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    INTRODUCTION 

 Conservation managers often build models of 
 ecological systems to predict the outcome of manage-
ment actions (Burgman et al.  2005 ). While models 
are useful for comparing conservation measures, mod-
eling ecological systems is notoriously diffi cult and 
predictions are usually uncertain for various reasons 
(Regan et al.  2002 , Bormann and Kiester  2004 , Burgman 
 2005 ). Firstly, model uncertainty arises because eco-
logical systems are complex and poorly understood; 
a number of plausible models might represent how a 
system functions (Chatfi eld  1995 ). Secondly, measure-
ment error and biases arise when data are collected 
to parameterize system models, leading to observation 
uncertainty. Thirdly, process uncertainty can result 
from variability in natural systems; that is, the unpre-
dictability of natural processes. Indeed, the challenge 
facing conservation managers is developing tools that 

allow for model- based decision- making while explicitly 
accounting for these forms of uncertainty. Failing to 
account for uncertainty in model- based decision- making 
can lead to unreliable predictions and subsequent mis-
allocation of resources and ineffective conservation 
actions (Ludwig et al.  1993 ). 

 Adaptive management can help deal with uncertainty 
in conservation decision- making (McCarthy and 
Possingham  2007 ). The purpose of adaptive manage-
ment is not only to achieve some pre- specifi ed man-
agement objective but also to manage with the aim 
of learning about uncertainties that are resolvable and 
impact on management decisions (Holling  1978 , Walters 
 1986 , Williams  1996 ). In essence, adaptive management 
is a repetitive process of acting and reducing uncer-
tainty by observing the outcome of those actions. 
Learning can be achieved in two ways: (1) under a 
passive adaptive strategy, by observing the outcome 
of past actions, or (2) under an active adaptive strat-
egy, where managers proactively design management 
to deliberately accelerate the learning process. Passive 
adaptive management is considered precautionary 
because management decisions are made in response 
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to what was learned in the past with only the man-
agement objective in mind (Walters  1986 , McCarthy 
and Possingham  2007 ). In contrast, active adaptive 
management is considered experimental because a 
strategy may be chosen initially that is suboptimal in 
the short term, but the sacrifi ce in management improves 
learning such that higher returns are achieved in the 
long run (Walters and Hilborn  1976 , Holling  1978 ). 

 Adaptive management has been applied widely to 
many areas of environmental management, most nota-
bly to fi sheries research (Walters and Hilborn  1976 , 
Smith and Walters  1981 , Walters  1986 ) and wildlife 
harvesting in North America (Nichols et al.  1995 , 
Williams and Johnson  1995 ). In most cases, learning 
is conducted passively rather than actively by observ-
ing the response of systems to past management actions 
(Parma et al.  1998 ). Applications of active adaptive 
management of environmental systems exist, but have 
been largely theoretical, and learning has generally 
focused on resolving uncertainty in a single parameter 
within a system model (Walters et al.  1992 , Shea et al. 
 2002 , Gerber et al.  2005 , McCarthy and Possingham 
 2007 , Hauser and Possingham  2008 , Rout et al.  2009 ). 
Other examples of adaptive management include the 
optimal management of threatened species (Rout et al. 
 2009 , McDonald- Madden et al.  2010 ), the optimal 
catch rate of a harvested species (Smith and Walters 
 1981 , Nichols et al.  1995 , Williams and Johnson  1995 , 
Runge and Johnson  2002 , Hauser and Possingham 
 2008 ), and vegetation restoration strategies (McCarthy 
and Possingham  2007 , Moore and McCarthy  2010 ). 
Despite increased applications of adaptive management 
to environmental systems, we know of no cases in 
the literature where adaptive management has guided 
metapopulation restoration. 

 The optimal management of metapopulations is an 
important area of research in conservation biology. 
Metapopulations, which consist of distinct populations 
subject to extinction and connected by colonization 
(Levins  1969 ), are becoming increasingly prevalent in 
disturbed environments due to habitat loss and frag-
mentation. Many threatened species, in particular, are 
often found in isolated patches of remnant habitat 
and require urgent management to reduce the risk of 
extinction. To offset the impact of fragmentation and 
improve metapopulation persistence, various restoration 
strategies can be implemented, such as creating new 
patches (Westphal et al.  2003 ), reintroducing a species 
to a suitable but empty patch (Possingham  1996 ), 
protecting areas of suitable habitat (Ross et al.  2008 ), 
and modifying the spatial arrangement of patches 
(Moilanen and Cabeza  2002 , Schultz and Crone  2005 , 
Isaak et al.  2007 ). Given the rate and scale of habitat 
fragmentation around the globe, decision- makers usu-
ally must urgently decide which of these strategies to 
implement within budgetary constraints. 

 Metapopulation models are useful tools to help decide 
which management action might best meet a pre- specifi ed 

management objective. Predicting the persistence of 
metapopulations is commonly achieved by modeling 
two processes: the rate at which occupied patches 
become extinct and the rate at which vacant patches 
are colonized by neighboring subpopulations (Levins 
 1969 ). A common assumption made during metapopu-
lation modeling is that model parameters are known 
with certainty. In reality, model parameters will often 
be poorly understood when management decisions are 
required, making it diffi cult to decide between a set 
of management actions. The colonization rate, in 
 particular, is notoriously diffi cult to measure in natural 
systems (Frisch et al.  2012 ). Given that metapopulation 
management is usually highly sensitive to model param-
eters (Nicol and Possingham  2010 ), managers are faced 
with a diffi cult decision in the presence of uncertainty: 
should a strategy be chosen despite uncertainty in model 
parameters or should management be delayed until 
these parameters are better understood? Delaying con-
servation action comes at the cost of potentially acting 
too late, whereas managing in the face of uncertainty 
runs the risk of choosing a suboptimal action, resulting 
in potentially wasted resources and suboptimal conser-
vation outcomes (Grantham et al.  2009 ). So the ques-
tion is: can managers learn about metapopulation 
parameters while managing and is it worth actively 
designing management to accelerate learning? 

 The aim of this research was to determine the optimal 
management strategy for a metapopulation while resolv-
ing uncertainty about metapopulation dynamics using 
an adaptive management framework. More specifi cally, 
we addressed the question: what is the value of learning 
about colonization when managing a metapopulation 
and what is the best way to resolve uncertainty in this 
parameter while managing the system? To explore these 
questions, we developed a metapopulation model and 
found the optimal passive and active adaptive manage-
ment strategy for a threatened invertebrate, the bay 
checkerspot butterfl y ( Euphydryas editha bayensis ). We 
used decision theory to determine when it is best to 
actively resolve uncertainty about the colonization rate 
in order to achieve a management objective. Decision 
theory is a formal approach to decision- making that 
involves acknowledging uncertainty and clearly specify-
ing management objectives (Maguire  1986 , Possingham 
et al.  2001 ). We established a metapopulation model 
within such a framework, enabling optimal decisions 
to be made about which management action to imple-
ment while learning about the colonization rate.  

  METHOD 

  Formulating the problem 

 We assumed that a species occupied suitable habitat 
patches that could either be occupied or empty. Habitat 
patches formed a metapopulation with an island–main-
land structure (Harrison et al.  1988 ), containing a source 
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patch that was immune to extinction and a number 
of island patches that were subject to extinction and 
colonization events. Given this structure, we assumed 
no migration was possible between island patches. The 
extinction rate of the island patches was a function 
of patch area and was known, but limited information 
was available on the colonization rate from the source 
patch. We tested two management objectives: (1) maxi-
mize the probability that at least one island patch is 
occupied at the end of the management program and 
(2) maximize the number of island patches occupied 
at the end of the management program. At any time 
step, managers could either do nothing ( q  = 0), increase 
area of existing patches ( q  = 1), or create a new patch 
( q  = 2). Increasing the area of existing patches reduced 
the extinction rate of occupied patches, whereas adding 
a patch to the metapopulation provided an additional 
opportunity for colonization. The choice of whether 
to invest in creating new patches or increasing the 
area of existing patches depended on the colonization 
rate from the source patch, which was uncertain. The 
only way to learn about the colonization rate was to 
monitor unoccupied patches. In this way, adding a 
new patch could be treated as an experiment that cre-
ated an extra opportunity to observe colonization and 
allow us to ask: how much effort should be put into 
learning about the colonization rate by adding patches 
to the metapopulation as opposed to adding area or 
doing nothing?  

  Stochastic patch mainland–island occupancy model 

 We developed a spatially implicit stochastic patch 
occupancy model (Ovaskainen and Hanski  2004 ) with 
a mainland–island structure (Harrison et al.  1988 ). We 
treated the mainland patch as an external colonization 
force and modeled the occupancy status of island patches, 
which are hereafter simply referred to as patches. To 
simplify the model, we assumed that all patches were 
of equal area at a given time. The state of the meta-
population was characterized by three state variables: 
the number of patches in the network ( M ) ∈ { M  min ,  
M  min +1,…,  M  max −1,  M  max }, the number of occupied 
patches in the network ( n ) ∈ {0, 1, 2, …,  M }, and 
the area of the patches in the network ( A ) ∈ { A  min ,  
A  min + k, …,  A  max − k ,  A  max } (Nicol and Possingham  2010 ). 
We adopted the approach presented by Nicol and 
Possingham ( 2010 ) and divided the state variable  A  
into discrete states of resolution  k , ranging from a 
starting area  A  min  up to  A  max  and used the notation 
( M ,  n ,  A ) to refer to a metapopulation with  M  patches 
each of area  A , of which  n  patches were occupied. 
Three management actions were considered: adding a 
new patch, adding area to each of the existing patches, 
and doing nothing. All modeling and optimization was 
conducted in R (R Development Core Team  2014 ). R 
scripts are provided in the Supplement. The probability 
that the metapopulation transitioned from one state to 

another under the alternative actions is described in 
the following section.  

  State transition 

  Do nothing 

 Transition probabilities under the do nothing strategy 
were modeled by a discrete- time Markov chain that 
described the processes of colonization and extinction. 
We assumed that the order of events in a time step 
was fi rst colonization and then extinction (Day and 
Possingham  1995 , Westphal et al.  2003 , Nicol and 
Possingham  2010 ) and that these events were inde-
pendent; that is, there was no rescue effect. We assumed 
binomial probability distributions for the number of 
colonization and extinction events (Nicol and 
Possingham  2010 ). Hence, the probability of  x  extinc-
tion events was  

       

  where the probability of local extinction is given by 
 e . The relationship between local extinction and patch 
area was defi ned as follows (Gilpin and Diamond  1976 , 
Hanski  1994 ):  

       

  where the parameters,  a  and  b , described the depend-
ence of extinction probability on patch area. Further, 
the number of colonization events ( y ) was modeled 
as  

       

  where  c  is the probability of an island patch being 
colonized from the mainland patch.  

  Adding patches 

 Increasing the number of patches in the metapopula-
tion added a new patch to the network deterministically 
(i.e., with probability 1) unless the maximum allowable 
number of patches  M  max  was exceeded, in which case 
this management option had no effect. Patches added 
to the metapopulation were assumed to start off vacant, 
and then be subject to both colonization and extinc-
tion. Transition probabilities for the metapopulation 
when a patch was added to the network (not including 
colonization and extinction) were written as 

        

           

 All other transition probabilities were zero when a 
patch was added.  
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  Adding area 

 To standardize costs, we assumed that increasing 
patch areas added the same area to the metapopula-
tion as if a new patch was created (see Nicol and 
Possingham  2010 ). Therefore, if the metapopulation 
is in state ( M ,  n ,  A ), the area added by increasing 
patch area was equal to  A / M . However, because  A  
is a discrete variable and  A / M  is continuous, we fol-
lowed the approach outlined by Nicol and Possingham 
( 2010 ) and divided the area state into bins with interval 
 k . Instead of rounding to the closest area  A , we used 
proximity to the closest intervals as weighting factors, 
which acted like transition probabilities. For example, 
if the metapopulation is in the state (2, 1, 3), then 
1.5 is added to the area of patches ( A/M ). Rather 
than round this value, we took a linear combination 
of the two neighboring allowable values of  A , mean-
ing the metapopulation transitioned to state (2, 1, 3) 
with probability  w  (in this case being 0.5) and to 
state (2, 1, 4) with probability 1− w . Therefore, if 
 A  new  is less than  A  max , an increase in patch area is 
given by 

 
       

 
 
        

 where rem denotes the remainder after division. If 
 A  new  ≥  A  max  then  P [( M ,  n ,  A ) → ( M ,  n ,  A  max )] = 1. 

 To create a transition matrix element for a given 
strategy  q , we calculated the probability of  y  coloniza-
tion and  x  extinction events  

        

 where  y  ∈ {0, 1, …,  M − n }, and  x  ∈ {0, 1, …,  n + y ). 
Because we assumed a mainland–island metapopula-
tion where colonists disperse from a mainland patch, 
island patches could be colonized even if none were 
occupied. Since the colonization and extinction events 
were assumed to obey the Markov property of inde-
pendent events, the transition probabilities were written 
as  

          

  Uncertainty in the colonization parameter 

 Rather than set the colonization rate as a fi xed 
value, we modeled uncertainty in this parameter with 
a beta probability distribution. By choosing this dis-
tribution, we considered that all possible colonization 
rates between 0 and 1 were plausible, given by  

        

 where  B (α, β) is the beta function and α and β 
are parameters of the probability distribution. Different 
states of belief in the colonization rate  c  can be rep-
resented by varying the values of α and β. The expected 
colonization rate is given by the mean of the beta 
distribution  E ( c ) = α/(α+β) and the sum of α+β can 
be interpreted as our confi dence in this estimate. As 
the sum of α and β increases, we become more con-
fi dent in our estimate of the colonization rate. Thus, 
α and β provide suffi cient information to completely 
describe belief and confi dence in the colonization rate 
at any time during the management program.  

  Updating belief in the colonization rate 

 We used Bayesian updating to describe how observ-
ing the turnover rate of vacant patches improved the 
estimate of the colonization rate. When a prior has 
a beta distribution with parameters α and β and there 
are  s  monitored successes and  f  monitored failures 
from  s  +  f  independent trials (i.e., binomial sampling), 
the posterior will be a beta distribution with parameters 
α+ s  and β +  f . In our case, we considered possible 
colonization of each vacant patch as an independent 
trial and updated our belief in the colonization rate 
by monitoring the number of vacant patches that 
became occupied (assuming a detection probability of 
1). At any point in time, the number of independent 
trials was equal to the number of unoccupied patches 
( M  −  n ). When  y  of the vacant ( M  −  n ) patches were 
colonized, the fi rst parameter (α) was increased by  y  
and the second parameter (β) increased by  M  −  n  −  y . 
Consequently the number of colonization events  y  in 
the face of this uncertainty follows a beta- binomial 
distribution 

 
        

 where, if we assume a beta(α 0 , β 0 ) distribution for 
 c  at the beginning of management, α−α 0  is the number 
of previous successful colonization events and β−β 0  
is the number of previous unsuccessful colonization 
events. Assuming there is at least one vacant patch, 
we can learn about the metapopulation under all of 
the management actions; however, adding a patch to 
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the network creates an additional independent trial in 
which to observe colonization and accelerate the learn-
ing process.  

  Finding the optimal management strategy 

 We used stochastic dynamic programming (SDP) to 
determine the optimal management decision for each 
state of the metapopulation at each point in time. 
SDP can be applied where sequential management 
decisions are made to stochastic systems with a fi nite 
number of states (Bellman  1957 , Lubow  1996 , Mangel 
and Clark  2000 , Marescot et al.  2013 ). After discretiz-
ing the system into states, the fi rst step of an SDP 
is to defi ne a management objective. We ran the model 
under two different management objectives, fi rstly, to 
maximize the probability that at least one of the island 
patches was occupied at the end of a management 
program ( t  max ). The terminal reward can be written 
as  

        

 where  V  1 (( M ,  n ,  A , α, β),  t ) is the probability that 
there are one or more occupied patches at time  t  max  
if the current state of the system is ( M ,  n ,  A , α, β) 
at time  t  and we act optimally until  t  max . By selecting 
this value function, the number of patches occupied 
at the end of the management program is not con-
sidered important, provided at least one of the island 
patches is occupied. Secondly, we found the optimal 
management strategy with the management objective 
of maximizing the number of patches occupied at  t  max , 
with the terminal reward  

        

 where  V   2  (( M ,  n ,  A , α, β),  t ) is the expected number 
of patches occupied at time  t  max  given the system is 
in state ( M ,  n ,  A , α, β) at time  t  and the metapopu-
lation is managed optimally from time  t  to  t  max . This 
objective differs from the fi rst objective because man-
agers seek to maximize the number of patches occupied 
at the end of the management program, rather than 
just ensuring at least one is occupied. SDP works by 
calculating the fi nal reward for each state at the ter-
minal time ( t  max ), based on the objective function. 
The SDP iteratively steps backward in time to evaluate 
each possible system state ( M ,  n ,  A ) and belief state 
(α, β) in the previous time step, using transition prob-
abilities given by the metapopulation model. Of all 
the possible management actions, the SDP selects the 
one that results in the highest expected return for 
each system state at each point in time. We assumed 
the management program ran for 10 yr ( t  max  = 10) 
with each time step corresponding to 1 yr. Our choice 
of time horizon was limited by the number of states 

the metapopulation could be in as SDP is often subject 
to the “curse of dimensionality” (Bellman  1957 ). We 
selected a time horizon that was computationally fea-
sible. However, 10 yrs is also a reasonable time horizon 
to assess performance of conservation management 
actions. The SDP was run under two learning strate-
gies: passive and active adaptive management.  

  Passive adaptive management 

 Under passive adaptive learning, we updated our 
belief in the colonization rate by monitoring the pro-
portion of vacant patches that were colonized ( y ) up 
until the current time step  t  of a management program. 
The optimal passive adaptive strategy was found by 
searching through all possible states ( M ,  n ,  A , α, β) 
at each point in time, starting at the terminal time 
( t  max ) and working backward. For each state and time, 
the SDP calculated the probability of transitioning to 
all possible future states at time  t +1. Transition prob-
abilities to future states depended on the management 
action  q  and belief in the expected colonization rate 
(α, β). The value of each action  V  at time  t  was 
calculated as the weighted sum of the value of tran-
sitioning to future states at time  t +1 multiplied by the 
probability of transitioning to those states. The process 
was repeated for each action  q , in each state, with the 
SDP returning the action that maximized the manage-
ment objectives for each state. This process was described 
by the recursive dynamic programming equation 

 
        

 where  V  is the value of the optimal action ( q ) under 
passive adaptive management, depending on the cur-
rent time step in the restoration project ( t ), current 
knowledge about the colonization rate (a beta distri-
bution with parameters α and β), the number of patches 
( M ), the number of occupied patches ( n ), and the 
area of patches ( A ). Therefore, when fi nding the  optimal 
passive adaptive strategy, the SDP did not anticipate 
any further resolution of uncertainty in the coloniza-
tion rate but incorporated what was learned by 
 monitoring all possible outcomes of past actions.  

  Active adaptive management 

 The SDP performed the same routine for active 
adaptive management as for passive adaptive manage-
ment; the optimal strategy was found for each state 
of the system at each point in time. However, under 
active adaptive management, possible changes to α and 
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β in the future were incorporated into the dynamic 
programming equation. Transition probabilities to pos-
sible future states at time  t +1 were still calculated using 
α and β, but the value of being in these future states 
included the learning potential of each action. Hence 
α and β were updated with new information that will 
be gained through management, (α+ s ) and (β+ m ′− n − s ) 
respectively. Thus, the recursive dynamic programming 
equation for active adaptive management is 

 
         

  Case study 

 To demonstrate our framework specifi cally, we found 
the optimal passive and adaptive management strategy 
for a threatened invertebrate, the bay checkerspot but-
terfl y ( Euphydryas editha bayensis ).  E. editha bayensis  
is a medium- sized butterfl y endemic to the San Francisco 
Bay region of California, USA (Ehrlich et al.  1975 ), 
protected since 1987 under the United States 
Endangered Species Act (United States Federal Register 
 1987 ). It is restricted to native grasslands in highly 
discrete local populations (Ehrlich  1961 ), where extinc-
tion, dispersal, and colonization have allowed for long- 
term persistence (Murphy  1984 , Harrison et al.  1988 ). 
This pattern of occupancy resembles a mainland–island 
metapopulation, consisting of a large source popula-
tion in the order of 10 6  adult butterfl ies on a 200- ha 
patch adjacent to 27 smaller island populations 
(Harrison et al.  1988 ). The large source population is 
not thought to be susceptible to extinction, but the 
island populations are prone to relatively frequent 
extinction events caused, at least in part, by habitat 
deterioration and drought (Ehrlich et al.  1980 ). The 
successful colonization of island patches from the source 
population has been well- documented (Ehrlich et al. 
 1975 , Harrison et al.  1988 ), but the rate of coloniza-
tion is not known with certainty (Murphy et al.  1990 ). 
Since the 1980s, populations of  E. editha bayensis  have 
declined due to the introduction of noxious weeds, 
drought events, overgrazing, and urbanization (Ehrlich 
et al.  1975 ). 

 We parameterized our mainland–island metapopula-
tion model for  E. editha bayensis  and found the optimal 
passive and active adaptive management strategy for 
all possible states at each point in time using SDP. 
To run the SDP, we had to specify the extinction–area 
relationship for  E. editha bayensis . Although factors 
such as topography and vegetation type have been 
shown to infl uence local extinction (Launer and 
Murphy  1994 , Preston et al.  2012 ), we assumed that 

extinction was only a function of patch area. We 
estimated the extinction–area relationship for  E. editha 
bayensis  by fi tting the extinction–area curve to data 
published in Harrison et al. ( 1988 ; Appendix). To 
test the sensitivity of the optimal adaptive manage-
ment strategy to uncertainty in the extinction–area 
curve for  E. editha bayensis , we also ran the SDP 
using the upper and lower 95% confi dence intervals. 
We allowed for up to 10 prior observations of the 
turnover rate (α+β) at the start of a management 
program, i.e.,  α  0  ∈ {1, 2, …, 11}, 
 β  0  ∈ {1, 2, …, 11− α  0 }. The minimum ( A  min ) and 
maximum allowed area ( A  max ) was set to 2 and 25 ha 
respectively, with a resolution  k  equal to 1. The mini-
mum number of patches ( M  min ) was set to two, with 
 M  max  set to 13. The time horizon was set at 10 yr. 

  Simulating management actions 

 We simulated the optimal passive and adaptive man-
agement strategies for a subset of island patches for a 
10- yr management program using transition probabilities 
generated by the SDP. For the purpose of illustration, 
we assumed managers could manage two of the island 
patches at the start of the restoration program ( M  = 2), 
one of which was occupied ( n  = 1). The initial starting 
area ( A ) was 2 ha. At each time step, managers could 
either add area to existing patches, add a patch, or 
do nothing, with the goal of maximizing the probability 
of at least one patch being occupied at the end of the 
management program (objective 1). When running the 
simulations, we assumed the initial patches, and any 
new patches added to the metapopulation, were of equal 
distance to the source patch and therefore subject to 
a true colonization rate of 0.1. Our prior belief in the 
colonization rate was represented by a beta(1,2) prior 
distribution, which is approximately equal to published 
estimates of the colonization rate for patches closest 
to the source patch (Harrison et al.  1988 ). 

 Given these initial conditions, we simulated the effect 
of passive and active adaptive management on the 
 E. editha bayensis  metapopulation over 10 yr of man-
agement. We performed 1000 replicate simulations 
under each strategy and averaged the number of patches 
occupied ( n ), the number of learning opportunities 
(α+β), and belief in the colonization rate  E ( c ) over 
time. By simulating the optimal passive and adaptive 
management strategies, the potential benefi ts of actively 
learning about colonization could be compared with 
managing the system passively. To determine the effec-
tiveness of learning (either passively or actively), we 
also simulated the probability of one patch being 
occupied at the end of the management program if 
managers were to do nothing, always add patches, or 
always add area to the metapopulation without learn-
ing about the colonization rate. A summary of the 
initial conditions used in the simulations is presented 
in Table  1 .     

V
q
((M,n,A,α,β),t)= max

q∈(0,1,2)[ Mmax∑
M′=Mmin

M∑
n′=0

Amax∑
A′=A

M− n∑
y=0

P
q
[(M,n,A)→ (M′,n′,A′|α,β)×

V
q
((M′,n′,A′,α+y,β+M

′ − n − y),t + 1)]
]

.
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  RESULTS 

 We found the optimal management strategy for all 
possible states of a metapopulation ( M ,  n ,  A ) and 
expected colonization rates (i.e., all combinations of 
α, β) at each point in time for the two different man-
agement objectives over a 10- yr time horizon. Not 
surprisingly, it was always optimal to add a patch or 
add area to the metapopulation when the limits  A  max  
or  M  max  had been reached, respectively, because only 
one action offered potential benefi ts. When both  A  max  
and  M  max  had been reached, managers had no option 
but to do nothing. Given the large number of states 
that the metapopulation could be in, we present results 
for only a selection of combinations when  A  <  A  max  
and  M  <  M  max  to demonstrate general trends in man-
agement decisions over time (Figs.  1–4 ). The optimal 
management strategies are presented as a function of 
the expected colonization rate  E ( c ) = α/(α+β) and 
our confi dence in this estimate, given by α+β, with 
each possible state (α, β) marked with a symbol. This 
relationship between the expected colonization rate  E ( c ) 
and the number of observations determines the dis-
tribution of circles in Figs.  1–4 . The number of pos-
sible expected colonization rates  E ( c ) increases as the 
number of observations α+β increases. There are no 
circles in the bottom left or right portions of the 
fi gures because very high and very low estimates of 
colonization require many observations.     

  Passive adaptive management 

  General result 

 Under a passive adaptive management strategy, there 
was a threshold (the boundary between gray shading and 
no shading) in the expected colonization rate, below which 
it was optimal to increase patch areas, and above which 

it was optimal to add a patch (Figs.  1–4 ). This threshold 
was insensitive to confi dence in the expected colonization 
rate (α+β) because future learning opportunities were not 
valued in the dynamic recursive equation. Generally speak-
ing, it was only best to add area to existing patches 
when the expected colonization rate was low, less than 
~0.1 for most states of the metapopulation. Otherwise, 
it was always best to add patches. This result makes 
intuitive sense; we only add patches to the metapopula-
tion when past experience suggests the colonization rate 
is suffi ciently high for a new patch to be colonized.  

  Sensitivity of area–patch threshold 

 The optimal passive adaptive strategy was sensitive 
to both the state of the metapopulation and choice 
of model parameters. This meant the boundary between 
when it was optimal to add area or add a patch (where 
the gray shading ends) was state dependent. As the 
number of patches in the metapopulation increased, 
there were more belief states in which it was best to 
add patches (Fig.  1 ). In contrast, as the number of 
occupied patches increased, there were fewer belief states 
in which it was best to add patches (Fig.  2 ). In both 
cases, the optimal passive adaptive strategy was rela-
tively insensitive to changes in area (Figs.  1, 2 ). As 
time progressed, there were fewer belief states in which 
it was best to add patches (Fig.  3 ). The optimal man-
agement strategy was sensitive to the management 
objective: when the objective was to maximize the 
number of patches occupied, it was almost always best 
to add patches to the metapopulation rather than add 
area (Fig.  3 ). The optimal passive adaptive strategy 
was sensitive to uncertainty in the extinction–area curve 
for  E. editha bayensis : there were more belief states in 
which it was best to add area using the lower 95% 
confi dence interval compared to the upper 95% con-
fi dence interval (Fig.  4 ). This was because the lower 
95% confi dence interval had a lower extinction rate 
than the best fi t or upper 95% confi dence interval, 
and thus meant that adding area was more effective 
at increasing survival compared to adding patches.   

  Learning from active adaptive management 

  General results 

 There were more belief states in which it was optimal 
to add area under an active adaptive management 
strategy compared with a passive adaptive management 
strategy (shown by the solid black and open circles 
in Figs.  1–4 ). This was because the optimal active 
adaptive management strategy was sensitive to our 
confi dence in the expected colonization rate. Generally 
speaking, the area–patch threshold (the boundary 
between solid black circles and open circles) under 
active adaptive management is similar to passive adap-
tive management when we were confi dent in our 

 TABLE 1 .    Parameters and initial conditions used to simulate 
management strategies for  Euphydryas editha bayensis . 

 Parameter  Defi nition  Value 

  t  max   Time horizon  10 yr 
  M  min   Minimum number of patches  2 
  M  max   Maximum number of patches  13 
  A  min   Minimum area  2 ha 
  A  max   Maximum area of patches  25 ha 
  M   Initial number of patches  2 
  n   Initial number of occupied patches  1 
  A   Initial area  2 ha 
  k   Resolution of area  1 ha 
  a   Species area relationship  0.34 †  
  b   Species area relationship  0.38 †  
 α 0   Initial alpha shape parameter  1 †  
 β 0   Initial beta shape parameter  2 †  

   †  Source: Harrison et al. ( 1988 ).   
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estimate of the colonization rate (i.e., if we had observed 
the turnover rate of a vacant patch ~30 times). However, 
the optimal active adaptive management strategy 
favored adding area to existing patches when the 
expected colonization rate, and our confi dence in this 
estimate, was low (Fig.  1–4 ). This result is rather 
counterintuitive: we might expect the best way to 
actively learn about the colonization rate is to inten-
tionally create additional learning opportunities by 
adding vacant patches to the metapopulation. In this 
case, the active adaptive strategy favored a precaution-
ary approach to management by taking the guaranteed 
returns of adding area over the uncertain benefi ts of 
adding patches.  

  Sensitivity of area–patch threshold to model states and 
parameters 

 The optimal active adaptive strategy was sensitive 
to both the state of the metapopulation and choice 
of model parameters (Figs.  1–4 ). For example, as 

the number of patches in the metapopulation 
increased and confi dence in the colonization rate 
was low, the best strategy became less precautionary 
about adding patches to the metapopulation (Fig.  1 ). 
In other words, with few patches in the metapopu-
lation and only a vague understanding of the colo-
nization rate, it was best to learn about colonization 
by adding area and monitoring the turnover rate 
of existing vacant patches. This is because the prob-
ability of metapopulation persistence increased as 
the number of patches increased, so there was less 
to be lost through experimentation. A similar trend 
existed as the number of occupied patches in the 
metapopulation decreased (Fig.  2 ). There were fewer 
states in which to add patches as the number of 
occupied patches approached the number of patches 
in the metapopulation. When the number of vacant 
patches was small, creating an additional single 
learning opportunity did not outweigh the benefi t 
of adding area.  

 FIG. 1 .              Adaptive restoration strategies in the middle of a 10- yr management program ( t  = 5 yr) for a metapopulation of 
 Euphydryas editha bayensis  with one occupied patch ( n  = 1) and extinction–area parameters  a  = 0.34 and  b  = 0.38. The results 
presented here are for a metapopulation with (a, b) three patches ( M  = 3), (c, d) two patches ( M  = 2), and (e, f) one patch 
( M  = 1) of (a, c, e) area  A  = 3 ha and (b, d, f)  A  = 7 ha in size under objective 1 (maximize the probability of at least one patch 
being occupied at the end of the time horizon). The expected value in the colonization rate  E ( c ) is presented on the  x - axis and 
the number of observations (α+β) on the  y - axis. Shading indicates the optimal passive adaptive management strategy; add area 
to patches ( q  = 1, gray shading) or add patches ( q  = 2, no shading). Solid black circles represent states where it is optimal to add 
area to the metapopulation under active adaptive management, open circles represent where it is optimal to add patches. 
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  Sensitivity of area–patch threshold to time and 
management objectives 

 The optimal active adaptive management strategy 
was sensitive to time and alternative management 
objectives. For both management objectives, it became 
more favorable to add patches to the metapopulation 
as time progressed (Figs.  3, 4 ). Generally speaking, 
the optimal active adaptive management strategy was 
to add area early in the restoration program if the 
colonization rate was uncertain and learn by observing 
the turnover rate of existing vacant patches. Patches 
should then be added if past experience suggested that 
colonization was reasonably high. Importantly, the 
optimal active adaptive management strategy was equal 
to the optimal passive adaptive management strategy 
in the fi nal time step because there was no time remain-
ing to actively learn about colonization (Fig.  3, 4 ). 
The optimal active adaptive strategy was sensitive to 
alternative management objectives. In general, it was 
more important to add patches to the metapopulation 
when the goal was to maximize the number of patches 
occupied at the end of the management program. 

Under this objective, it was almost always best to 
add patches to the metapopulation in the fi nal time 
steps.   

  Simulating passive and active adaptive management 

 There was little difference between managing the 
 E. editha bayensis  metapopulation under passive or 
active adaptive management (Fig.  5 a). The probability 
of at least one patch being occupied at the end of 
a 10- yr management program was 0.880 under active 
adaptive management and 0.885 under passive adap-
tive management, given the initial state of the meta-
population, our prior belief about the colonization 
rate, and a true colonization rate of 0.1. Adaptive 
management performed considerably better than con-
sistently adding area or doing nothing. The probability 
of at least one patch being occupied after 10 yr was 
0.713 when area was added and 0.397 when no action 
was taken. Consistently adding patches to the meta-
population performed as well as passive or active 
adaptive management: under this strategy the 

 FIG. 2 .              Adaptive restoration strategies in the middle of a 10- yr management program ( t  = 5 yr) for a metapopulation of  E. editha 
bayensis  with three patches and extinction–area parameters  a  = 0.34 and  b  = 0.38. The results presented here are for a metapopulation 
with (a, b) three occupied patches ( n  = 3), (c, d), two occupied patches ( n  = 2), and (e, f) one occupied patch ( n  = 1) of (a, c, e)  A  = 3 ha 
and (b, d, f)  A  = 7 ha in size under objective 1 (maximize the probability of at least one patch being occupied at the end of the time 
horizon). Axes,  q  values, shading, and circle types are as in Fig.  1 . 
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probability of at least one patch being occupied at 
the end of the management program was 0.892. We 
note that the relative performance of adding patches 
or adding area depends on the true value of the 
colonization rate. A colonization rate less than 0.1 
would decrease the effectiveness of adding patches 
and increase the performance of just adding area to 
the metapopulation.  

 Given the initial conditions assumed in our study 
and a true colonization rate of 0.1, managers had 
on average 32 learning opportunities under active 
adaptive management, 55 learning opportunities under 
passive adaptive management, 55 learning opportuni-
ties if patches were always added, and 14 learning 
opportunities if area was always added (Fig.  5 b). The 
number of learning opportunities was higher under 
passive adaptive management compared with active 
adaptive management because passive learning favored 
adding patches to the metapopulation early in the 
management program when the colonization rate was 

uncertain. We could still learn about the colonization 
rate by doing nothing: on average there were 16 
opportunities to observe if a vacant patch was colo-
nized during the 10- yr management program. Because 
more patches were created under passive adaptive 
management, and thus there were more learning oppor-
tunities, estimates of the colonization rate were more 
precise under passive adaptive management. This can 
be seen by the narrower confi dence intervals in the 
expected colonization rate under passive adaptive 
management (Fig.  5 c).   

  DISCUSSION 

 Optimizing current and future management of meta-
populations is a key topic in ecology due to the rate 
and scale at which habitat fragmentation is occurring 
around the globe. Managers are often required to make 
decisions regarding the restoration of metapopulations 
with only a vague understanding of the system 

 FIG. 3 .              Adaptive restoration strategies for a metapopulation of  E. editha bayensis  with two patches. The results presented here are 
for objective 1 (Obj. 1; maximize the probability of at least one patch being occupied) and objective 2 (Obj. 2; maximize the number 
of patches occupied) at (a, b) the end of management program (time  t  = 10 yr), (c, d) fi ve years into a management program ( t  = 5 yr), 
and (e, f) at the start of a management program ( t  = 1 yr). Patch area  A  = 7 ha, one of which is occupied, with extinction–area 
parameters  a  = 0.34 and  b  = 0.38. A maximum of 10 prior observations of the colonization rate are plotted at the start of management 
(e, f). In the middle and end of the management program (a–d), the number of observations is truncated at 30. Axes,  q  values, 
shading, and circle types are as in Fig.  1 . 
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dynamics (Etienne and Heesterbeek  2001 ). We have 
constructed a management strategy for species occupy-
ing mainland–island metapopulations that incorporates 
uncertainty in the colonization rate and allows for 
this uncertainty to be resolved over the course of a 
management program. While theoretical examples of 
adaptive management exist for many fi elds of envi-
ronmental management (McCarthy and Possingham 
 2007 , Hauser and Possingham  2008 , Rout et al.  2009 ), 
to our know ledge this is the fi rst application of the 
framework to the restoration of metapopulations. 

Metapopulation restoration provides a good setting 
for adaptive management; decisions are often required 
urgently, there is usually a limited understanding of 
the dynamics driving optimal decisions, and manage-
ment is usually repeated over time, allowing for oppor-
tunities to learn from past actions. 

 By comparing passive and active management, we 
determined the value of actively learning about colo-
nization through experimentation. Our results suggest 
that the active adaptive approach is precautionary 
compared with the passive adaptive strategy, favoring 

 FIG. 4 .              Adaptive restoration strategies for a metapopulation of  E. editha bayensis  with two patches. The results presented here are 
for objective 1: (a–c) at the end of management program ( t  = 10 yr), (d–f) fi ve years into a management program ( t  = 5 yr), and 
(g–i) at the start of a management program ( t  = 1 yr). One of the patches is occupied ( n ) and both are  A  = 5 ha in size. The stochastic 
dynamic programming was run with three extinction–area curves; a best fi t (middle column) and lower and upper 95% confi dence 
intervals (left and right columns, respectively). A maximum of 10 prior observations of the colonization rate area plotted at the start 
of management (g–i). In the middle and end of the management program (a–f) the number of observations are truncated at 30. Axes, 
 q  values, shading, and circle types are as in Fig.  1 . 
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actions that yield guaranteed rather than uncertain 
rewards (Figs.  1–4 ). This result is somewhat counter-
intuitive; one might expect that the best way to learn 
about colonization while managing a metapopulation 
is to intentionally create more learning opportunities 
early in a management program, sacrifi cing immediate 
benefi ts to improve management in the long term. 
However, the optimal active adaptive management 
strategy in this study did not support active learning; 
rather the best way to achieve our management objec-
tive was to take the guaranteed benefi ts of adding area 
while learning about the colonization rate by monitoring 
existing vacant patches. In other words, the optimal 
way to balance the goal of maximizing the manage-
ment objective with learning was to take an action 

with known benefi ts (still allowing us to learn), rather 
than experimenting with a less well- understood action 
that could yield either greater benefi ts or greater losses. 
The optimal active adaptive strategy probably favored 
a precautionary approach because the value of experi-
mentation was low: we could still learn about coloniza-
tion regardless of which action was chosen. 

 A widespread assumption of adaptive management 
is that active adaptive management encourages sacrifi ce 
of benefi ts early in the time frame so that management 
is improved in the long run. However, in the environ-
mental science and engineering literature, active learning 
has been shown to be both precautionary (Bar- Shalom 
 1981 , Hauser and Possingham  2008 ) and experimental 
(Rout et al.  2009 ). Rout et al. ( 2009 ) found 

 FIG. 5 .              (a) The number of patches occupied by  E. editha bayensis  over a  t  max  = 10- yr management program, averaged over 
1000 simulations under passive adaptive management (black solid line), active adaptive management (gray solid line), 
adding patches (black dashed line), adding area (gray dashed line), and doing nothing (black dotted line). Initially, the 
metapopulation contained two patches ( M  = 2), one of which was occupied ( n  = 1), and  A  = 2 ha in size. The true colonization 
rate was set to  c  = 0.1. (b) The total number of learning opportunities (α+β) throughout the management program under 
passive adaptive management (black solid line), active adaptive management (gray solid line), adding patches (black dashed 
line), adding area (gray dashed line), and doing nothing (black dotted line). (c) Belief in the expected colonization rate  E ( c ) 
denoted by the mean (solid line) with 2.5th and 97.5th percentiles on the beta distribution (short- dashed line) under passive 
(black line) and active adaptive (gray line) management. Prior belief in the colonization rate  E ( c ) was represented with a 
beta(1,2) distribution. 
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considerable benefi t in actively learning about the growth 
rate of a species translocated to a new site under active 
adaptive management. In contrast, Hauser and 
Possingham ( 2008 ) compared passive and active harvest 
strategies for a hypothetical population and concluded 
that the optimal active adaptive harvest strategy was 
precautionary over short to medium time horizons, 
rather than experimental. Whether or not the optimal 
active adaptive management strategy is precautionary 
or experimental will likely depend on the model, the 
relative number of learning opportunities under each 
action, and the duration of the time horizon. Our active 
adaptive management strategy may have favored adding 
area rather than accelerating the learning process by 
adding patches because we ran the SDP for only 10 yr. 
We attempted to run our model for longer; however, 
we were limited by the curse of dimensionality. Our 
model had fi ve state variables ( M ,  n ,  A , α, β), which 
resulted in 10 213 272 states when run over 10 yr. 

 By simulating management of an  E. editha bayensis  
metapopulation, we demonstrated the difference 
between learning about the colonization rate (both 
passively and actively) compared with doing nothing 
or repeating the same action over time. In this instance, 
there was little difference between passive adaptive 
management, active adaptive management, and consist-
ently adding patches each time step. The three strategies 
were equally effective because they followed almost 
the same sequence of actions over time; to add patches. 
The only time when area was added early in the man-
agement program was under active adaptive manage-
ment. The relative performance of each strategy will 
depend on the number and relative benefi t of actions, 
which will depend to some extent on the slope of the 
extinction–area curve and the choice of true coloniza-
tion rate. For example, a lower colonization rate would 
have made the strategy of always adding patches less 
effective relative to adding area. What the simulations 
do illustrate, however, is how managers of  E. editha 
bayensis  can adjust their actions over time based on 
a prior belief in the colonization rate and in response 
to what is learned (either passively or actively) over 
time. This removes the risk of committing to a sub-
optimal strategy (in this case consistently adding area) 
at the start of a management program. 

 As with all models, a number of important assump-
tions were made in our study. Although we found 
the optimal adaptive management strategy for two 
objectives, a number of other objectives could just 
have easily been chosen. For example, managers might 
seek to maximize the number of patches occupied over 
the duration of the management program or minimize 
the cost of management. By running the SDP under 
two management objectives, we demonstrate that adap-
tive strategies can be sensitive to the choice of man-
agement objective. For instance, there were many more 
belief states in which it was best to add patches under 
objective 2; that is, when the goal of management 

was to maximize the number of patches occupied at 
the end of the management program. The sensitivity 
of management decisions to alternative strategies is 
well- documented in the conservation literature 
(Nicholson and Possingham  2006 , McCarthy and 
Possingham  2007 ). Therefore, we stress the importance 
of carefully considering management objectives at the 
start of the decision- making process. Failing to for-
mulate clear and achievable objectives is also a major 
barrier to the successful implementation of adaptive 
management programs (Susskind et al.  2012 ). 

 All patches in the metapopulation were assumed to 
be identical in area and spatially implicit. This meant 
that we could not store individual patch areas or inter- 
patch distances, assess the impact of corridors as a 
management action, or specify the location of new 
patches. Learning about the colonization rate for a 
spatially explicit mainland–island metapopulation would 
have added considerable complexity to our SDP. Rather 
than use a beta distribution to model the colonization 
rate, we would have required a dispersal kernel for 
the source patch describing the decrease in the colo-
nization rate with distance. This kernel would have 
had to be updated using Bayesian statistics for all 
possible combinations of colonization events at every 
point in time. Furthermore, our SDP would have been 
made even more complicated if our metapopulation 
was a Levins model (Levins  1969 ) because dispersal 
kernels would have to be created for every possible 
dispersal pathway. If there are  M  patches in a meta-
population, this equates to 2  M   dispersal kernels, all of 
which would have to be updated for all possible com-
bination of occupancy states at each point in time. 
By modeling uncertainty in our knowledge of the colo-
nization rate using a beta distribution for a spatially 
implicit mainland–island metapopulation, we reduced 
the computational requirements substantially. We mod-
eled belief in the colonization rate using only two state 
variables, α and β, which allowed us to update model 
belief relatively simply (McCarthy and Possingham  2007 , 
Hauser and Possingham  2008 , Rout et al.  2009 ). 

 Although mainland–island metapopulations receive 
less attention than standard Levins models, they are 
relatively common in natural systems (Harrison et al. 
 1988 ). There is evidence to suggest that many popula-
tions occupy mainland–island metapopulations, particu-
larly species that exhibit extreme differences in patch 
size. Examples of mainland–island metapopulations have 
been documented for various butterfl ies (Shahabuddin 
and Terborgh  1999 , Hanski and Gaggiotti  2004 )   and 
grasshoppers (Stelter et al.  1997 ). They can also be 
used to characterize weed invasion and management 
into sets of locations from a large external source. 
Learning about the colonization rate for a Levins 
metapopulation using our approach presents consider-
able challenges. If we treat vacant patches as a binomial 
process of independent trials and we detect a failure 
(that is, a patch remains empty), the beta distribution 
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can be easily updated by adding the number of vacant 
patches to β. However, if we detect a colonization 
event, the number of patches that contributed to that 
event is unobservable, meaning the value added to α 
could be any fraction between 1 and the number of 
vacant patches  M − n . One way to overcome this prob-
lem might be to model the colonization rate as a 
partially observable Markov decision process (POMDP; 
Chades et al.  2008 ). Adopting a POMDP approach 
would add additional complexity to the SDP, but con-
stitutes an important area of future research. 

 While we assumed the colonization rate was poorly 
understood, we assumed that the number of occupied 
patches  n  was known with certainty at each point in 
time. In other words, we assumed perfect detectability 
of species in patches. When conducting presence–absence 
surveys, the probability that an individual will be detected 
depends on whether it is available for detection, and 
given availability, its probability of detection (MacKenzie 
et al.  2002 ). An individual that is within a patch may 
remain undetected during surveys due to fi xed variables 
(i.e., habitat characteristics such as topography and 
vegetation density) and those that vary between visits 
such as weather conditions and breeding activity. In 
reality, many species have detection probabilities well 
below 1, meaning that the occupancy state of the meta-
population  n  will not be known with certainty, as was 
assumed in our study. The problem of incomplete detec-
tion in discrete time Markov chain models can be solved 
using POMDP by assigning a belief to the uncertain 
state (Chades et al.  2008 ). Incorporating POMDP into 
our metapopulation model to account for imperfect 
detectability warrants further investigation. 

 Our equal cost constraint adopted from Nicol and 
Possingham ( 2010 ) meant that adding a new patch con-
tributed to the same area as the current area of patches, 
which resulted in larger and larger patches being added 
to the metapopulation over time. This assumption also 
resulted in larger patches being added after adding to 
patch area earlier. Thus, there was a bias toward adding 
to the area of patches early in the time horizon. While 
this assumption is unlikely to occur in reality (some 
actions will cost more than others), it allowed us to 
directly compare the effect of each action on the man-
agement objective. Our model could be further developed 
to incorporate a fi xed budget at each point in time and 
an allocation of this budget between management and 
monitoring (McCarthy and Possingham  2007 ) as well 
as between management actions (Ross and Pollett  2010 ). 
This may, in turn, infl uence the choice of management 
strategy (Chades et al.  2008 ). For simplicity, we assumed 
that the cost of monitoring was negligible (or equal 
across management options); however, assessing the 
occupancy status of patches can require a long- term, 
intensive, and costly monitoring programs. 

 We assumed that learning about the colonization 
rate was more important than learning about the 
extinction–area relationship. We could have expanded 

the framework to account for uncertainty in more 
than one parameter; however, this would involve 
adding more states to the SDP for each uncertain 
parameter. As already mentioned, the SDP presented 
here contained fi ve state variables ( M ,  n ,  A , α, β), 
which restricted our analysis to a small number of 
patches over a relatively short time horizon. Modeling 
uncertainty in both the extinction–area relationship 
and the colonization rate would not only increase 
the computational requirements, but would be chal-
lenging to interpret and present to decision- makers. 
Conducting an expected value of information analysis 
(EVPI) might be one way to determine which of 
these uncertainties should be resolved through adap-
tive management (Runge et al.  2011 ). Approximation 
techniques such as heuristic sampling are promising 
areas of research that fi nd near- optimal solutions for 
complex problems with large state spaces (Nicol and 
Chades  2011 ).  

  CONCLUSION 

 We have developed a framework for managing main-
land–island metapopulations when we are uncertain 
about the colonization rate. Given the rate and scale 
at which habitat fragmentation is occurring around 
the globe, the urgency of management intervention 
which is required, and the uncertainty surrounding 
the dynamics of these systems, developing methods 
that allow managers to act immediately while resolving 
uncertainties that impact on management decisions is 
crucial. While the framework presented here focuses 
on the management of a threatened species, it could 
be applied to analogous systems, such as to learn 
about the infection rate of a disease entering a meta-
population or to track how the true colonization rate 
changes through time in response to factors like climate 
change. A crucial area of research in conservation 
biology is developing frameworks that integrate model- 
based decision- making with methods that resolve uncer-
tainty within a decision- theoretic approach. This 
research provides a framework for learning about the 
uncertainty of complex processes central to the dynam-
ics of metapopulations.  
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