Tiny terminological disagreements with far reaching consequences for global bird trends

Running Head: Terminology influences bird trends

Hannah Frasera, Jean-Baptiste Pichancourtb, and Alain Butetc

aSchool of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
bCSIRO, Dutton Park, Queensland, Australia
cOSUR, UMR CNRS 6553 ECOBIO, University Rennes1, Ave. Gal. Leclerc, 35042, Rennes Cedex, France.

*Corresponding author: hannahsfraser@gmail.com
Abstract

Various combinations of data and expert opinion have been used to select species for indices of bird trends. Commonly these indices break species into groups based on their habitat preference such as woodland specialist, farmland specialist and generalist birds. It is unclear what influence differences in how species are allocated to these groups might have on trends in these indices. There is uncertainty surrounding reported trends in these bird groups with studies variously showing declines or increases in prevalence. This is usually attributed to ecological factors but if studies classify bird groups differently this variation may be due to inconsistency in classification. Disagreement about whether these bird groups are stable, increasing or declining has the potential to obscure important changes in bird prevalence and impede appropriate, timely conservation.

We examined how consistently European and Australian researchers classified woodland, farmland and generalist birds, and whether this affected the trends in indices of these groups. Researchers from both regions classified species differently, and the population trends seen in these groups were strongly affected by differences in classification. While all classifications we studied suggest that populations are consistently declining for Australian woodland and European farmland birds and increasing for European woodland birds. European generalist and Australian farmland and generalist birds may be seen as increasing or decreasing in prevalence depending on classification.

Our results question the current practice of idiosyncratically classifying indicators in scientific research and conservation. Current practice is making it more difficult to infer whether, when and how to preserve bird groups in Europe and Australia, potentially leading to sub-optimal
biodiversity outcomes. We offer suggestions for building consensus on how to classify these bird
groups in order to provide more reliable evidence to support conservation decisions.

Key-words

classification, farmland bird, generalist, indicator, specialist, standardize, trends, woodland bird
1. Introduction

Globally, governments are united in the desire to preserve Earth’s remaining biodiversity, as evidenced by the creation of the Convention on Biological Diversity and the Aichi targets, along with other commitments made at national and regional scales. Attempts to gain an understanding of global biodiversity trends have inspired the creation of numerous biodiversity indicators (Tittensor et al., 2014). These indicators are restricted to specific taxa, areas, or aspects of biodiversity loss (Cairns et al., 1993; EBCC, 2014; Gottschalk et al., 2010; IUCN, 2000; Scholefield et al., 2011).

Birds are particularly charismatic and diverse and as a result have been extensively studied and monitored, eventuating in the development of multiple indicators of their trends through time (DEFRA, 2013; EBCC, 2014; Gregory and Strien, 2010; Olsen et al., 2005; Rayner et al., 2014). These indicators typically group birds by their primary habitat association to pick up changes associated with habitat modifications. However, Fraser et al. (2015) indicated that the species included in these groups differ between studies. The study, based in Australia, found that the species experts classify as woodland birds differ substantially and may lead to meaningful differences in results. However, an English study found that the indicators of bird trends derived from the Breeding Bird Survey were robust to changes in species classification (Renwick et al., 2012). Our study aims to compare how sensitive bird indices in Europe and Australia are to differences in species classification demonstrated in the literature. We look at how indices of trends in bird groups differ under published classifications of farmland, woodland, and generalist bird groups. If indices of trends in these bird groups differ substantially then results from different studies are not comparable. This impedes scientific progress because researchers can no longer justify drawing conclusions from the body of research on farmland, woodland or
generalist birds, only from the minority of article which classify species identically. This is problematic in all research but especially in conducting systematic reviews and meta-analyses as it thwarts the direct comparison of results between studies. Disagreement about trends in a bird group between studies may obscure declines causing necessary conservation efforts to be delayed or deemed unnecessary.

Researchers and conservationists throughout Australia and Europe are concerned that forest and woodland birds are declining due to deforestation, fragmentation and degradation of forests and woodlands (Ford et al., 2001; Gil-Tena et al., 2009; Gregory et al., 2007; Hewson et al., 2007; Vickery et al., 2004; Watson, 2011). The reduced amount of habitat available and the increased need to disperse through hostile environments are thought to lead to declines in forest and woodland birds (Deconchat et al., 2009; Garrard et al., 2012; Gil-tena et al., 2014). The relationship is complicated in Europe because in areas such as Britain woodland habitat is receding while in some Mediterranean countries it is expanding.

In Europe there is also concern about a possible decline in farmland birds as a result of reductions in the extent and quality of remaining traditional farmland habitats. This decline in farmland habitats is thought to have been triggered by the European Union’s Common Agricultural Policy which had a two-fold effect: intensifying agricultural practices and indirectly increasing afforestation (Pithon et al., 2005; Vanhinsbergh et al., 2002; Vickery et al., 2004). In 2003, the European Common Agricultural Policy was revised to address this (Butler et al., 2010) and, along with the promotion of agri-environmental schemes, this effort may have redressed the issue but declines in farmland birds continue to be reported (Aviron et al., 2009).
Declines in farmland and forest/woodland birds are thought to be accompanied by increases in species which have broader habitat requirements (the generalists) and are able to persist in modified areas (Mckinney and Lockwood, 1999). It is hypothesised that there is a global rise in the population of generalist birds as a result of biotic homogenization caused by extinctions, habitat degradation, urbanization and introduced species (Croci et al., 2008; Gregory and Strien, 2010; McKinney, 2006; Robertson et al., 2013; Rooney et al., 2007). There is also evidence that common bird species (mainly generalists) are declining in Australia (Birdlife Australia, 2015) but more evidence is required in Europe and Australia to conclude that there is an increase in generalist birds.

In this study we examine whether the proposed trends in three bird groups (woodland specialist, farmland specialist and generalist) are robust to classification according to different published sources. Evidence from Fraser et al. (2015) demonstrated that the classification of Australian woodland birds is problematic and in this study we aimed to extend their research by investigating whether: i) inconsistent classification is problematic for other well studied bird groups, ii) European researchers classify species more or less consistently than Australian researchers and, iii) inconsistent classification of species substantially impacts the interpretation of indices of trends in bird groups.
2. Materials and Methods

The terminology used to identify groups of bird species varied between and within regions. We accounted for this difference by defining each group explicitly.

Farmland specialists: These species are thought to specialise in agricultural areas with low density to no trees and an abundances of grasses, forbs or crops. They may include shelterbelts or hedgerows. Terms often used in the literature to describe these species were ‘farmland’, ‘open country’, ‘hedgerow’ and ‘savannah’.

Woodland specialists: These species are thought to specialise in with areas with a treed over-storey. Terms often used to describe these species in the literature were ‘woodland’, ‘woodland-dependent’, ‘forest’ and ‘woodland/forest’.

Generalists: These species are characterized by lacking dependence on a particular habitat type. In the Australian bird literature studies often consider ‘woodland’ and ‘open country’ specialist species and ‘open tolerant’ species which inhabit both habitats. In that context, we consider the term ‘open tolerant’ to refer to generalists. Other terms used to describe this group were ‘generalist’ and ‘ubiquitous’.

Hereafter we refer to the terms ‘farmland’, ‘woodland’ and ‘generalist’ species for the sake of simplicity. We determine how consistently birds are being classified as woodland and farmland specialist and generalist species and investigate the influence any inconsistency has on the trends in indices of abundance and reporting rate of these groups. To do this we use the index of yearly multiplicative trend which is used to report bird trends by the European Bird Census Council (EBCC) (EBCC, 2014) (Fig. 1).
Figure 1) Diagram showing the structure of this article beginning with sourcing data and ending with analysing the effect of inconsistent classification on an index of bird trends

2.1. Data sourcing

The results from two systematic reviews were combined for this study; one collected data on woodland and farmland specialist and generalist birds internationally, the other augmented the data with additional records from Australia which was poorly represented in the initial search.

The first review searched several databases (Elsevier, JSTOR and Wiley online library, SCOPUS and Web of Science), for articles including the terms ‘woodland bird’; ‘woodland’ and ‘bird’; ‘forest bird’; forest’ and ‘bird’; ‘farmland bird’; ‘farmland’ and ‘bird’; ‘open country bird’; ‘open country’ and ‘bird’; ‘generalist’ and ‘bird’; and ‘ubiquitous’ and ‘bird’. The search returned 2593 articles. Articles focused on non-avian species or communities, single or pairs of species were removed after which 439 articles remained. The articles which specified at least two groups of bird species were retained for further analysis (e.g. generalist and farmland birds). Studies which only considered a single category were excluded to avoid confounding the species that did not fall into the category of interest with those that were not seen during the study. This new search yielded 37 articles from Europe, one article from Australia (Appendix A), four from Africa, three from Asia, five from South America and four from North America.
Previous research in (Fraser et al., 2015) had identified a body of research surrounding Australian woodland birds. We used their search to augment our dataset subject to the above exclusion criteria. Articles from Africa, Asia, North America and South America were discarded due to low sample size.

The data was analysed in two ways (Figure 1). First, by analysing the level of inconsistency in the classification of bird species on two axes using the full range of articles gathered using the systematic review: farmland specialist – woodland specialist and generalist – specialist (in either woodland or farmland habitats). Second, we took nine of the articles from the systematic review and used them to analyse the effect of classifying species differently on indices of trends in woodland specialist, farmland specialist and generalist species.

2.2. Analysis of classification inconsistency

The papers sourced in the systematic review variously classified birds into two or three of the categories, i.e. woodland specialist, farmland specialist and generalist species. Each category was considered by a different number of articles, with the majority of articles considering woodland birds (n=58), and the fewest articles considering generalist birds (n=35). Therefore, finding the percentage of studies classifying species into each category would be biased towards certain classifications (i.e. if more studies concern woodland birds these might appear to be more consistently classified) and confused by missing data (e.g. a study of farmland and woodland birds might find a Magpie and classify it as a woodland specialist but, if they did not have the woodland category it would be unclear whether they saw the species but did not consider it a farmland bird or they did not see the species) (For more detailed explanations, see Fraser et al., 2015).
To avoid this bias, we considered the data on two axes: i) the proportion of studies which considered woodland vs farmland specialists and ii) the proportion of studies which considered specialists (in either woodland or farmland habitats) vs generalists. Only studies that classified species into both woodland and farmland categories were used to determine the position of species (n=49) on the woodland – farmland specialist axis. Then we grouped farmland and woodland species into one ‘specialist’ group and used studies which considered generalists and (at least one type of) specialist species to calculate the position of species (n=35) on the generalist – specialist axis (Appendix B). By doing this, the position of species on the generalist/specialist axis may be less certain than their position on the farmland/woodland axis (Figure 2). To minimise this affect we excluded species which were considered by fewer than three studies that considered woodland and farmland categories and fewer than three studies than considered specialist and generalist categories.

The classification of species was then plotted onto the two axes (farmland specialist – woodland specialist and specialist – generalist). It was expected that species that were less consistently classified on the farmland/woodland axis (i.e. are nearer the 0.5 mark) would be more likely to be regarded as generalist species (i.e. would have higher values on the Y axis than other species), which could be modelled as a second order polynomial equation. This relationship was examined by using regression analysis and the r^2 value of the relationship was calculated to determine whether it meaningfully explained variation in classification. A high r^2 value would support this hypothesis, a low r^2 value would suggest that species that are consistently classified as woodland or farmland birds are just as likely to be classed as generalists as species that are classified as woodland birds 50% of the time and farmland birds 50% of the time.
2.3. Impact of classification inconsistencies on bird trends

The purpose of this article is to evaluate the impact that classifying bird groups differently has upon inference about their trends through time. Therefore, we have endeavoured to present our results in a similar format to those presented by the EBCC and BirdLife Australia which typically present smoothed year by year trend graphs and a single estimate of the slope of the trend. To illustrate the impact of different classifications of woodland, farmland and generalist birds, we selected four studies from the systematic review which separated species into all three categories for each region (Australia and Europe) and their species lists used to delineate different possible sets of woodland specialist, farmland specialist and generalist birds. In Australia only four studies classified species into all three categories. More studies were available for Europe so the four most recent studies were selected and a fifth study was added for farmland and woodland birds to represent the EBCC classification of these groups (EBCC, 2014) (Table 1, see Appendix C for species lists). In total, nine different lists of woodland, farmland and generalist birds were examined.

Data on the abundance of 163 European species (EBCC, 2014) and the reporting rate of 516 Australian species (BirdLife International and NatureServe, 2014) was available. The European Bird Census Council (EBCC) has devised a method for measuring trends in groups of birds (including farmland and woodland species) over time (EBCC, 2014). The abundance of each species at year one is used as a reference point for the index of bird abundance (i.e. at year 1 the index is 100, subsequent values represent percentage difference from year 1). Using this as a reference point, the log of the indices and the slope of the regression line are calculated. Back-transforming this slope gives the ‘yearly multiplicative trend’, which provides the average percentage change in the index (of abundance) per year (EBCC, 2001). The EBCC then takes the
geometric mean of the abundance of species within a group at each time-step to calculate trends in the various bird groups. This method was used to calculate the multiplicative trend in abundance of 163 European bird species and reporting rate of 516 Australian bird species, over the 15-year period between 1998 and 2012 using data provided by Birdlife Australia and the European Bird Census Council. We replicated the global tendency of researchers to idiosyncratically re-combine species-level indices by using 4 published bird lists of farmland, woodland and generalist bird indices from Australia and 5 from Europe to predict the trends in these indices.

Some birds were added to the EBCC dataset after 1997 so are missing in earlier years; also surveys of some species were not implemented in all years. When there was missing data in the European dataset log-linear models were used, as implemented in TRIM software, to fill the gaps (EBCC, 2001). There were no missing values in the Australian dataset but sampling effort varied and sites were selected for sampling haphazardly (compared to the European data set which collects data at standard sites), so zero values of reporting rate were recorded in some years for species which were rare, cryptic or range restricted. As proportional decreases in each species are weighted equally in the multiplicative trend index, a 100% decrease in one of these species disproportionately influences the index. To mitigate this effect, we excluded species which had zero reporting rates in any year (86 species). This data was used to calculate Pearson correlation coefficients between abundance/reporting rate indices (geometric mean of species’ abundance/reporting rate at year 1 =100, subsequent years’ values represent percentage change from year 1) under 9 classifications (Table 1) from different articles. We propose that, given these trends are calculated from the same data using the same method, an r^2 value below 0.2 should be considered very poor agreement and 0.2-0.5 poor agreement. An r^2 value between 0.5
and 0.8 would represent an acceptable level of agreement and an r² value greater than 0.8 would be evidence of strong agreement.

Table 1: Articles included in analysis of the effect of different classification on bird trends

<table>
<thead>
<tr>
<th>Source</th>
<th>Europe</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Calviño-Cancela 2013</td>
<td>Barrett et al. 1994</td>
</tr>
<tr>
<td>Source</td>
<td>Gregory et al. 2007</td>
<td>Haslem & Bennett 2008</td>
</tr>
<tr>
<td>Source</td>
<td>Guilherme & Miguel Pereira 2013</td>
<td>Radford, Bennett & Cheers 2005</td>
</tr>
<tr>
<td>Source</td>
<td>Mimet et al. 2014</td>
<td>Silcocks et al. 2005</td>
</tr>
<tr>
<td>Source</td>
<td>EBCC (2014)</td>
<td></td>
</tr>
<tr>
<td>Geographic extent</td>
<td>Spain</td>
<td>NSW</td>
</tr>
<tr>
<td>Geographic extent</td>
<td>Europe</td>
<td>Victoria</td>
</tr>
<tr>
<td>Geographic extent</td>
<td>Portugal</td>
<td>Victoria</td>
</tr>
<tr>
<td>Geographic extent</td>
<td>France</td>
<td>Australia</td>
</tr>
<tr>
<td>No. woodland specialists</td>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>No. woodland specialists</td>
<td>33</td>
<td>56</td>
</tr>
<tr>
<td>No. woodland specialists</td>
<td>16</td>
<td>77</td>
</tr>
<tr>
<td>No. generalists</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>No. generalists</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>No. generalists</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>No. generalists</td>
<td>14</td>
<td>54</td>
</tr>
<tr>
<td>No. generalists</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

The data also allowed us to determine the slope of trends in these groups through time by using Ordinary Least Squares regression on the abundance/reporting rate indices. This yielded the average yearly change in abundance/reporting rate indices under each studied classification of farmland, generalist and woodland birds in Australia and Europe (Figure 4).

To demonstrate the full possible range of variability in these indices we also calculated the multiplicative trend index for each bird group by sub setting the species which had been classified into each bird group to only include i) the ten most steeply declining species and ii) the ten most steeply increasing species, to provided minimum and maximum conceivable trends for these groups (Figure 4).
3. Results

3.1. Classification inconsistencies

Figure 2 illustrates the proportion of studies in which birds are classified as woodland specialists as opposed to farmland specialists, against the proportion of studies in which species are classified as a generalist as opposed to a (either a farmland or woodland) specialist species (see Appendix A for species list and classification proportions). Australian (Fig. 2a) birds are classified less consistently on the farmland-woodland axis, with birds spanning the full range of values from consistently classed as farmland specialist to consistently classed as woodland specialist species. In Europe (Fig. 2b), classification of birds as farmland or woodland specialists is more consistent, with no species classified in between ¼ and ⅔ of studies as farmland specialists.

The number of species assigned to each category in more than 50% of studies varied substantially between the two regions. The majority of Australian researchers classified 24 of the 112 birds (21%) as farmland specialists and 86 (77%) as woodland specialists. Of these birds 22 (20%) were more likely to be considered generalist than specialist species. In comparison, the majority of European researchers classified 36 of 71 (51%) birds as farmland specialists and 35 (49%) as woodland specialists while 24 (34%) species were more likely to be considered generalist than specialist species.
Figure 2) Classification consistency of species where the y axis shows the proportion of studies (n ranges from 3 to 26) in which a species is regarded as a generalist as opposed to a specialist (in either woodland or farmland habitats) and the x axis shows the proportion of studies in which the same species are regarded as a farmland specialist as opposed to a woodland specialist: a) shows 112 Australian species, b) shows 71 European species. Each point represents one species, though some species overlap. Lines show second order polynomial relationships between the two variables.

It was initially expected that species that were less consistently classified on the farmland-woodland specialist axis would be more likely to be regarded as generalist species, but evidence for a second order polynomial relationship, as displayed in Fig. 2, is not compelling (r^2 values of 0.1 and 0.3, for Australian and European birds respectively). It appears that, particularly in the case of Australian species, the proportion of studies in which a species is classified as a farmland or woodland specialist is unrelated to the proportion of studies in which it is regarded as a generalist.

3.2. Impact of classification inconsistencies on bird trends
Although fluctuating through time, the trends in the European farmland specialist birds are relatively stable between 1998 and 2012, regardless of which article’s classification was used to delineate the group (Fig. 3a). Indices of trends in European farmland birds were poorly correlated under some classifications and strongly correlated under others with r^2 values ranging from 0.36 (between articles by Guillherme and Miguel Pereira 2013 and Mimet et al. 2014) and 0.92 (between articles by Gregory et al. 2007 and Mimet et al. 2014).

By contrast, there was a big difference in the trends in Australian farmland specialist birds depending on classification, with the classification from the report by Silcocks et al 2005 showing a steep increase in farmland specialist prevalence compared to the other three classifications (Fig. 3b). The trend index from the Silcocks et al 2005 classification was not strongly correlated with the other trends with r^2 values ranging from 0.73 to 0.84. However, the other trends were well correlated with r^2 values ranging from 0.82 to 0.91.
Figure 3) Trends in indices of species groups from 1998 to 2012 for a) European farmland birds, b) Australian farmland birds, c) European generalist birds, d) Australian generalist birds, e) European woodland birds, and f) Australian woodland birds. Lines represent trends in indices obtained using species lists from five European articles and four Australian articles.

European generalist species show a steady increase in index value (of abundance) except when using the classification from the article by Calvino-Cancela 2013, when their trend is fairly stable through time. Article E1 is very poorly correlated with the other indices with r^2 values
ranging from -0.18 to 0.17, the other trends have correlation coefficients ranging from 0.72 to 0.91.

Australian generalist species showed greater differences, with the classification from the article by Silcocks et al. 2005 again showing a greater increase than the other classifications (r^2 values for correlations with other articles ranging from 0.41 to 0.78), and classifications from articles by Barrett et al. 1994 and Haslem and Bennett 2008 revealing the possibility of a decline in index value (of reporting rate) (Fig. 3d). Trends from classifications by Barrett et al. 1994, Haslem and Bennett 2008 and Radford, Bennett and Cheers 2005 were well correlated with r^2 values ranging from 0.78 to 0.93.

There is a general trend towards an increase in European woodland specialist birds although this is less clear under the classifications from Gregory et al 2007 and Mimet et al. 2014 (Fig. 3e). Trends yielded from Gregory et al 2007 correlates poorly with those from Guilherme and Miguel Pereira 2013 and Mimet et al 2014 (r^2 values 0.31 and 0.34) but the other trends are better correlated (r^2 values from 0.68 to 0.98).

The index values for Australian woodland specialist birds fluctuate so widely (Figure 3f) that it is difficult to discern the downward trend (Figure 4) but indices from all articles’ classifications are reasonably well correlated with r^2 values ranging from 0.81 to 0.94.

3.3. Differences in index values

The EBCC, among other organisations, present a single value for the trend in bird groups through time. Figure 4 shows the variation in these values that is achieved using the classifications from articles studied above as well as the maximum conceivable variation.
achieved by alternately calculating trends in declining and increasing woodland and farmland specialist, and generalist birds.

Figure 4) Yearly multiplicative trend (EBCC, 2001) for European and Australian farmland, generalist and woodland birds. Black points and error bars represent the mean and range achieved using assessed above. Grey points and error bars represent the median minimum and maximum achieved when alternately considering the 10 most declining or 10 most increasing ... species conceivable from the complete dataset.

Figure 4 demonstrates the high uncertainty that differences in classification brings to these indices of bird trends. Based on published classifications, Australian generalist and farmland specialist birds and European generalist birds may be increasing or decreasing over time. The direction of trends (increase or decrease) for Australian woodland and European farmland and woodland specialists was robust to differences between these classifications, with indices from all articles showing a decrease in Australian woodland specialist birds and European farmland specialist birds and increases in European woodland specialist birds. However, when considering the maximum conceivable variation (grey error bars in Figure 4) it is evident that all of these bird
groups may be considered to be either increasing or decreasing depending on which species are included in the index.

4. Discussion

Our study highlights the global tendency of researchers to classify bird groups associated with the same habitats differently, even when there are organisationally endorsed indices available (see Gregory & Strien, 2010; EBCC, 2014). Classifying woodland, farmland and generalist birds in different ways substantially changed the trends in the indices of these groups. This has profound implications for the research and conservation of these bird groups. Many studies build on existing research into farmland, woodland and generalist species. However, our research suggests that the results are likely to differ from study to study purely because the authors do not classify the same species as being part of the same group. This is influential in all research but makes it particularly difficult to conduct structured comparisons between articles using meta-analyses or systematic reviews. Unless each article classifies the species within the group of interest identically, it is impossible to know whether differences between studies are ecologically important or due to inconsistent classification.

This inconsistent classification is likely perpetuated because there is currently no standard protocol to help decide which published classification to use over another. As a consequence it is not uncommon to see authors use the classification that best fit the objective of the their own study (Fraser et al., 2015). If there is no clear ‘best’ classification and evidence from a suite of studies variously report that a bird group is declining, increasing or remaining stable, it will be more difficult to justify, find funding for and implement conservation actions. Further, evidence suggests that the way bird groups respond to habitat variables such as fragmentation also varies
according to their classification (Fraser et al., 2015). Therefore, bird groups may respond
differently to management interventions depending on how they have been classified.

Our study showed that, depending on which classification is used, trends in farmland, generalist
and woodland birds vary substantially. The direction of trends in Australian woodland and
European farmland and woodland birds remains the same regardless of which published
classification is used but the slope of the trend varies. If you consider the trends found when,
either by chance or design, only the species considered are those which are increasing or only
those which are declining (Figure 4) the variation is even more pronounced. For example,
depending on whether the declining or increasing species are included in the trend index,
Australian woodland birds may be decreasing at a rate of -4.1% or increasing at a rate of 10.9%
per year.

Although our evidence shows that, some conceptualisations of ‘woodland’ and ‘farmland’
specialist, and ‘generalist’ birds may suggest that a decline or increase is possible in each of
these bird groups (grey error bars in Figure 4). Our work supports proposed declines in
Australian woodland birds (Ford, 2011; Watson, 2011) and European farmland birds (Butler et
al., 2010; Sanderson et al., 2013), based on the published classifications we studied. We found
evidence of an increase in European woodland birds, which contradicts the literature expectation
of a decline in these groups (Gil-Tena et al., 2009; Gregory et al., 2007). However, given the
variability in trends using different published classifications, it is not possible to conclude with
certainty whether Australian farmland and generalist birds or European generalist birds are
declining, increasing or stable. The results provide no strong evidence regarding the
hypothesised global increase in generalist species; depending on how they are classified their
populations may be increasing, decreasing or remaining stable through time.
Our findings show that researchers are classifying species inconsistently in both Europe and Australia. However, European researchers classify woodland and farmland species more consistently than Australian researchers, and this is likely to be (in part) related to the existence or organisationally supported indices for these bird groups. For instance, European organizations such as the British Trust for Ornithology (DEFRA, 2014) and the European Bird Census Council (EBCC, 2014) have indices that give researchers guidance about how to define and classify these groups. However, this study demonstrates that the existence of these guidelines does not completely eliminate inconsistencies, as studies continue to classify species idiosyncratically.

Comparatively, Australia is lacking widely available indices and guidelines for studying farmland and woodland bird groups. A few attempts at producing authoritative classifications of woodland and farmland species have been made (Silcocks et al., 2005; DEPI, 2013) but these have fallen short of being widely accepted; the report by Silcocks et al. (2005) is only available by contacting the author, and the Victorian Temperate Woodland Bird Community is listed under the Flora and Fauna Guarantee Act (DEPI, 2013), but is only relevant to one state of Australia and is limited to a small set of species.

Unlike farmland and woodland bird groups, there is no authorized list of generalist species in either Europe or Australia. Researchers use a range of methods to determine whether a species is a specialist or generalist. These approaches combine expert opinion and data on the occurrence or abundance of species and may calculate habitat specialization by evaluating the relative occurrence or abundance of a species in different habitat types (Devictor et al., 2008; Julliard et al., 2006). However, these studies often only consider a limited selection of habitat types, and consider birds that don’t depend on any of these habitats to be generalist species. Therefore, specialists in unstudied habitats may be regarded as generalists by default. For example, a study
that considers farmland and edge birds may call those which are equally prevalent in edge and farmland habitats generalists, but these birds may not have been called generalist species if the study considered farmland, edge and woodland habitats. Given the different methods of calculating habitat specialization and the lack of an authorized list, the inconsistent classification of generalist species is understandable.

The confusion around the classification of generalist, woodland and farmland birds leads to conflicting results and conclusions, as evidenced by the lack of robust trends for some groups found in this study. This has the potential to lead to spurious conclusions about the correct way to implement actions to conserve these bird groups.

Our research suggests that having available, organisationally endorsed, bird prevalence indices (as is the case for woodland and farmland birds in Europe) might improve the shared understanding of the species belonging to these groups. However, even in Europe woodland and farmland birds are still being classified inconsistently. This may be due to the existence of multiple endorsed farmland and woodland bird indices (DEFRA, 2014; EBCC, 2014; Gregory et al., 2005) or may reflect researchers’ unwillingness to use standard indices. We hope that, by providing evidence that it directly affects findings and inhibits the generalizability of studies, this article will increase researcher willingness to build consensus around standard indices.

Our methods are sufficient to demonstrate the amount of inconsistency in the classification of farmland, generalist and woodland birds and the impact of this inconsistency on inference about trends in bird groups. But the multiplicative trend index is more suitable to the European than the Australian data. The European data is collected at standard sites at the same time each year and only relatively common species are included, reducing the between-year variation in species
abundance in the dataset. In contrast, the Australian reporting rate data is collected on all species by citizen scientists at sites of their choosing which vary year to year. As a result, there is an elevated probability of achieving a zero value in the Australian data particularly for species that are rare or occur in poorly sampled areas. These zero values can strongly influence the index because each species is weighted equally and a zero value means 100% decrease. To overcome this, we have removed all of the Australian species which have a reporting rate of zero in any year. We acknowledge that by doing so we are preferentially excluding species which are rare or range restricted and may be of particular interest when constructing an index of bird trends.

It should be noted that ‘farmland specialist’, ‘woodland specialist’ and ‘generalist’ birds represent very simplistic categories; and classifying birds like this reduces our ability to make relevant inference on how species depend on subtle habitat variables. However, this approximation is commonly used in research and conservation management. In this context, our results provide a useful insight into how sensitive findings about these bird groups may be to how they are classified. We provide a number of recommendations that may allow these groups to be classified more consistently and minimize the chance of obtaining inconsistent results.

Firstly, we propose that researchers systematically present species lists and group classifications to increase the falsifiability of any statement inferred from their analyses. Next, we propose that researchers view the degree to which species are generalists or specialists as a life history trait (similar to dispersal ability), rather than as a classification for species which do not fit into a pre-defined category. Agreed upon lists of generalist bird species could be developed for Europe and Australia in collaboration with well-regarded ornithological organizations such as Birdlife or the European Bird Census Council.
We recommend that research organizations in Europe examine the need for classifying farmland and woodland birds differently in their indices and look toward developing a shared understanding and shared index for these bird groups. In some circumstances, it may be justifiable to classify indices differently, especially if there are regional differences in habitat availability or the occurrence of birds. For instance, some species may use a wider variety of habitats in the centre of their range than at the range edges, due to greater habitat availability or increased competition. However, this should be objectively evaluated and the indices should be accompanied by advice regarding when one would be superior to another. It may also be meaningful to include information on a regional index as well as one which is designed to be used consistently across regions. This would balance the generalisability of the information against regional specificity.

In cases where differences in classification are largely due to diverse opinions of experts, we propose unifying behind a single index (and classification). This may involve discussion of how life history traits factor in to determining whether species are farmland or woodland specialists or generalists as well as the implementation of more nuanced categories (e.g. farmland birds may be broken into field and hedgerow categories to better discern the effects of changes in farmland management). Unifying bird indices or clearly stating why bird indices differ would hopefully increase the consistency with which European researchers classify farmland and woodland birds.

Australian researchers should develop a standard list of woodland and farmland birds that is easily available and endorsed by an organization such as BirdLife Australia.

There are a number of strategies for developing indicators of bird groups, based on expert opinion (Gregory and Strien, 2010), subjective measures of resource requirements (Butler et al., 2012), or objective measures such as relative habitat use (Larsen et al., 2011). Any of these
methods could be applied to the problem of delineating these groups provided that they are representative, falsifiable, sensitive to changes over a short timeframe (Gregory and Strien, 2010) and supported by the research and conservation community. This last criterion is crucial and undervalued, without it you simply add another under-used indicator to the field. It is also very difficult to achieve. We propose that an approach which involves the participation of stakeholders and researchers is more likely to be supported (and used) by the research and conservation community. Participation in this kind of decision process increases transparency and benefits from a diverse range of experience and perspectives as well as increasing the trust in and of ownership over the final index (Reed, 2008).

This study is the first to demonstrate the influence of inconsistent classification on trends in indices of biodiversity at an international scale. This study proved that the fluctuations and trends in indices of bird groups in Europe and Australia differ substantially depending on which published classification was used to determine the species included in each group, with different classifications of the same groups sometimes finding opposite trends. We suggest that, where possible, researchers and institutions unify behind a single classification and index of woodland, farmland and generalist birds for each region.

Acknowledgements

This research is supported by the Australian Research Council (ARC) Centre of Excellence for Environmental Decisions. We would like to acknowledge the contributions of Dr Libby Rumpff in improving the manuscript for submission. We would like to thank Jana Skorpilova and Petr Vorisek from the Pan European Common Bird Monitoring Scheme (PECBMS) for providing original European bird dataset, sourced from the EBCC/RSPB/BirdLife/Statistics Netherlands.
References

Deconchat, M., Brockerhoff, E.G., Barbaro, L., 2009. Effects of surrounding landscape
composition on the conservation value of native and exotic habitats for native forest birds.

For. Ecol. Manage. 258, S196–S204. doi:10.1016/j.foreco.2009.08.003

DEFRA, 2013. A brief introduction to the wild birds populations indicator.

Ford, H.A., 2011. The causes of decline of birds of eucalypt woodlands: advances in our knowledge over the last 10 years. Emu 111, 1. doi:10.1071/MU09115

doi:10.3389/fevo.2015.00083

Guilherme, J.L., Miguel Pereira, H., 2013. Adaptation of bird communities to farmland
doi:10.1371/journal.pone.0073619

intensification and abandonment on farmland birds in Poland following EU accession.

Supporting Information:

The following Supporting Information is available for this article online

Appendix A: Systematic review article selection process

Appendix B: Species list detailing proportion of classification on the woodland-farmland and specialist-generalist dichotomies

Appendix C: Bird lists used to classify species for Fig. 2 analyses
Author/s:
Fraser, H; Pichancourt, J-B; Butet, A

Title:
Tiny terminological disagreements with far reaching consequences for global bird trends

Date:
2017-02

Citation:

Persistent Link:
http://hdl.handle.net/11343/216798

File Description:
Accepted version