build on each other’s feedback to reach consensus. As argued by TAFE NSW Sydney Institute...

“You can send a document out for shared review to collect comments in one place. Anyone with free Adobe Reader® 9 software or later can see and build on each other’s feedback, saving time with fewer emails and meetings”. (TAFE NSW Sydney Institute, 2013, p.7).

Hence, it can be seen that a range of different technologies was utilised to facilitate the discussions among the validators to reach consensus.

In relation to CIT who utilised an external assessor partnership approach to validation, feedback from validators was sought by progressively compiling a validation package (via the use of Moodle and Equella) and then sending a package link to the individual validators via email.

“One to one feedback between the validator and the assessor could then occur by any means; face to face, over the phone and/or using an online meeting room. This seemed to be the most convenient approach for the industry validators as it gives them the opportunity to manage the scheduling…This method would also support a validation event (many validators brought together at the same time) or any combination thereof” (CIT, 2013, p.9).

Record keeping and reporting

Records of the validation process and outcomes tended to be stored on the RTO’s existing secure network drives that had shared access. Whilst all of the RTOs reported the outcomes of the validation process directly to the tool developers for actioning, not all of the RTOs sought final industry approval of the amendments made. For example, in relation to Kangan, the “responsibility for follow-up actions reside[d] with the RTO representatives in liaison with [the] relevant teachers and development staff” (Kangan, 2013, p.10). Whereas, TAFE NSW - New England Institute utilised the technology to send the amended documents to their child care industry representatives for final approval.

As part of their continuous improvement strategies, both TAFE NSW - Sydney Institute and Tasmania Skills Institute administered an evaluation survey to their industry partners. This enabled them to gather feedback from participants on their experiences with the e-validation process, including ease of use of the technology, the level of engagement and commitment to the process as well as the perceived level of rigour and willingness to participate in further e-validation meetings of a similar nature. Unfortunately, only Tasmania Skills Institute included the findings from the evaluation survey in their exemplar report, which revealed positive feedback on all accounts.
Table 8: Phases and steps in the validation process

<table>
<thead>
<tr>
<th>Major phases</th>
<th>Steps in the process, in sequential order.</th>
<th>Kangan</th>
<th>CIT</th>
<th>Skills Tech Aust</th>
<th>Tas Skills Institute</th>
<th>TAFE NSW – New England</th>
<th>TAFE NSW – Sydney Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Identification of qualification and/or units, tools and evidence and preparation for electronic distribution</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Establishment of a Steering/Reference Committee</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Development or refinement of e-validation checklist and forms</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Development of information validation packages/websites</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Establishing and testing the technology</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Scheduling of e-meetings</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Induction/Training</td>
<td>Formal training of industry representatives in assessment validation (e.g., TAEASS403B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Delivery of training (formal and/or information) in the use of technology</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Induction meetings to explain aims, processes, roles and responsibilities</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Electronic distribution of materials</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Review</td>
<td>Independent review of tools/evidence by validator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>One to one discussion with validator on independent review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shared document review software packages utilised to reach consensus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consensus group meetings involving oral discussions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Recording & Reporting</td>
<td>Completion of validation forms/records</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Electronic storage of process/outcomes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feedback/conclusion meeting with participants</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommendations sent to tool developer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal accountability (i.e., within the RTO) to act on actions arising from e-validation as part of continuous improvement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External final approval (i.e., reporting back to the industry validators) of the actions undertaken by tool developer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formal feedback from Industry on validation experience (e.g., survey monkey)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
2.4 Resourcing considerations

Technology considerations

As all the RTOs had previous experience with undertaking systematic validation via face to face consultations/meetings, the major challenge for the participating RTOs was to identify how technology could be best utilised to:

- capture and store the relevant documents and evidence sources
- facilitate communication and discussions with industry to increase their engagement and commitment in the process
- maintain the rigour required for systematic validation.

For example, CIT argued...

“The utilisation of e-technologies for validation does not substitute for sound validation practices. Instead it captures part of an existing process, and utilises technology to enhance the distribution, communication and reporting of validation evidence. There is a strong need to engage and build relationships with the relevant industry partners.”

(CIT, 2013, p.13)

A summary of the type of technology utilised for distribution and collaboration has been summarised in Table 9.

Table 9: Type of technology used

<table>
<thead>
<tr>
<th>Approach</th>
<th>Technology</th>
<th>Kangan</th>
<th>CIT</th>
<th>Skills Tech Aust.*</th>
<th>Tas Skills Institute</th>
<th>TAFE NSW – New England</th>
<th>TAFE NSW – Sydney Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dropbox</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Box</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Equella</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobile phone technology</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Google drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTOs secured network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drives/intranet sites</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USB Storage device</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skype</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adobe Connect/Acrobat</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Google hangout</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bridgit (Smartboard)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMS systems (e.g., Moodle, Blackboard Collaborate)</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teleconferencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Videoconferencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Online survey</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the pursuit of piloting an e-validation model that would be sustainable and scalable, the RTOs deliberately selected the technology applications displayed in Table 9 as they were either free and/or readily accessible to their industry partners. TAFE NSW New England Institute's exemplar report provided a detail analysis of the strengths and weaknesses of the technologies used within their pilot program, and would be a useful resource for those considering introducing e-validation within their RTO.

Professional development needs

As previously stated in Section 2.2, some of the RTOs provided professional development for their industry partners as part of the induction phase. Of those who did, this tended to be in the following three broad areas:

- Use of technology piloted (e.g., TAFE NSW New England, CIT, Kangan)
- Assessment and/or validation (e.g., TAFE NSW New England, Kangan)
- Structure of training packages, units of competency (e.g., Kangan).

In relation to the use of technology, it appeared as though all of the RTOs provided some form of support to their industry representatives on the use of technology throughout the pilot study. For example, CIT argued that...

> “informing the participant of the programs needed was important, as was the need to be available to troubleshoot on behalf of the users. It was important not to make assumptions about the level of digital literacy or technology of the validators.”

(CIT, 2013, p.12)

Kangan provided 12 hours of training to its industry partners prior to conducting the e-validation. Two hours were spent discussing the project parameters, objectives and commitment required, and another 10 hours were spent on 'up-skilling' the partners on the use of technology, as well as the concepts and processes associated with assessment, validation and units of competency. This was seen as important by Kangan, as the RTO could not assume that all its industry members would have the same level of knowledge, understanding and skills in assessment and validation.

Within the sport, fitness and recreation industry, TAFE NSW Sydney Institute found that its “industry had limited understanding of assessment validation processes, terminology and documentation” (TAFE NSW Sydney Institute, 2013; p.14). The challenge therefore, was to make the process as simple as possible for industry by removing as much as possible, VET specific terminology from the materials provided, without comprising the rigour required for effective validation.

The benefit of getting the right balance in the language used was acknowledged by CIT which stated...

> “industry kept us on track with the language used in the documentation and the ISC MSA reminded us that industry don’t have VET knowledge but do know what skills and knowledge are required to be competent. This aligns itself when the two come together through the validation process.”

(CIT, 2013, p.11)
To overcome the potential problems associated with limited assessment expertise of its industry partners, Tasmania Skills Institute selected industry representatives that were already trained and experienced in validation as well as the use of the technology; and therefore, required minimal support in these areas. This strategy was adopted mainly because of the short time frame available in which to conduct the pilot program.

Finally, this review found that whilst some of the RTOs acknowledged the professional development needs of its industry partners in assessment and validation, some failed to acknowledge their own limitations in this area. That is, confusion of such terms was found in the recording templates and information packages that were designed for e-validation by some of the RTOs. Hence, it appears as though some of the RTOs may also benefit from undertaking professional development in assessment and validation.

Workload issues

The total amount of time that industry committed to validate each unit of competency was difficult to determine from the information presented in the exemplars. Of those that recorded times, it varied in terms of how it was measured. Some RTOs reported the actual time spent reviewing and reaching consensus on the assessment tools, others also reported the preparation time, including training commitments. For example, within the sport, recreation and fitness program, the industry members spent between 15-30 minutes to validate each unit of competency; and similarly, within the aged care program, the industry participants spent around two hours reviewing up to five units of competency (note that prior to the e-validation, the same face to face exercise was a 5 hour process). However, within the automotive industry, each industry member committed approximately 16 hours of his/her time over a 12 week period to validate two units of competency. Note that the 16 hours reported including professional development activities and preparation time. In relation to the early childhood industry, each validator committed to attending four online meetings per week for a two week period to validate 8 units of competency.

Despite the challenges with measuring the actual time commitment of the industry participants, all the RTOs were conscious of minimising the workload of their industry partners by actively taking on additional coordination and administration roles/responsibilities, where possible, to streamline the e-validation process. At the same time, they were also selecting and utilising as much as possible free technology and readily available equipment used within their industry, so that the only additional costs to industry were those that were considered to be in-kind.
3. Conclusion

Overall, the RTOs considered the pilot study a success and plans were to roll-out the model to other areas within their RTOs. For example, TAFE NSW Sydney Institute were of the opinion that the e-validation was ‘extremely cost-effective’ and there were plans to initially roll out the program to all qualifications/units within TAFE NSW Institute Sutherland – Loftus Health and Recreation section. Similarly, Tasmania Skills Institute have plans to roll out the program to all of its Children’s Services qualifications, in which experienced validators will support new members to build skills and confidence in this approach to validation. Both RTOs also planned to showcase their exemplar to other faculties within their RTOs to encourage uptake to other qualifications. The success of the program was highlighted by CIT in that it plans to roll out the e-validation model to all of its qualifications under its scope of registration which will be supplemented by presentations and professional development workshops for its teachers to up-skill them in the use of e-validation technology and processes.

Recommendation 1: Follow-up studies be undertaken to document the processes and lessons learnt from each of the six RTOs in their rollout of the e-validation processes to other qualifications.

Another major benefit of the program was that it enabled the RTOs to effectively use technology to engage geographically remote industry members in the validation process, when in the past this would have been considered too difficult or impossible. As stated by one of the early child care industry participants...

> “Ultimately any validation program is only as good as the participants and I think that regardless of face to face or e-learn, validation relies on the motivation of those involved – the benefit of the e-validation project is that it allows people like myself who are interested but cannot allow enough time out of the workplace, to participate. This helps me to maintain my skills and knowledge and to (hopefully) offer views that are not normally able to be presented due to time, distance and budget constraints.”

Childcare industry representative, Tasmania Skills Institute (2013, p.15).

All the RTOs reported that the program enabled them to strengthen their relationships with industry and in particular, develop a shared understanding and appreciation of industry standards and assessment practices through deeper engagement of industry in the process. As argued by Kangan...

> “Regular communication with participants and providing the opportunity for industry to engage in validation resulted in an improved understanding of assessment processes used by RTOs. It also strengthened the relationship between the ISCs, employers and the RTOs involved in this project.”

(Kangan, 2013; p.19).
The projects in this pilot study have demonstrated that e-validation of assessment can be efficiently undertaken using a range of technology much of which is readily accessible, easily used and inexpensive. The meeting facilitation, document storage and exchange tools utilised by the 6 RTOs proved to be appropriate for use in the consensus model of assessment validation. Whilst not tested in any of the current pilots, video could also provide the concrete evidence required to validate learner performance of key work tasks.

Recommendation 2: An acknowledgement be made in policy documents that validation can take make forms, including face-to-face and through the use of technology.

Recommendation 3: The findings of this study be disseminated to ASQA to showcase how technology can be used to facilitate and document systematic validation processes in accordance with the National VET Regulator Standards for RTOs (i.e., NVR 15.5).

It is clear that the approaches trialled in the pilots can be used more broadly by RTOs to actively engage industry in the validation process. In fact, Industry Skills Councils seeking to improve consistency of assessment outcomes particularly in high risk qualifications or units of competency could support the development of industry-wide approaches to e-validation. However, what these pilots have also highlighted is that individual validators within industry may not necessarily have access to technology of similar currency to that in use within RTOs, nor will they have the same level of confidence or expertise in its use for validation purposes. In light of this, implementation of e-validation more broadly across the system may require upgrading of technology within industry partners and up-skilling of industry partners in the use of that technology.

Up-skilling in the areas of assessment and validation would also appear to be critical for all participants engaging in the e-validation process. This issue however, is not unique to e-validation alone as it extends to systematic validation requirements across the entire VET sector. Successful validation requires a shared understanding of the process and informed decision-making as well as a level of expertise. In practice, industry validators will always have competing demands. Therefore, sustainability will be an ongoing challenge, despite the pilot participants demonstrating a high degree of commitment to the pilot activities.

Recommendation 4: Consideration be given to the professional development needs of VET practitioners and industry representatives in assessment, validation of assessment and the use of technology in the validation process.

To facilitate the ongoing engagement of industry in the e-validation, RTOs will need to understand these demands on industry participants, be flexible and respond to contingencies and give consideration to critical issues of timing and efficiency. Furthermore, the pilot revealed that the success of industry validation is very much dependent upon ensuring that any documentation has been presented in a language that is readily understood by all. Removing the language barriers generated by “VET speak” will help to improve the rigour of assessment.
Finally, what is evident from these pilot programs is that validation in any form is costly - in both time and resources. Therefore, it is important that industry validation be strategically applied to those qualifications/units of competency deemed to be high risk or those where concerns have been directly raised by key stakeholders.

Recommendation 5: To be sustainable, any mandatory requirements to have strong industry engagement in the validation process be limited to those qualifications/units of competency deemed to be high risk qualifications.
References

Appendix A

Industry E-Validation of Assessment Exemplars – Headings

1. BACKGROUND (1/2 page)

 1.1 Project aims and objectives

 1.2 Qualifications/Units of Competency (summary and justification for why these units were selected for the e-validation)

 1.3 Describe the typical contexts for the assessment. For example,

 o The nature of the competency units (e.g., covert versus overt, cognitive versus skills based)

 o The specific nature of the industry/qualification that may contribute to its uniqueness (which would need to be considered for further roll-out)

 o Characteristics of the target group (i.e., typical background characteristics of the learners – e.g., VETiS, unemployed, NESB, disabilities)

 o Any other issues to be considered (e.g., scored/graded assessment)

 1.4 Summarise the major outcomes/deliverables of the study

2. THE E-VALIDATION PROCESS² (7 pages)

 2.1 Validation Approach adopted – Describe the validation process piloted (i.e., assessor partnership versus consensus versus external)³. Also document the major features and steps in the approach that has been implemented. When doing so, use clear and concise language to guide other RTOs looking to adopt a similar approach. Outline how the process met the definition of validation⁴, and included industry engagement.

 2.2 Authority - How were the final decisions made about the quality of the assessment tool and/or judgements made by the assessors (e.g., consensus, majority, power of chair)? How did the use of technology facilitate the decision making process? Indicate whether any benchmarks were used to guide the validation decision making? What type and level of accountability was there for the decisions made in the validation process (e.g., what follow up strategies have been employed to ensure that the recommendations/decisions made from the validation meeting have been implemented? How was the technology used to facilitate the follow-up strategies employed?

 2.3 Industry engagement – What has constituted industry for your pilot? Employers (what size and where (metro, regional)), industry associations, ISCs…?

 2.4 Resourcing Considerations

² see NQC 2009b (Implementation Guide: Validation and Moderation, pg 24-39) for further information of the key features of a validation process listed.

⁴ See NQC 2009a (Code of Practice) for the definition.
2.5 **Scheduling considerations** – when was the validation undertaken (e.g., post assessment, prior to finalisation of assessment results). How and when were events scheduled? For example, if consensus validation was undertaken, how many meetings were conducted, how were they conducted and what follow-up strategies were employed to engage participants in the process? How did the use of technology facilitate this process?

2.6 **Sampling strategy employed** How were the sample of assessment tools and/or judged students work selected for the unit(s) of competency? Defend how these were representative.

2.7 **Records Management** – what type of assessment (e.g., tools, samples of students' work) and validation evidence (records of validation process, validation outcomes/decisions made) were recorded and stored electronically? Was there any security/confidentiality issues that had to be addressed, how were these records to be maintained and for how long? How did the use of technology facilitate the record keeping requirements for validation? Are there any other recording keeping issues that may need to be addressed with future roll-out?

2.8 **Reporting** – what were the reporting requirements of your key stakeholder groups (e.g., students, RTO staff, ISCs, employers engaged in the process)? What types of reports were generated to meet such needs and how has the use of technology facilitated the reporting process?

3. **INTERNAL EVALUATION (2 & ½ pages)**

3.1 Upon reflection of the e-validation process you have established and piloted, explain what worked and what didn’t work and why. Also identify any lessons to be learnt for future roll-out to other units/qualifications both internally and externally to your RTO.

3.2 **Sustainability**:

 o **Within the same industry** – How will your RTO’s model of e-validation be rolled out to the rest of this qualification? How will it be rolled out to the suite of qualifications this is part of (e.g., Cert II, III, IV, Dip, Adv Dip)?

 o **Across different industries** – How will your RTO’s model of e-validation be rolled out to other qualifications in its scope?
3.3 Effectiveness; explain whether the model has led to improvements in assessment tools and judgements and greater industry confidence in the process and outcomes. Include any evidence to support this claim.

3.4 Cost effectiveness of the model(s) – How cost-effective do you consider the model to be if it was to be sustained? What recommendations do you have for improving its cost-effectiveness.

4. IMPLICATIONS FOR POLICY AND PRACTICE (½ pages)

APPENDICES

- Listing of Participants (include name, organisation, location) and specify the role played in the process (e.g., industry member of validation panel)
- Include evidence of the validation process undertaken and the outcomes/decisions made by providing access to your e-validation sites for external review by the evaluation team (see NQC 2009b, page 44-57 of templates that could be used to record the process and/or outcomes of the validation meetings)
Contact Information

For further information regarding the Industry System Change business activity, please contact:

Name: The FLAG Secretariat
Phone: (03) 9954 2915
Email flag_enquiries@natese.gov.au
Website: http://industry.flexiblelearning.net.au

With the exception of the Commonwealth Coat of Arms, the Department’s logo, any material protected by a trade mark and where otherwise noted all material presented in this document is provided under a Creative Commons Attribution 3.0 Australia (http://creativecommons.org/licenses/by/3.0/au/) licence.
Author/s: Gillis, S; Clayton, B; BATEMAN, A

Title: Industry e-validation of assessment exemplars: Independent Review Report

Date: 2013

Persistent Link: http://hdl.handle.net/11343/216088

File Description: Published version