Managing the timing and speed of vehicles reduces wildlife-transport collision risk
Casey Visintin¹, Nick Golding², Rodney van der Ree³, Michael A. McCarthy⁴

¹Quantitative and Applied Ecology Group, School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia - Email: cvisintin@student.unimelb.edu.au
²Quantitative and Applied Ecology Group, School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia - Email: nick.golding.research@gmail.com
³Ecology and Infrastructure International and School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia - Email: rvdr@unimelb.edu.au
⁴Quantitative and Applied Ecology Group, School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia - Email: mamcca@unimelb.edu.au

Corresponding Author: Casey Visintin, School of BioSciences, Bldg 122 - Rm 114, University of Melbourne, Parkville, VIC 3010, Australia - Email: cvisintin@student.unimelb.edu.au, Phone: +61 4 34424084

Word Count: 6951
Abstract: 354
Main Text: 4291
Acknowledgements: 53
Literature Cited: 1651
Tables: 238
Figure Captions: 253
Number of Tables: 2
Number of Figures: 7 (3 supplemental, 1 colour)
Number of References: 64
Abstract

Understanding wildlife-vehicle collision risk is critical to mitigating its negative impacts on wildlife conservation, human health and economy. Research often focuses on collisions between wildlife and road vehicles, but collision risk factors for other types of vehicles, less examined in the literature, may be informative.

We studied spatial and temporal variation in wildlife-train collision risk in the State of Victoria, Australia. We quantified train movements in space and time, and mapped species occurrence likelihood, across the railway network. Using spatially- and temporally-resolved collision data, we fitted a model to analyse collisions between trains and kangaroos; accounting for time of day, train frequency and speed, and kangaroo occurrence. We then predicted collision rates on the passenger railway network under three management scenarios relating to train speed and occurrence of kangaroos near the railway lines.

Temporal variation in animal activity was the strongest predictor of collision risk. Train speed was the second most influential variable, followed by spatial variation in likelihood of species occurrence. Reducing speeds in areas of high predicted species occurrence and during periods of peak animal activity (early morning and evening for kangaroos) was predicted to reduce collision risk the most.

Our results suggest mechanisms that might improve existing wildlife-transport collision analyses. The model can help managers decide where, when and how best to mitigate collisions between animals and transport. It can also be used to predict high-risk locations or times for (a) timetable/schedule changes (b) proposals for new routes or (c) disused routes considered for re-opening.
23 Keywords

24 crepuscular; railway; risk; species distribution model; temporal; WTC
1.1 Introduction

Wildlife collisions with transport vehicles pose a serious global problem (Litvaitis & Tash, 2008) and inspire research to investigate causes and propose solutions. For example, deer-vehicle collisions on roads are common and well-studied in North America (Huijser et al., 2007; Romin & Bissonette, 1996) and Europe (Sáenz-de-Santa-María & Tellería, 2015; Seiler, 2004). In addition to concerns about animal welfare (Sainsbury et al., 1995) and conservation status of threatened species (Dwyer et al., 2016; Jones, 2000), collisions with large animals pose direct risks to the life of humans (Langley et al., 2006; Rowden et al., 2008). For example, moose are one of the largest animals struck by vehicles in North America and Europe, causing significant damage and injuries (Huijser et al., 2007; Hurley et al., 2009). Vehicle collisions with deer, although smaller than moose, frequently kill humans in North America (Williams & Wells, 2005). Collision events disrupt transportation services, and are therefore also an economic burden. Management of wildlife-vehicle collisions will become increasingly important as new transportation networks are constructed and existing networks are expanded.

Information about the spatial and temporal distribution and magnitude of wildlife-vehicle collisions is useful to managers because it can more effectively help mitigate impacts (Mountrakis & Gunson, 2009). For example, identifying a collision hotspot along a transportation network for a particular species can inform the most appropriate form of mitigation (e.g. animal exclusion or change in vehicle speed – see Visintin et al., 2016). Collision data can also be used in statistical modelling which helps to predict the probability of wildlife-vehicle collisions (Gunson et al., 2011).
The majority of wildlife-vehicle collision modelling deals with roads and traffic (Popp & Boyle, 2017, van der Ree et al, 2015), yet, the problem extends to other forms of vehicular transportation such as air (van Belle et al., 2007), railway (Belant, 1995; Onoyama et al., 1998; Wells et al., 1999) and shipping (Laist et al., 2001) operations. Regardless of the mode of transport, the modelling of collisions share some common attributes (Forman et al., 2003). The movements or presence of animals are often considered in the models and may include species-specific habitat variables (Roger & Ramp, 2009) or behavioural traits (Lee et al., 2010). Vehicle presence or movements are also considered and may be grouped into a larger category of human behaviour as humans ultimately control speeds and trajectories of vehicles (Ramp & Roger, 2008).

Some drawbacks of existing road ecology studies are that the time of collision is often not known precisely, the volume of traffic varies temporally and is difficult to accommodate in analyses (especially when time of collision is not known), and collisions might be under-reported or temporally and spatially biased. These drawbacks might obscure drivers of collision risk or provide inaccurate predictions of risk upon which mitigation might be implemented. These considerations are especially important for studies that explore temporal variation in animal activity (e.g. Dussault et al., 2006, Thurfjell et al., 2013) as reporting errors in collision times may produce spurious correlations (or lack of).

Wildlife-train collisions provide a different dataset for considering factors that influence
collision risk that are often difficult to obtain. Firstly, the timetabling of trains means that their
movements are much more precisely documented than those of cars. Secondly, collisions with
large animals are more consistently reported for trains than cars – although under-reporting is
still an issue (Dorsey et al., 2015). And thirdly, the time of collision is also reported more
precisely. These benefits mean that examining factors that influence wildlife-train collision risk
may help uncover factors that influence wildlife-vehicle collisions more generally.

Herein, we develop a modelling framework to predict the rate of wildlife-train collisions across a
large railway network. We use kangaroos and a regional passenger railway network in south-east
Australia as an example to demonstrate our methods. In addition to informing railway operators
in Australia of potential kangaroo collision risks, our approach can be generalised to other
species (e.g. deer) and transportation modes (e.g. road vehicles, watercraft) elsewhere in the
world by incorporating parameters that accommodate patterns of species behaviour.
2.1 Materials and Methods

2.1.1 Study Area

Our study area encompassed a 1712-kilometre passenger railway network from regional Victoria, Australia (operated by V/line, a government-owned corporation) in south-east Australia (Figure 1). Trains operate on all sections of the network between 4 a.m. and 2 a.m. (the following day), with the largest volume occurring Monday through Friday between 7 a.m. and 9 a.m., and 4 p.m. and 6 p.m. Most trains operate at speeds of 100 km h\(^{-1}\) or less, however, on some sections of track commuter trains operate at maximum speeds of 160 km h\(^{-1}\). Due to limited data available, we did not include freight operations in our study.

2.1.2 Data Preparation

To organise our data and modelling, we overlaid a 1-km\(^2\) cell grid on the railway network (Figure 2). In each grid cell we modelled kangaroo occurrence and quantified train movements and speeds to generate predictor variables (Table 1); each is described in more detail in subsequent sections.

Collisions with large mammals (e.g. domestic livestock or kangaroos) must be reported by train drivers to allow trains to be inspected and maintenance performed as required. Eastern grey kangaroos (*Macropus giganteus*, Shaw, 1790; "kangaroos" hereafter) are frequently struck in regional Victoria and large enough – up to 85kg - to cause noticeable damage to composite body panels or require the train to be removed from service for cleaning. In this study, we assumed that ‘kangaroos’ reported by train drivers could also include other large macropods (two other
kangaroo species), albeit these would be rare due to the limited overlap of the train network on these species’ ranges. We also assumed that collisions were perfectly detected at all times of the day, however, visibility issues during non-daylight hours may have affected reporting rates.

V/line provided records of all driver-reported collisions with kangaroos spanning a seven-year period between 1 January 2009 and 31 December 2015, a total of 439 collisions. These were reduced to 404 when spatial and temporal duplicates were removed. Whilst 404 collisions over a seven-year period suggests rarity, issues with data availability suggested that this number under-represented actual collision numbers. For example, not all records were available in electronic format (V/line, personal communication), therefore we only received records that were entered into, and could be queried from, a train operator database. Nonetheless, we considered this dataset useful to test our model and its sensitivity to operational changes on the train network.

Each record included incident date and time, name of service line (unique route between two towns), and estimated distance to the nearest regularly spaced kilometre post (physical sign markers indicating distance along a railway line). Using geographic information system (GIS) data on the regional railway network, we determined spatial coordinates (GDA94 MGA zone 55 projection) for all collisions from the reported kilometre post and service line. Although, uncertainty in estimates of location was not explicitly reported, we assumed a maximum possible error of +/-500 metres given the one kilometre spacing of the distance markers along the railway network.

2.1.3 Species Occurrence
Kangaroos are widespread (Dawson, 2012) and abundant in many parts of Victoria, and Eastern Grey Kangaroos, in particular, are known to occur throughout the entire extent of the regional train network, yet comprehensive distribution records are lacking in many areas. To represent risk of collision by exposure to threat, we required continuous distributional data across the entire study area and used species distribution modelling to predict relative likelihood of Eastern Grey Kangaroo occurrence. Habitat predictors - often explicitly included in wildlife-vehicle collision models - were alternatively used in a model to determine the relative occurrence of the species across the train network. We emulated methods by Elith et al. (2008) to model and predict occurrence in each grid cell for the whole State of Victoria. The model was trained on data from the online Victorian Biodiversity Atlas (VBA, 2014) and included several environmental variables relating to the biology and behaviour of kangaroos (see Visintin et al., 2016). To reduce the effects of sampling bias, we also included four additional predictors: 1) distance to urban areas, 2) distance to roads, and the 3) easting and 4) northing spatial coordinate of the grid cell centroid. The distance-based variables accounted for geographic bias that often occurs in opportunistic or museum-specimen occurrence records that were collected in easily accessible locations. To correct for areas that demonstrated potentially high sampling effort, we included the spatial coordinates of the occurrence records.

2.1.4 Characteristics of Railway Network

To determine train movements across space and time, we accessed publicly available locations of stops and times along train routes from V/Line general transit feed specification (GTFS) data (Public Transport Victoria, accessed online 3 March, 2016). GTFS is a standard publishing
format developed and maintained by a community of public transport agencies for scheduling and spatial data. Since it is publicly available, it also allows software developers to write applications for mobile devices that track and report the locations of public transportation (see Hillsman, 2011). We used a spatial database (Postgres version 9.6; PostGIS version 2.3.0) to process this information and report the average scheduled number of trains, the total length of track, and average train speed in each grid cell for each hour of the day, for each month of the year, where trains occurred.

2.1.5 Statistical Modelling

All analyses were carried out using the software ‘R’, version 3.4.1 (R Core Team, 2017). We developed a quantitative risk model to evaluate the capacity for kangaroo activity and occurrence and railway network characteristics to predict collision likelihoods. To account for temporal variation in collision risk throughout the day, we considered periods of train movements and estimated animal activity in relation to time of day. By adding a function that allowed a flexible response of collision rate to hour of day across all seasons, the crepuscular lifestyle of kangaroos (most active at dawn and dusk; see Dawson, 2012) was incorporated. The likelihood that a collision occurred in a given grid cell \(i \) at hour \(j \) in month \(k \) \((p_{ijk} = \Pr(Y_{ijk}=1)) \) depended on species occurrence \(O \), average number of trains \(V \), average train speed \(S \), length of track \(L \) (offset term), and a term \(T_{ijk} \) that accounted for the activity pattern of kangaroos:

\[
cloglog(p_{ijk}) = \beta_0 + \beta_1 \log(O_i) + \beta_2 \log(V_{ij}) + \beta_3 \log(S_{ij}) + T_{ijk} + \log(L_i)
\] (1)

The temporal kangaroo activity term \(T_{ijk} \) (Table 1) has three components:

\[
T_{ijk} = \gamma_1 \sin(\pi(j - 6) / 12) + \gamma_2 \sin(\pi(j - 6) / 12)^2 + \gamma_3 A_{ijk}
\] (2)
The first two terms are the linear and quadratic terms of a sine function that varies relative to 6 a.m. The third term A_{ijk} models the influence of time since dawn and dusk. This function takes one of three forms depending on whether the time is before dawn, after dusk, or between dawn and dusk:

$$A_{ijk} = \begin{cases}
\exp\left(-\frac{(j - U_{ik})}{\left((24 - D_{ik}) + U_{ik}\right)/2}\right) - \exp\left(-\frac{(j - D_{ik} - 24)}{\left((24 - D_{ik}) + U_{ik}\right)/2}\right) & \text{if } j < U_{ik}; \\
\exp\left(-\frac{(j - U_{ik})}{\left((D_{ik} - U_{ik})/2\right)}\right) - \exp\left(-\frac{(j - D_{ik})}{\left((D_{ik} - U_{ik})/2\right)}\right) & \text{if } U_{ik} \leq j < D_{ik}; \\
\exp\left(-\frac{(j - U_{ik} + 24)}{\left((24 - D_{ik}) + U_{ik}\right)/2}\right) - \exp\left(-\frac{(j - D_{ik})}{\left((24 - D_{ik}) + U_{ik}\right)/2}\right) & \text{if } j \geq D_{ik};
\end{cases}$$

Dawn U and dusk D times for civil twilight (six degrees below horizon) were determined for each observation in the dataset using a National Oceanic & Atmospheric Administration (NOAA) astronomical algorithm in the R package `maptools` (Bivand & Lewin-Koh, 2017). We selected the 15th day of each month k at the centroid of each respective grid cell i to calculate dawn and dusk times.

The coefficients $\gamma_1, \gamma_2, \gamma_3$ were estimated during model fitting (to collision data) and measured the relative influence of the three components (Equation 2) on the shape of the curve. This functional form enables the risk profile to match known activity patterns for different species (diurnal, nocturnal, crepuscular, or random), account for differing activity near dawn and dusk, and is cyclical over a twenty-four hour period (Figure S2) regardless of the values of $\gamma_1, \gamma_2, \gamma_3$.

Prior to modelling, we centred the species occurrence, train frequency, and train speed variables
by subtracting their means (after log-transforming the variables indicated in Equation 1). Using pairwise analysis, all predictors (O_i, V_{ij}, S_{ij}, & T_{ijk}) exhibited Pearson's product moment correlation coefficients of less than 0.4 indicating low potential effects of multi-collinearity. We also examined the correlation between the untransformed variables on the data subset to cells with collisions and subset to cells without collisions (Figure S1) - both demonstrated low values.

We fitted this generalised linear model (McCullagh & Nelder, 1989) to the data (n=291,036 one-kilometre, hourly grid cells along the train network with at least one train present) using maximum likelihood estimation with a Bernoulli distribution and a complementary log-log link on the linear predictor. The complementary log-log link was selected over the more common logit link due to the mathematical theory underpinning our model - risk being measured by the rate of collisions (see Visintin et al., 2016). The model is similar to a proportional hazards model (discrete censored time) often used in survival analysis and epidemiological studies (Cox, 1984).

We also tested interactions between all variables, however, none were statistically significant and thus omitted from our study.

To assess the influence of predictors on model fit we constructed five versions of the model, each using different combinations of variables (Table 1) and performed likelihood ratio tests to assess the importance of each predictor. To assess performance of each model version, we cross-validated the model by randomly splitting the data into K=10 partitions. We used nine of these subsets for model fitting and one for assessing model accuracy, applying the method ten times, each time holding out a different fold. For each assessment we obtained two performance
metrics; area under the receiver operator characteristic (ROC) curve (Metz, 1978) and regression of observations on predictions (Cox, 1989; Miller, 1991). We repeated this procedure for 100 iterations producing a total of 1000 sets of performance metrics and compared them with those from the model fitted to all data. We repeated this procedure for each of the five models. To examine model fit using all variables, we generated randomised quantile residuals (Dunn & Smyth, 1996) and plotted them against collision probability, kangaroo occurrence, number of trains per hour, average train speed, and hour. Note, we intentionally refrained from using reduction in deviance as a performance measure as it is not appropriate for rare event encounter models.

Using 1000 simulations of the best model fitted on all data, we predicted the number of expected kangaroo-train collisions in the study area under different management scenarios:

A) no change to operations,

B) reduced train speeds in moderate to high kangaroo occurrence areas, and

C) exclusions of kangaroos in areas with highest average speed of trains.

Scenario B involved capping train speeds at 60 km h\(^{-1}\) in grid cells with kangaroo relative occurrence likelihoods of 0.3 or above during the hours of 5 a.m. to 9 a.m. and 4 p.m. to 8 p.m. This change affected 548 out of 3,024 (~18%) unique weekly routes across a total of 171 kilometres of railway. In scenario C, relative kangaroo occurrence was reduced to nearly zero (0.01) in all grid cells with average train speeds of more than 120 km h\(^{-1}\) (total track length = 125 km). This simulates reducing access of kangaroos to the railway network (e.g. by fencing). The values for reducing kangaroo abundance were used for all hours of the day as this management
strategy would most likely involve exclusion or reduction in animal populations which operate
irrespective of temporal variation.
3.1 Results

The signs of model coefficients (positive or negative) indicated plausible relationships between collision likelihood and each predictor variable. All variables except train frequency demonstrated strong influence on collision risk (Table 2). Dropping the temporal animal activity term had the largest negative effect on model fit, changing the Akaike information criteria (AIC) score from 5528 to 5740. The model residuals (using all variables) demonstrated no strong patterns with respect to predicted collision likelihoods and model predictors (Figure S3).

The relative risk of collisions increased with higher average train speeds, kangaroo occurrence, train frequency and during hours of high kangaroo activity in grid cells. A strong predictor was train speed; collision risk increased exponentially with considerable increases at speeds above 85 km hr\(^{-1}\). Increasing train speed from 105 to 125 km hr\(^{-1}\) doubled collision risk (Figure 3a).

Kangaroo occurrence was also an influential predictor of risk of collision. Collision risk increased rapidly at low values of occurrence and more slowly at higher values. Collision risk doubled between values of 0.25 and 0.75 relative likelihood of kangaroo occurrence (Figure 3b). Train frequency had very little influence on collision likelihood or model fit, compared to the other predictors (Table 2; Figure 3c) and was excluded from all models except one (full).

The bi-modal functional form for the effect of kangaroo activity on collision risk demonstrated a plausible shape (Figure 3d). Collision risk peaked at approximately 5:30 a.m. and 6:30 p.m. with a higher risk occurring in the morning. The response of collision risk over time was most uncertain in the morning peak. Both peaks showed similar shape - the density and spread of
collision risk around the maxima - and the lowest collision risk occurred around noon.

The models fitted on all data and fitted on the subsets of the data during cross-validation performed differently (Figure 4). The best ROC values were for both the full model and model excluding train frequency (0.82). However, the calibration statistics (intercept and slope of regression line between observations and predictions) between all model specifications were similar – slopes varied between 0.990 and 0.996 and intercepts varied between -0.080 and -0.046. Dropping the temporal animal activity term from the best model did not affect the calibration statistics, however it reduced the ROC value from 0.82 to 0.76.

Both of the simulated management scenarios reduced the predicted number of collisions from the baseline (Scenario A) estimated with no management (409 collisions +/-39). Scenario C reduced expected collisions by approximately 8.3% (375 collisions +/-34) whilst scenario B reduced collisions by 10.0% (368 collisions +/-35).
Our model demonstrates that kangaroo-train collisions are related to train speed, kangaroo exposure to moving trains, and the coincidence of periods of high train and kangaroo activity. All of these relationships are consistent with our initial expectations and also shown in related studies on railway (Gundersen & Andreassen, 1998), road (Lao et al., 2011; Roger et al., 2012, Visintin et al., 2016) and marine collisions (Conn & Silber, 2013; van der Hoop et al., 2012) with other species. Our results also suggest that changing the timing and speed of vehicles, regardless of the mode of transportation, reduces collisions between wildlife and moving vehicles.

Train speed is an important predictor for collision risk. As trains increased speed, the risk of collisions increased rapidly, up to our typical maximum speed of 160 km h\(^{-1}\). Collision risk relating vehicle speed to the size and velocity of animals has been demonstrated through simulation (Jaarsma et al., 2006) concluding that smaller and slower-moving species are more vulnerable (also see Fahrig & Rytwinski, 2009). As these relationships are often exponential, high-speed vehicles may become significantly problematic regardless of species trait. It should be noted that our study utilised published schedule data to interpolate train movements in space and time. Therefore, although more accurate than road vehicle movements, there is still some uncertainty in both the location and trajectories of actual trains. Further study using automated global positioning system (GPS) waypoints of train (or other vehicular) movements would further reduce this uncertainty.

Species occurrence is also a useful predictor for collision risk, however, as previously
mentioned, it is difficult to accurately predict. One feature of the model framework is the
flexibility of choice in how to represent species occurrence. We employed published methods to
determine species occurrence, however, our framework is not limited to data derived using only
this type of model. The species distribution modelling literature is vast and covers topics relating
to model choice (Guillera-Arroita et al., 2015), calibration and bias (Phillips & Elith, 2010),
sources of data (van Strien et al., 2013), and validation (Chivers et al., 2014). Our framework
can also incorporate data from population viability analyses to test the effects of population
dynamics on collision risk. For example, collisions can correlate with expected counts of single
species in a given area (Skorka et al., 2013). Kangaroos in Victoria are not subject to hunting
pressure to the same extent as ungulates in parts of North America and Europe, which has been
shown to affect the rate of wildlife collision on railways (Seiler, 2005) and roads (Schwabe et al.,
2002; Seiler, 2004). However, population control of kangaroos (via government-permitted
culling) occurs periodically in certain areas and our model framework can accommodate changes
in occurrence driven by these factors by including relevant predictor variables such as density
indexes. Further, we assumed that the frequency of trains did not affect kangaroo occurrence
near the railway network although this has been shown in other work (Dorsey et al., 2015; Seiler
et al., 2011). A final note is that the predicted spatial distribution of species did not account for
temporal variation as done for the other predictor and dependent variables. This is a common
limitation in species occurrence models, however, it can be partially addressed by using
temporally and spatially complete survey data (Erwig et al., 1999) and spatio-temporal models
(Hooten, 2011).
The collision data used for this study has unique properties with respect to reporting bias and errors. Train drivers are obligated to report the time and location of large animal strikes as they usually result in damage to or required cleaning of trains. Therefore, these data are less subject to reporting bias compared to many road collision studies (but see Snow et al., 2015). Moreover, spatial and temporal errors in reported collisions are assumed to be less as standardised mechanisms such as collision report forms, GPS devices, and distance signage are implemented in railway operations. Similar practices are used by some road authorities (Huijser et al., 2007), and law-enforcement agencies (e.g. accident databases), to collect and archive carcass data, however, the coverage is often sparse due to the large spatial extent of road networks and insignificance of, or temporal uncertainty of collision events. Technology has been shown to assist with data collection (Olson et al., 2014; Shilling, 2015) but these methods do not address temporal lags (i.e. reporting the carcass discovery and not the collision time). One potential solution is to employ automatic detection systems in vehicles to record both presence of and collisions with species.

We extend our analysis by presenting a conceptual modelling tool to assist managers in creating safer (for people and wildlife) and more ecologically-sustainable transportation networks. Our framework supports management decisions in two distinct areas: reduction of animal presence (e.g. deterrents or exclusions) or reduction of vehicle threat (e.g. adjusted schedules or speeds). The choice of mitigation may be influenced by the effects of each predictor on collision likelihood (e.g. if speed is more correlated or has a stronger influence). This is determined by examining the model fit or predicting responses based on changes in parameter values (e.g. ...
increasing likelihood of kangaroos). Mitigation choice may also be limited by operational objectives. Fencing may be chosen to exclude animals on railways when changes to train speed and frequencies are not possible or desirable, regardless of the effect in the model. Several extremely high-speed railways are fenced (Campos & de Rus, 2009) as the speed of trains is the dominant technological characteristic and reducing it may be contrary to its public service objective. However, most other passenger (and freight) railway networks in the world, including those in Victoria, are not fenced. The scenario we did not model - installing 100% effective fencing along the entire network - would have the effect of reducing train collisions with ground-traversing species to nearly zero.

Each of our management scenarios reduced collisions, albeit with potentially different cost-benefit ratios. Collisions with kangaroos in Australia result in costs to the railway operator through removal of trains from service for cleaning and repair (V/line, personal communication). We were not able to obtain these costs for this study, however, this information would be useful to extend the application of our work. The benefit from reductions in annual collisions will have varying impacts depending on the costs incurred from wildlife-train collisions. In India, for example, collisions with elephants may de-rail trains (Dorsey et al., 2015) resulting in enormous costs. In these situations, avoiding a single collision event has remarkable benefit. When the costs of different management strategies (i.e. mitigation) are also considered, a cost-benefit analysis may be performed. This has been applied to collisions with road vehicles (Huijser et al., 2009) and can also be applied to railway, air and marine transport (see costs in Davenport & Davenport, 2006).
Herein, we have demonstrated a model framework that functions as an effective management support tool. It utilises existing sources of data, is logically organised, and is transferable/scalable to other transportation networks and species. Other potential uses of the framework may include an ongoing implementation where the model is updated based on new information and reports risk to operators in real-time. Further, our framework suggests important considerations for managing wildlife-vehicle collisions on any transportation network irrespective of scale or location. It is our hope that these insights will contribute to improving transportation and reducing its negative global effects on humans and wildlife populations.
Acknowledgements

We thank V/Line for their generous collaboration; in particular, Sam Parsons, who queried and provided the collision statistics used for the study. Michaela Plein provided valuable comments on the manuscript. This project was supported by a University of Melbourne International Research Scholarship and the Australian Research Council Centre of Excellence for Environmental Decisions.
Data Accessibility

Model dataset - Archived on GitHub; original collision data is V/Line’s Intellectual Property (IP) and authorisation for additional use must be granted by V/Line

R code – archived and available on GitHub (https://github.com/cvisintin/coll_model_trains)
Literature Cited

logistic model for moose-train accidents. *Wildlife Biology*, 4, 103-110

Figure Captions

Figure 1: Regional passenger train network in the state of Victoria. Inset shows location of Victoria in Australia. The railway network is shown as thin lines and major towns are starred. Wildlife-train collisions (reported between 2009-2014) are shown as crosses.

Figure 2: One km² grid framework used to organise modelling data: 2,015 total cells; extent coordinates 104000E,5741000N x 556000E,6084000N; GDA94 MGA zone 55 projection. The railway network is shown as a heavy dashed line and wildlife-train collisions are shown as crosses.

Figure 3: Marginal effects of model predictors on collision risk. For the effects of species occurrence, number of trains, and train speed on collision risk, non-target variables were held constant at mean values. For the effect of hour on collision risk, species occurrence, number of trains, and train speed were held at mean values. Note, the effect of hour is represented across all seasons (12 month period) as predicted collision risk from the model fit is determined using dawn and dusk times that vary based on month - represented by twelve replicates of weekly train movements. Shading indicates 95% confidence intervals around coefficient estimates.

Figure 4: Comparison between all five versions of collision model (the “wo” prefix indicates the variable dropped from the model) fitted to full data and to cross-validated subsets. ROC (receiver operating characteristic) measures the models’ ability to discriminate between collisions and no-collisions. Open circles represent ROC for the full data model, solid dots represent mean values
and solid lines the ranges for the 1000 cross-validated subsets.
Table 1: Predictor variables used in collision model; means and ranges are expressed on untransformed scale. T1, T2 and T3 determine a curve shape representing relative species activity (see Equation 2 and Figure S2). Note, the range of EGK occurrence values exclude zero due to the link function used to express the likelihood as a probability.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
<th>Mean; Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGK</td>
<td>Relative likelihood of kangaroo occurrence in grid cell</td>
<td>-</td>
<td>0.13; 0.01:0.87</td>
</tr>
<tr>
<td>TRAINS</td>
<td>Train frequency in grid cell</td>
<td>trains h⁻¹</td>
<td>3; 1:18</td>
</tr>
<tr>
<td>SPEED</td>
<td>Mean train speed in grid cell</td>
<td>km h⁻¹</td>
<td>86.7; 16.5:147.7</td>
</tr>
<tr>
<td>T1</td>
<td>Temporal function linear component</td>
<td>-</td>
<td>0.25; -1.00:1.00</td>
</tr>
<tr>
<td>T2</td>
<td>Temporal function quadratic component</td>
<td>-</td>
<td>0.47; 0.00:1.00</td>
</tr>
<tr>
<td>T3</td>
<td>Temporal function astronomical component</td>
<td>-</td>
<td>-0.05; -0.98:0.98</td>
</tr>
</tbody>
</table>
Table 2: Summary of likelihood ratio tests (relative to the best model) and Akaike information criterion (AIC) for five model specifications using all data (n=291,036 grid cells). “wo” prefix indicates variables were omitted from the model specification. Note, “temp” refers to the temporal component that is made up of three variables that model animal activity.

<table>
<thead>
<tr>
<th>Model</th>
<th>egk ((O_i))</th>
<th>trains ((V_{ij}))</th>
<th>speed ((S_{ij}))</th>
<th>temp ((T_{ijk}))</th>
<th>Difference in Log Likelihood</th>
<th>Degrees of Freedom (Difference)</th>
<th>X²</th>
<th>p-value</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo_trains (best)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5528</td>
</tr>
<tr>
<td>wo_trains_egk</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>58.9</td>
<td>5 (-1)</td>
<td>117.8</td>
<td><.00001</td>
<td>5644</td>
</tr>
<tr>
<td>wo_trains_speed</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>79.0</td>
<td>5 (-1)</td>
<td>157.9</td>
<td><.00001</td>
<td>5684</td>
</tr>
<tr>
<td>wo_trains_temp</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>108.7</td>
<td>3 (-3)</td>
<td>217.5</td>
<td><.00001</td>
<td>5740</td>
</tr>
<tr>
<td>full</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>0</td>
<td>7 (+1)</td>
<td>0.043</td>
<td>0.84</td>
<td>5530</td>
</tr>
</tbody>
</table>
Figure 3
Figure 4
Figure S1: Correlation between untransformed predictor variables in all cells with a) reported collisions (n=404) and b) no reported collisions (n=290632). ‘egk’ is relative likelihood of kangaroo occurrence in grid cell; ‘trains’ is train frequency in grid cell; ‘speed’ is mean train speed in grid cell; ‘hour’ is the time of day in grid cell. Values of one or negative one (black) indicate high correlation whilst values of zero (light gray) indicate low correlation. Visual representations of correlation are shown above the diagonal line and correlation values are reported below the diagonal line.
Figure S2: a) Components used to build temporal term in Equation 2; the solid curve controls activity relative to day or night, the dashed line controls uni-modal (e.g. diurnal) or bi-modal (e.g. crepuscular) activity, the dotted line controls activity closer to dawn or dusk. The model estimates a coefficient (gamma in Equation 2) for each component that controls the final curve shape. The resulting curves may reflect b) crepuscular, c) nocturnal, or d) diurnal activity patterns. Example coefficient values (g1, g2, g3) used to produce curves are shown above each
respective graph.
a) Estimated Pr of Collision (log-transformed)

b) Kangaroo Occurrence (log-transformed)

c) Number of Trains (log-transformed)
Figure S3: Binned randomised quantile (RQ) residuals plots - average residual versus the average predictor value for each bin. For all continuous predictors, bins are equally spaced and determined by taking the square root of the total number of unique values for each predictor; for the discrete predictor of hour, there are 23 total bins. The gray lines indicate ±2 standard-error bounds which should contain 95% of the residuals if the model were actually true. Note some variables are log-transformed to assist with visual inspection of the residuals.