
1

Measuring Fitness and Precision of
Automatically Discovered Process Models:

A Principled and Scalable Approach
Adriano Augusto, Abel Armas-Cervantes, Raffaele Conforti,

Marlon Dumas, Marcello La Rosa, Daniel Reissner

Abstract—Automated process discovery techniques allow us to generate a process model from an event log consisting of a collection
of business process execution traces. The quality of process models generated by these techniques can be assessed with respect to
several criteria, including fitness, which captures the degree to which the generated process model is able to recognize the traces in
the event log, and precision, which captures the extent to which the behavior allowed by the process model is observed in the event
log. A range of fitness and precision measures have been proposed in the literature. However, recent studies have shown that these
existing measures do not fulfil a set of intuitive properties, including monotonicity properties. In addition, existing fitness and precision
measures suffer from scalability issues when applied to models discovered from real-life event logs. This article presents a family of
fitness and precision measures based on the idea of comparing the k-th order Markovian abstraction of a process model against that of
an event log. The article shows that this family of measures fulfils the aforementioned properties for suitably chosen values of k. An
empirical evaluation shows that representative exemplars of this family of measures yield intuitive results on a synthetic dataset of
model-log pairs, while outperforming existing measures of fitness and precision in terms of execution times on real-life event logs.

Index Terms—Process mining, automated process discovery, conformance checking, fitness, precision.

F

1 INTRODUCTION

Contemporary information systems store detailed records of the
execution of the business processes they support, including records
of the creation of process instances (a.k.a. cases), the start and
completion of tasks, and other events associated with a case. These
records can be extracted as event logs consisting of a set of traces,
each trace itself consisting of a sequence of events associated with
a case. Automated process discovery techniques [1], [2] allow
us to extract process models from such event logs. The quality of
process models discovered in this way can be assessed with respect
to several quality criteria related to simplicity and accuracy.

Two commonly used criteria for assessing accuracy are fitness
and precision [3]. Fitness captures the extent to which the behavior
observed in an event log is allowed by the discovered process
model (i.e. can the process model generate every trace observed
in the event log?). Reciprocally, precision captures the extent to
which the behavior allowed by a discovered process model is
observed in the event log. A low precision indicates that the model
under-fits the log, i.e. it can generate traces that are unrelated or
only partially related to traces observed in the log, while a high
precision indicates that it over-fits (i.e. it can only generate traces
in the log and nothing more).

Several measures of fitness and precision have been proposed
and empirically evaluated in the literature [3]. Until recently

• A. Augusto, M. Dumas are with the University of Tartu, Estonia.
E-mail: {adriano.augusto,marlon.dumas}@ut.ee,

• A. Augusto, A. Armas-Cervantes, R. Conforti, M. La Rosa, D. Reissner are
with the University of Melbourne, Australia.
E-mail: {raffaele.conforti,marcello.larosa}@unimelb.edu.au

Manuscript received XX; revised XX.

however, the theoretical properties of these measures had not been
investigated. A recent study [4] has shown that none of the existing
measures of precision fulfils a set of five intuitive properties
(namely axioms of precision). Another recent study [5] postulates
a set of desirable properties of fitness measures (namely fitness
propositions), which existing fitness measures do not fulfil as
shown later in this article. In addition, existing precision measures
(and to a lesser extent also fitness measures) suffer from scalability
issues when applied to models discovered from real-life event logs.

In this setting, this article presents a family of fitness and
precision measures based on the idea of comparing the kth-order
Markovian abstraction of a process model against that of an event
log. We show that the proposed fitness and precision measures
fulfil all aforementioned properties for a suitable k dependent on
the log. In other words, when measuring fitness and precision, we
do not need to explore the entire state space of a process model
but only its state space up to a certain memory horizon.

The article empirically evaluates exemplars of the proposed
family of measures using: (i) a synthetic collection of models
and logs previously used to assess the suitability of precision
measures (applicable also to fitness measures); and (ii) a set
of models discovered from 20 real-life event logs using three
automated process discovery techniques. The synthetic evaluation
shows that the exemplar measures rank the model-log pairs in
an intuitive manner. Moreover, the precision measures closely
approximate the rankings of two existing precision measures that
have been proposed as ground truths. Meanwhile, the evaluation
based on real-life logs shows that for values of up to k = 5,
the kth-order Markovian precision measure is considerably more
computationally efficient than existing precision measures, while
the kth-order Markovian fitness measure outperforms a commonly
used fitness measure, except in cases where the process model is

2

highly permissive (i.e. when it allows arbitrary combinations with
repetition of a set of tasks).

This article is an extended and revised version of a conference
paper [6]. The main extension with respect to the conference ver-
sion is the definition of the fitness measures, the proofs that these
fitness measures fulfil the properties spelled out in [5], and their
empirical evaluation. The article also provides a more detailed
description of the approach, including algorithms to compute the
kth-order Markovian abstraction of a log and a process model.

The article is structured as follows. Section 2 introduces
existing fitness and precision measures and examines them with
respect to the theoretical properties postulated in [4] and [5].
Section 3 describes the Markovian abstractions and how to extract
them from a process model and an event log. Section 4 defines
fitness and precision measures in terms of these Markovian ab-
stractions, and shows that these measures fulfil the theoretical
properties. Finally, Section 5 presents the empirical evaluation,
while Section 6 draws conclusions and outlines directions for
future work.

2 BACKGROUND AND RELATED WORK

As stated above, the quality of a process model discovered from an
event log is usually assessed in terms of fitness and precision [1].
Fitness (a.k.a. recall) refers to the amount of behavior observed in
the event log that is recognized by the process model. A perfectly
fitting process model is one that can recognize every trace in the
log. Precision refers to the amount of behavior captured in the
process model that is observed in the log. A perfectly precise
model is one that can only recognize traces that are observed
in the log. Two other quality criteria used in this context are
generalization and complexity (or equivalently, simplicity) [1].
Generalization refers to the extent to which the process model
captures behavior that, while not observed in the log, is implied
by it. Meanwhile, simplicity refers to the understandability of a
process model, and is typically measured via size and structural
complexity measures. This paper focuses on fitness and precision.

Below, we provide an overview of existing measures of fitness
and precision. We then introduce a collection of theoretical prop-
erties fitness and precision measures introduced in previous work,
and we discuss the limitations of existing fitness and precision
measures with respect to these properties.

2.1 Fitness Measures
One of the earliest and simplest measures of fitness is token-based
fitness [7]. Given an event log and a process model, represented
as a Workflow net1, token-based fitness is equal to one minus a
normalized count of the number of tokens that need to be added
or deleted when replaying every trace of the event log against
the Workflow net. If while replaying a trace, we reach a state
(a.k.a. marking) where the next event in the trace does not match
any enabled transition, then tokens are added to the Workflow
net in order to enable (and fire) the transition corresponding
to the event. When we finish replaying a trace, if any tokens
are left behind in any place other than the end place of the
Workflow net, these tokens are deleted. This fitness measure
was successively extended by De Medeiros, who proposed two
variants: the continuous parsing and the improved continuous

1. A Workflow net is a Petri net with one single start place, one single end
place, and such that every transition is on a path from the start to the end place.

semantics fitness, which optimize the computational efficiency of
token-based fitness at the cost of exactness. Another variant of
token-based fitness was proposed by vanden Broucke et al. [8].
The idea of this latter approach is to decompose the Workflow
net into single-entry single-exit regions and to analyse each region
independently, so as to increase scalability and to provide a more
localised feedback. While computationally efficient, especially
with the aforementioned optimizations, token-based fitness mea-
sures have been criticized as being arbitrary, because they make
“local decisions” when deciding how to fix a replay error.

Adriansyah et al. [9] argue that a more robust approach to
measuring fitness is to compute, for each trace in the log, the
closest trace recognized by the process model, and to measure
fitness based on the minimal number of error-corrections required
to align these two traces (a.k.a. minimal alignment cost). This
observation underpins the alignment-based fitness measure [9],
which is equal to one minus a normalized sum of the minimal
alignment cost between each trace in the log and the closest
corresponding trace recognized by the model. While conceptually
sound, alignment-based fitness measures sometimes suffer from
scalability issues when applied to real-life event logs, due to the
need to compute the optimal alignment between the process model
and each trace in the log.

In a recent study, Leemans et al. [10] proposed the projected
conformance checking (PCC) fitness measure. The idea of PCC
fitness is to construct an automaton from the process model
(namely Am) and from the event log (Al). To control the size
of these automata, the PCC fitness focuses on a subset of the
activities in the event log, by ignoring the less frequent activities.
The two automata Am and Al are then used to generate a third
automaton, namely Al,m, capturing their common behavior. The
fitness value is then computed as the ratio between the number of
outgoing edges of each state in Al,m and the number of outgoing
edges of the corresponding state(s) in Al . As we will observe in
Section 5 , PCC fitness suffers from similar (and sometimes more
pronounced) scalability issues as alignment-based fitness.

2.2 Precision Measures

Greco et al. [11] define the precision of a (model, log) pair as the
set difference (SD) between the set of traces recognized by the
process model and the set of traces in the event log. This measure
is a direct operationalization of the concept of precision, but it
is not applicable to models with cycles since the latter have an
infinite set of traces.

Rozinat and van der Aalst [12] proposed the advanced be-
havioral appropriateness (ABA) precision measure. ABA precision
is based on the comparison between the sets of activity pairs
that sometimes but not always follow each other, and the set of
activity pairs that sometimes but not always precede each other.
The comparison is performed on the sets of activity pairs extracted
both from the model and the log behaviors. The ABA precision
measure does not scale to large models and it is undefined for
process models without concurrency or conflict relations [4].

De Weerdt et al. [13] proposed the negative events precision
measure (NE). This method works by inserting inexistent (so-
called negative) events to enhance the traces in the log. A negative
event is inserted after a given prefix of a trace if this event is never
observed preceded by that prefix anywhere in the log. The traces
extended with negative events are then replayed on the model. If
the model can parse some of the negative events, it means that the

3

model has additional behavior. This approach is however heuristic:
it does not guarantee that all additional behavior is identified.

Muñoz-Gama and Carmona [14] proposed the escaping edges
(ETC) precision measure. This approach starts by building a prefix
automaton from the event log. It then replays the process model
behavior on top of this prefix automation and counts the number of
times that the model can perform a move that the prefix automaton
cannot. Each of these mismatches is called an escaping edge. The
original ETC precision measure assumes that the process model
perfectly fits the log. An extension of ETC precision applicable to
logs containing non-fitting traces, namely alignments-based ETC
precision (herein ETCa), in proposed in [15]. ETC and ETCa
are not very accurate, since they only count the escaping edges
without taking into account how much the process model behavior
diverges from the log behavior after each escaping edge.

More recently, van Dongen et al. [16] proposed the anti-
alignment precision (AA). This measure analyses the anti-
alignments of the process model behavior to assess the model’s
precision. An anti-alignment of length n is a trace in the process
model behavior of length at most equal to n, which maximizes
the Levenshtein distance from all traces in the log. The major
drawback of AA precision is that it cannot be applied in a real-life
context due to its scalability issues and the difficulties in tuning its
input parameters [16].

Alongside the PCC fitness measure outlined above, Leemans
et al. [10] propose a dual measure of precision, namely PCC
precision. This latter measure is computed in a similar way as
PCC fitness, with the difference that PCC precision is the ratio
between the number of outgoing edges of each state in Al,m and the
number of outgoing edges of the corresponding states occurring
in Am. We note that PCC is the only one of the above approaches
where fitness and precision measures are computed based on the
same abstraction of the model and the log behavior, specifically
an automata-based abstraction. This paper follows up on this idea
by proposing fitness and precision measures based on a unified
behavioral abstraction, but designed to be more scalable than PCC
and to fulfill the theoretical limitations of PCC exposed below.

2.3 Fitness Propositions
Van der Aalst [5] proposed seven propositions to capture intuitive
properties behind the concept of fitness in automated process dis-
covery. Before introducing these propositions, we formally define
the notions of process model behavior and event log behavior (and
the auxiliary concepts of trace and sub-trace) upon which these
propositions rely.
Definition 1. [Trace] Given a set of activity labels Ω, we define

a trace on Ω as a sequence τΩ = 〈t1, t2, . . . , tn−1, tn〉, such that
∀1≤ i≤ n, ti ∈Ω. 2 Furthermore, we denote with τi the activity
label in position i, and we use the symbol ΓΩ to refer to the
universe of traces on Ω. With abuse of notation, hereinafter we
refer to any t ∈Ω as an activity instead of an activity label.

Definition 2. [Subtrace] Given a trace τ = 〈t1, t2, . . . , tn−1, tn〉, with
the notation τ i→ j, we refer to the subtrace 〈 ti, ti+1, . . . , t j−1, t j 〉,
where 0 < i < j ≤ n. We extend the subset operator to traces,
i.e., given two traces τ and τ̂ , τ̂ is contained in τ , shorthanded
as τ̂ ⊂ τ , if and only if (iff) ∃i, j ∈ N | τ i→ j = τ̂ .

Definition 3. [Process Model Behavior] Given a process model
P (regardless of its representation) and being Ω the set of its

2. For the sake of simplicity, we refer to τΩ as τ where there is no ambiguity.

activities. We refer to the model behavior as BP ⊆ ΓΩ, where
∀〈t1, t2, . . . , tn−1, tn〉 ∈BP there exists an execution of P that
allows to execute the sequence of activities 〈t1, t2, . . . , tn−1, tn〉,
where t1 is the first activity executed, and tn the last. 3

Definition 4. [Event Log and Event Log Behavior] Given a set
of activities Ω, an event log L is a finite multiset of traces
defined over Ω. The event log behavior of L is defined as
BL = support(L).4

Given the above definitions, the seven fitness propositions are
spelled out below.
Definition 5. [Fitness Propositions]
• Proposition-1. A fitness measure is a deterministic function

fit : L ×P → [0,1]∩R, where L is the universe of event
logs, and P is the universe of processes.

• Proposition-2. Given two process models P1,P2 and a log L,
if the behavior of P1 is equal to the behavior of P2, the fitness
value of P1 must be equal to the fitness value of P2. Formally,
if BP1 = BP2 =⇒ fit(L,P1) = fit(L,P2).

• Proposition-3. Given two process models P1,P2 and a log L,
if the behavior of P1 is contained in the behavior of P2, the
fitness value of P2 must be equal to or greater than the fitness
value of P1. Formally, if BP1 ⊆BP2 =⇒ fit(L,P2)≥ fit(L,P1).

• Proposition-4. Given a process model P and two event logs
L1,L2, if the behavior of L2 is contained in the behavior of
P, the fitness value of the model measured over the union
of L1 and L2 must be equal to or greater than the fitness
value measured over L1. Formally, if BL2 ⊆BP =⇒ fit(L1∪
L2,P)≥ fit(L1,P).

• Proposition-5. Given a process model P and two event
logs L1,L2, if none of the behavior of L2 is contained in
the behavior of P, the fitness value of the model mea-
sured over L1 must be equal to or greater than the fitness
value measured over the union of L1 and L2. Formally, if
BL2 ∩BP =∅=⇒ fit(L1,P)≥ fit(L1∪L2,P).

• Proposition-6. Given a process model P and an event log L,
altering the frequencies of the traces recorded in L without
altering their distribution should not alter the fitness value.
Formally, let n ∈ N and Ln =

⋃
n L =⇒ fit(L,P) = fit(Ln,P).

• Proposition-7. Given a process model P and a log L, if the
behavior of L is contained in the behavior of P, the fitness
value of P must be equal to 1. Formally, if BL ⊆BP =⇒
fit(L,P) = 1.

Van der Aalst [5] does not assess the existing fitness measures
against these propositions. Below, we show via counter-examples
that none of the aforementioned fitness measures fulfils all the
propositions. Token-based fitness does not fulfil Proposition-7,
indeed, given the log in Table 1 and the model in Figure 6
(Section 5) its score is 0.960 even if the log behavior is fully
contained in the model behavior. Alignment-based fitness does not
fulfil Proposition-3, let us consider two process models P1 and P2,
respectively Fig. 1 and 2, we can see that the behavior of P1 is con-
tained in the behavior of P2, i.e. BP1 ⊆BP2 . Nevertheless, given
the log in Table 1 Alignment-based fitness scores 0.821 for P1 and
0.672 for P2, breaking Proposition-3. Finally, PCC fitness does not
fulfil Proposition-5, let the process model in Fig. 6 be P, the log L1

3. When BP = ΓΩ, we say that P is a flower model. Intuitively, a flower
model is a process model that recognizes any trace consisting of any number
of occurrences of a given set of tasks, in any order.

4. The support of a multiset is the set of distinct elements of the multiset.

4

be a single trace set {〈 a,b,c,d,e, f ,g,h, i〉}, and the log L2 be the
set {〈 t1, t2, · · · , t8, t9〉 | ti ∈ {a,b,c,d,e, f ,g,h, i}∧ ti = t j ⇐⇒ i =
j}. By construction, BL2 ∩BP =∅, though PCC(L1∪L2,P) = 1
and PCC(L1,P) = 0 breaking Proposition-5.

Traces #
〈 A,B,D,E, I 〉 1207

〈 A,C,D,G,H,F, I 〉 145
〈 A,C,G,D,H,F, I 〉 56
〈 A,C,H,D,F, I 〉 23
〈 A,C,D,H,F, I 〉 28

TABLE 1: Test log [16].

Z

Fig. 1: Process 1.

Fig. 2: Process 2.

2.4 Precision Axioms
Tax et al. [4] proposed five axioms to capture intuitive properties
behind the concept of precision.5 The axioms are formally defined
below.
Definition 6. [Precision Axioms]
• Axiom-1. A precision measure is a deterministic function

prec : L ×P → R, where L is the universe of event logs,
and P is the universe of processes.

• Axiom-2. Given two process models P1,P2 and a log L, if
the behavior of L is contained in the behavior of P1, and this
latter is contained in the behavior of P2, the precision value of
P1 must be equal to or greater than the precision value of P2.
Formally, if BL ⊆BP1 ⊆BP2 =⇒ prec(L,P1)≥ prec(L,P2).

• Axiom-3. Given two process models P1,P2 and a log L, if the
behavior of L is contained in the behavior of P1, and P2 is the
flower model, the precision value of P1 must be greater than
the precision value of P2. Formally, if BL ⊆BP1 ⊂BP2 =
ΓΩ =⇒ prec(L,P1)> prec(L,P2).

• Axiom-4. Given two process models P1,P2 and a log L,
if the behavior of P1 is equal to the behavior of P2, the
precision values of P1 and P2 must be equal. Formally, if
BP1 = BP2 =⇒ prec(L,P1) = prec(L,P2).

• Axiom-5. Given a process model P and two event logs L1,L2,
if the behavior of L1 is contained in the behavior of L2,
and the behavior of L2 is contained in the behavior of P,

5. An alternative set of properties of precision measures is proposed in [5].
These latter properties largely overlap with those in [4].

Precision Measure Axioms
Name Label 1 2 3 4 5

Set Difference SD
√

? ×
√ √

Advanced Behavioral Appropriateness ABA × ? ×
√

?
Negative Events NE × × ? ? ?

Alignment-based ETC (one-align) ETC × × × × ×
Projected Conformance Checking PCC ? × ? ? ×

Anti-alignment AA ? ? ? ? ×

TABLE 2: Precision axioms fulfiled by existing precision mea-
sures (according to [4]).

the precision value of the model measured over L2 must be
equal to or greater than the precision value measured over L1.
Formally, if BL1 ⊆BL2 ⊆BP =⇒ prec(L2,P)≥ prec(L1,P).

Tax et al. [4] showed that none of the existing precision
measures fulfils all the axioms. Table 2 shows which precision
measures fulfil which axioms according to [4].

3 Kth-ORDER MARKOVIAN ABSTRACTION

A kth-order Markovian abstraction (Mk-abstraction) is a graph
composed of a set of states (S) and a set of edges (E ⊆ S× S).
In an Mk-abstraction, every state s ∈ S represents a (sub)trace
of at most length k, e.g. s = 〈b,c,d〉, and every state of an Mk-
abstraction is unique, i.e. there are no two states representing the
same (sub)trace. Two states s1,s2 ∈ S are connected via an edge
e = (s1,s2) ∈ E iff s1 and s2 satisfy the following three properties:
i) the first activity of the (sub)trace represented by s1 can occur
before the (sub)trace represented by s2, ii) the last activity of
the (sub)trace represented by s2 can occur after the (sub)trace
represented by s1, and iii) the two (sub)traces represented by s1
and s2 overlap with the exception of their first and last activity, e.g.
e = (〈b,c,d〉 ,〈c,d,e〉). An Mk-abstraction is defined w.r.t. a given
order k, which defines the length of the (sub)traces encoded in the
states. An Mk-abstraction contains a special state (denoted as −)
representing the source and sink of the Mk-abstraction. Intuitively,
every state represents either a trace of length less than or equal
to k or a subtrace of length k, whilst every edge represents an
existing subtrace of length k+ 1 or a trace of length less than or
equal to k+1. Thus, Mk-abstraction captures how all the traces of
the input behavior evolve in chunks of length k. The definitions
below show the construction of an Mk-abstraction from a given
BX .

Definition 7. [kth-order Markovian Abstraction] Given a set
of traces BX , the k-order Markovian Abstraction is the graph
Mk

X = (S,E) where S is the set of states and E ⊆ S× S is the
set of edges, such that

• S = {−} ∪{τ : τ ∈BX ∧ |τ| ≤ k} ∪
{τ i→ j : τ ∈BX ∧ |τ|> k ∧

∣∣τ i→ j
∣∣= k}

• E = {(−,τ) : τ ∈ S ∧ |τ| ≤ k} ∪
{(τ,−) : τ ∈ S ∧ |τ| ≤ k} ∪
{(−,τ) : ∃τ̂ ∈BX s.t. τ = τ̂1→k} ∪
{(τ,−) : ∃τ̂ ∈BX s.t. τ = τ̂(|τ̂|−k+1)→|τ̂|} ∪
{(τ ′,τ ′′) : τ ′,τ ′′ ∈ S ∧ τ ′⊕ τ ′′|τ ′′| = τ ′1⊕ τ ′′ ∧ ∃τ̂ ∈BX s.t.
τ ′1⊕ τ ′′ ⊆ τ̂} 6

A fundamental property of Markovian abstractions (valid for
any order k) is the following.

6. The operator ⊕ is the concatenation operator.

5

Theorem 1. [Equality and Containment Inheritance] Given
two sets of traces BX and BY , and their respective Mk-
abstractions Mk

X = (SX ,EX) and Mk
Y = (SY ,EY), any equality or

containment relation between BX and BY is inherited by EX
and EY . Formally, if BX = BY then EX = EY , or if BX ⊂BY
then EX ⊆ EY .

Proof 1. (Sketch) This follows by construction. Specifically,
every edge e ∈ EX represents either a subtrace τx→y : τ ∈
BX ∧ |τx→y| = k+ 1, or a trace τ : τ ∈BX ∧ |τ| < k+ 1.
It follows that from the same sets of traces the corresponding
Mk-abstractions contain the same sets of edges.

It should be noted that nothing can be said about traces in
BY \BX , i.e. adding new traces to BX does not imply that new
edges are added to EX . As a result the relation BX ⊂ BY only
guarantees EX ⊆ EY .

Moreover, an M1-abstraction is equivalent to a directly-
follows graph (a well-known behavioral abstraction used as
starting point by many process discovery approaches [17],
[18], [19], [20]). Instead, when k approaches infinity
then M∞-abstraction is equivalent to listing all the traces.

Traces
〈a,a,b〉
〈a,b,b〉

〈a,b,a,b,a,b〉

TABLE 3: Log L∗.

The order of a Markovian abstraction, i.e.
k, allows us to play with the level of be-
havioral approximation. For example, let
us consider the event log L∗ as in Tab. 3,
and the Process-X (Px) in Fig. 3c. Their
respective M1-abstractions: M1

L∗ and M1
Px

are shown in Fig. 4d and 4c. We can
observe that M1

L∗ = M1
Px

, though BPx is infinite whilst BL∗ is not.
This is an example of how the M1-abstraction can over-

approximate the original behavior. Increasing k reduces the over-
approximation, thus allowing us to detect more behavioral dif-
ferences, e.g. increasing k to 2, the differences between L∗ and Px
emerge as shown in Figs. 5d and 5c. We note that for k equal to the
length of the longest trace in the log, the Markovian abstraction
of the log is exact. A similar statement cannot be made for the
Markovian abstraction of the model, since the longest trace of a
model may be infinite.

3.1 Generating the Mk-abstraction of an Event Log
Given an event log, it is always possible to generate its Mk-
abstraction in polynomial time, since the log behavior is a finite
set of traces. Algorithm 1 shows how we build the Mk-abstraction
abstraction given as inputs: an event log L and the order k. First,
we create the set of states (S) and the sets of edges (E) of the
Mk-abstraction (lines 1 and 2). Then, we initialize the source/sink
state s0 =−. Finally, we iterate over all the traces recorded in the
log as follows. For each trace τ with length less or equal to k, we
add τ to S, and two new edges (s0,τ) and (τ,s0), lines 7 to 9. For
each trace τ with length greater than k, we read the trace using a
sliding window of size k, moving this latter one activity forward
per iteration (lines 15 to 18). The sliding window (in Algorithm 1,
depicted by the state sw) is initialised as the prefix of τ , and the
edge (s0,sw) is added to the set E (lines 11 to 13). Then, at each
iteration, sw slides over τ , adding a new state to the set S and a new
edge to the set E. When sw becomes the suffix of τ , the iteration
is over and a final edge is added to the set E (line 19).

Time Complexity. Algorithm 1 iterates over each activity of
each trace of the input event log L. Consequently, the time com-
plexity is polynomial on the total number of activities recorded in
the event log, O(∑τ∈L |τ|).

Algorithm 1: Calculating Mk-abstraction of an Event Log
Input : Event Log L
Input : Order k
Result: Mk-abstraction Mk

L

Set S←∅;1

Set E←∅;2

State s0←−;3

add s0 to S;4

for τ ∈ L do5

if |τ| ≤ k then6

add τ to S;7

add (s0,τ) to E;8

add (τ,s0) to E;9

else10

State sw← τ1→k;11

add sw to S;12

add (s0,sw) to E;13

for i ∈ [1, |τ|− k] do14

State sx← sw;15

sw← τ(1+i)→(k+i);16

add sw to S;17

add (sx,sw) to E;18

add (sw,s0) to E;19

Mk
L← (S,E);20

return Mk
L21

3.2 Generating the Mk-abstraction of a Process
Given a process P, its behavior BP can be finite or infinite.
While in theory, for processes with finite behavior we could use
Algorithm 1 this will not work for processes with infinite be-
haviour. To address this problem, we represent BP as a behavioral
automaton (Definition 8), and we replay this latter to generate the
Mk-abstraction of the process.

Definition 8. [Behavioral Automaton of a Process] Given a
process P, its behavioral automaton is a graph R = (N,A),
where N is the set of nodes and A ⊆ N ×N ×Ω is the set
of arcs. A node n ∈ N represents a Process Execution State
(PES), whilst an arc (n1,n2, t) ∈ A represents the possibility to
move from PES n1 to the PES n2 via the execution of activity
t. Furthermore, we define n0 ∈ N as the initial PES, such that:
∀(n1,n2, t) ∈ A⇒ n2 6= n0.

Algorithm 2 shows the steps required to generate the Mk-
abstraction for a given process P. First, we initialize the set S
and the set E of the Mk-abstraction, and we add the source/sink
state s0 =− to S. Then, we generate the behavioral automaton of
the process (R), we retrieve its initial state (n0), and we initialize
all the necessary data structures to perform its replay as follows
(lines 5 to 16). We create a queue Q and we add n0 to it. This
queue stores the PESs that have to be explored. We create a map
V , to store for each PES the set of (sub)traces whose execution
led to the PES and progression needs to be explored (all these sets
are initialized as empty, see line 13). We create a map X , to store
for each PES the set of (sub)traces whose execution led to the PES
and progression have been explored (all these sets are initialized
as empty, see line 14). Finally, we add an empty (sub)trace (〈〉) to
the set of (sub)traces whose execution led to n0 and progression

6

(a) Flower Proc. (b) Process Y (c) Process X

Fig. 3: Examples of processes in the BPMN language.

−

a b

(a) 1− 2
8 = 0.75

−

a b

(b) 1− 2
8 = 0.75

−

a b

(c) 1− 0
6 = 1.00

−

a b

(d) -

Fig. 4: From left to right: the M1-abstraction of the Flower Process, Process-Y, Process-X and the event log L∗. The respective labels
report the value of their MAP1.

−

a b

aa bb

ab ba

(a) 1− 12
20 = 0.40

−

a b

aa bb

ab ba

(b) 1− 8
16 = 0.50

−

aa bb

ab ba

(c) 1− 4
12 = 0.66

−

aa bb

ab ba
(d) -

Fig. 5: From left to right, the M2-abstraction of the Flower Process, Process-Y, Process-X and the event log L∗. The respective labels
report the value of their MAP2.

needs to be explored (lines 17 and18), this empty (sub)trace will
be the starting point of the automaton replay.

To explore the automaton behavior we pull the first element
of the queue (n̂), we retrieve its set of (sub)traces to explore (Vn̂),
and its set of outgoing arcs (i.e. all the arcs of the automaton
(n1,n2, t) s.t. n1 = n̂), see lines 20 to 22. For each (sub)trace
τ̂ whose execution led to n̂ and whose progression needs to be
explored, we perform the following operations. We make a copy
of τ̂ (τ , line 24). If n̂ has no outgoing arcs (O = ∅), τ is either a
full-trace (if its length is less than k, line 26) or a trace suffix, 7

accordingly, we add to E the edges (τ,s0) and (s0,τ) (this latter
only in case of τ full-trace).

If O 6= ∅, for each outgoing arc (n̂,nt , t), we execute the fol-
lowing operations. We update τ appending the activity t (line 32),
this represents one of the possible progressions of the (sub)trace
τ̂ . At this point three possible situations may occur: i) τ length
is less than k, this means we did not observe enough activities to
add τ as a state in S; ii) τ length is exactly k, this means τ is a
prefix as it reached the length k after we appended the activity t,
as a consequence we add τ to S and the edge (s0,τ) to E (lines 33
to 35); iii) τ length is greater than k, and consequently we add

7. I.e. no more activities can be executed because n̂ is a final PES, being
O =∅.

τ2→(k+1) to S and
(

τ1→k,τ2→(k+1)
)

to E (lines 37 to 39). Once
S and E have been updated, we retrieve the set of (sub)traces
explored from nt (Xnt), if the set does not contain τ2→(k+1), we
add this latter to the set of (sub)traces to explore from nt (Vnt), and
we add nt to Q, if this latter does not already contain it (lines 40
to 44).

We repeat these steps for all the outgoing arcs of n̂, then, we
update Vn̂ and Xn̂, moving the (sub)trace τ̂ from Vn̂ to Xn̂ (lines 45
to 47). We iterate over these steps until Q is empty, after which
Mk

P is completed.

Time Complexity. Algorithm 2 iterates on all the PES of the
automaton, up to the number of incoming arcs of a PES (this
is 2|Ω| in a behavioral automaton). At each iterations two nested
loops are executed. The outer one, on the outgoing arcs of the PES,
the inner one, on the (sub)traces to explore from the PES. Since
in the worst case, each PES can have a number of outgoing arcs
equal to the number of activities executable (|Ω|), and the number
of (sub)traces to explore from each PES is capped by the number
of combinations of length k over the alphabet Ω, i.e. k|Ω|. The time
complexity of Algorithm 2 is O

(
2|Ω| · |Ω| · k|Ω|

)
= O

(
|Ω| ·2k|Ω|

)
.

7

Algorithm 2: Calculating Mk-abstraction of a Process
Input : Process P
Input : Order k
Result: Mk-abstraction Mk

P

Set S←∅;1

Set E←∅;2

State s0←−;3

add s0 to S;4

Graph R← generateAutomaton(P);5

Set N← getPESs(R);6

Node n0← getInititalPES(R);7

Queue Q←∅;8

add n0 to Q;9

Map V ←∅;10

Map X ←∅;11

for n ∈ N do12

Set Vn←∅;13

Set Xn←∅;14

put (n,Vn) in V ;15

put (n,Xn) in X ;16

Set Vn0 ← getMapValue(V ,n0);17

add 〈〉 to Vn0 ;18

while Q 6=∅ do19

n̂← poll(Q);20

Vn̂← getMapValue(V , n̂);21

Set O← getOutgoingArcs(R, n̂);22

for τ̂ ∈Vn̂ do23

Subtrace τ ← τ̂;24

if O =∅ then25

if |τ|< k then26

add τ to S;27

add (s0,τ) to E;28

add (τ,s0) to E;29

else30

for (n̂,nt , t) ∈ O do31

τ ← τ⊕ t;32

if |τ|= k then33

add τ to S;34

add (s0,τ) to E;35

else36

if |τ|> k then37

add τ2→(k+1) to S;38

add
(

τ1→k,τ2→(k+1)
)

to E;39

Xnt ← getMapValue(X ,nt);40

if τ2→(k+1) 6∈ Xnt then41

Vnt ← getMapValue(V ,nt);42

add τ2→(k+1) to Vnt ;43

if nt 6∈ Q then add nt to Q;44

remove τ̂ from Vn̂;45

Xn̂← getMapValue(X , n̂);46

put τ̂ in Xn̂;47

Mk
P← (S,E);48

return Mk
P49

4 COMPARING MARKOVIAN ABSTRACTIONS

In this section, we introduce our accuracy measures, the Marko-
vian Abstraction-based fitness and precision. Both measures
rely on the comparison of the process and the event log Mk-
abstractions. Being these latter graphs, it is possible to compare
them applying either a structural comparator (e.g. a graph edit
distance) or a simulation-based comparator. Being the latter com-
putational expensive, we decided to opt for the former and to
compare the Mk-abstractions using a weighted edge-based graph
matching algorithm.
Definition 9. [Weighted Edge-based Graph Matching Al-

gorithm (GMA)] A Weighted Edge-based Graph Match-
ing Algorithm (GMA) is an algorithm that receives as in-
put two graphs G1 = (N1,E1) and G2 = (N2,E2), and out-
puts a mapping function IC : E1 → (E2∪{ε}). The func-
tion IC maps pairs of edges matched by the GMA or,
if no mapping was found, the edges in E1 are mapped
to ε , i.e., ∀e1,e2 ∈ E1 : IC(e1) = IC(e2) ⇒ (e1 =
e2) ∨ (IC(e1) = ε ∧ IC(e2) = ε). A GMA is characterised
by an underlying cost function C : E1×(E2∪{ε})→ [0,1], s.t.
∀e1 ∈ E1 and ∀e2 ∈ E2 =⇒C(e1,e2) ∈ [0,1] and ∀e1 ∈ E1 =⇒
C(e1,ε) = 1. Hereinafter, we refer to any GMA as its mapping
function IC.

The GMA implemented in our measures is the Hungarian
Algorithm [21], [22], which matches edges of E1 to edges of E2 to
minimize the total cost of the matching, i.e. Σe1∈E1C(e1,IC(e1))
is minimum. Furthermore, the time complexity of the Hungarian
Algorithm is polynomial [23], excluding time complexity for com-
puting the matching costs, i.e. ∀e1 ∈ E1 and ∀e2 ∈ E2, C(e1,e2) is
known. We note that, the underlying cost function plays a relevant
role both in the time complexity and the accuracy of the com-
parison. In this paper, we propose two alternative cost functions.
The first is a boolean cost function, Cb : E1× (E2∪{ε})→{0,1},
s.t. Cb(e1,e2) = 0⇐⇒ e1 = e2 otherwise Cb(e1,e2) = 1. The time
complexity of Cb is constant: O(1). The second cost function is
the Levenshtein distance [24] normalised on [0,1], we refer to it
with the symbol Cl . We remind that in an Mk-abstraction each
edge represents a (sub)trace of length k + 1 (see Definition 7),
therefore, we can compute the Levenshtein distance between the
(sub)traces represented by two edges. The time complexity of Cl
is O

(
k2
)

[25]. However, the difference between Cb and Cl is not
only on their time complexity, the latter is more robust to noise,
whilst the former is very strict.

In the following, we show how to compute the Markovian
Abstraction-based fitness and precision, and the properties they
fulfil. For the remaining part of the section, let Lx be a log, Px be
a process model, and Mk

Lx
= (SLx ,ELx) and Mk

Px
= (SPx ,EPx) be the

Mk-abstractions of the log and the model, respectively.

4.1 Markovian Abstraction-based Fitness
Given the GMA ICb , an event log L and a process P as inputs, we
compute the kth-order Markovian abstraction-based fitness (hereby
MAFk) applying Equation 1.

MAFk(L,P) = 1−
Σe∈ELCb(e,ICb(e)) ·Fe

Σe∈EL Fe
(1)

Where Fe represents the frequency of the edge e ∈ EL. Com-
puting Fe is trivial while calculating the Mk-abstraction of the
event log.8 Furthermore, we decided to adopt Cb as underlying cost

8. This does not influence the time complexity of Algorithm 1.

8

function for our Markovian-abstraction Fitness because choosing
Cl would not guarantee the fulfilment of the Proposition-5 for
fitness measures.

4.2 Proofs of the 7-Propositions of Fitness
We now turn our attention to show that our Markovian
abrastraction-based fitness measure fulfils the propositions pre-
sented in Section 2.
Proposition-1. MAFk(L,P) is a deterministic function. Given a

log L and a process P, The construction of Mk
L and Mk

P is fully
deterministic for BP and BL (see Definition 7). Furthermore,
being the graph matching algorithm ICb deterministic, and
being MAFk(L,P) function of EL, EP and ICb (see Equa-
tion 1), it follows that MAFk(L,P) is also deterministic with
codomain [0,1] by definition.

Proposition-2. Given two process models P1,P2 and a log L,
if BP1 = BP2 =⇒ MAFk(L,P1) = MAFk(L,P2). From The-
orem 1 the following relation holds: EP1 = EP2 . Being
MAFk(L,P) function of EL, EP and ICb (see Equation 1),
it follows straightforward MAFk(L,P1) = MAFk(L,P2).

Proposition-3. Given two process models P1,P2 and a log L,
if BP1 ⊆ BP2 =⇒ MAFk(L,P2) ≥ MAFk(L,P1). From The-
orem 1 the following relation holds: EP1 ⊆ EP2 .
Then, we distinguish two possible cases:
1. if EP1 = EP2 , then MAFk(L,P1) = MAFk(L,P2) follows

straightforward (see Proposition-2 proof and Equation 1).
2. if EP1 ⊂ EP2 , then the GMA would find matchings for

either the same or a larger number of edges when applied
on Mk

L and Mk
P2

than when applied on Mk
L and Mk

P1
. Thus,

a smaller or equal number of edges will be mapped to
ε in the case of MAFk(L,P2), not increasing the total
matching cost Σe∈ELCb(e,ICb(e)) · Fe, and guaranteeing
MAFk(L,P2)≥MAFk(L,P1).

Proposition-4. Given a process model P and two event logs
L1,L2, if BL2 ⊆BP =⇒MAFk(L1∪L2,P)≥MAFk(L1,P).
Let L3 = L1 ∪ L2, EL3 = EL2 ∪ EL1 , and Ed = EL3 \ EL1 , it
follows that ∀e ∈ Ed =⇒ e ∈ EL2 \ EL1 . Being BL2 ⊆ BP,
∀e2 ∈ EL2∃ê ∈ EP s.t. e2 = ê (see Theorem 1). Consequently,
the relation Ed ⊆ EP holds. Taking into account this latter
result, we prove that MAFk(L3,P)≥MAFk(L1,P).

1−
Σe∈EL3

Cb(e,ICb(e)) ·Fe

Σe∈EL3
Fe

≥ 1−
Σe∈EL1

Cb(e,ICb(e)) ·Fe

Σe∈EL1
Fe

We rewrite the relation.

Σe∈EL1
Cb(e,ICb(e)) ·Fe +Σe∈EdCb(e,ICb(e)) ·Fe

Σe∈EL1∪Ed Fe
≤

Σe∈EL1
Cb(e,ICb(e)) ·Fe

Σe∈EL1
Fe

We note that, Σe∈EdCb(e,ICb(e)) · Fe = 0, because ∀e ∈
Ed =⇒ e ∈ EL2 and ∃ê ∈ EP s.t. e = ê and Cb(e,ICb(e)) = 0.
Removing the zero value from the relation, we obtain:

Σe∈EL1
Cb(e,ICb(e)) ·Fe

Σe∈EL1∪Ed Fe
≤

Σe∈EL1
Cb(e,ICb(e)) ·Fe

Σe∈EL1
Fe

This latter is always true, because Σe∈EL1
Fe < Σe∈EL1∪Ed Fe .

Proposition-5. Given a process model P and two event logs
L1,L2, if BL2 ∩BP = ∅ =⇒ MAFk(L1,P) ≥ MAFk(L1 ∪
L2,P). Let L3 = L1 ∪ L2 and Ed = EL3 \EL1 , two scenarios
can materialise:
1. Ed∩EP =∅, this case occurs when none of the (sub)traces

of length k+1 in BL2 can be found among the (sub)traces
in BP. It follows that ∀e ∈ Ed , Cb(e,ICb(e)) = 1, because
no matching edges can be found in the set EP. Conse-
quently, Σe∈EL1∪ EdCb(e,ICb(e)) ·Fe will be greater than
Σe∈EL1

Cb(e,ICb(e)) ·Fe, and MAFk(L1,P) > MAFk(L1 ∪
L2,P).

2. Ed ∩EP 6= ∅, this case occurs when there exists at least
one (sub)trace of length k + 1 in BL2 that can be found
among the (sub)traces in BP. in this case we cannot prove
MAFk(L1,P) ≥ MAFk(L1 ∪L2,P) for any k, but only for
k > k∗, where k∗ is the length of the longest (sub)trace
in BL2 that can be found among the (sub)traces in BP.
Indeed, choosing k > k∗, we would fall in the first scenario.
In the worst case, k∗ is the length of the longest trace in
L2.

Proposition-6. Given a process model P and an event log L,
let n ∈ N and Ln =

⋃
n L =⇒ MAFk(L,P) = MAFk(Ln,P).

The factor n alters the frequency of all the traces in L, but
not its behavior, i.e. BL = BLn . Being the Mk-abstraction
construction only function of the behavior Mk

L = Mk
Ln , i.e.

SL = SLn and EL = ELn . However, MAFk is function of
the frequencies of the Mk-abstraction edges, and these fre-
quencies will be affected by a factor n, s.t. ∀e ∈ EL and
ê ∈ ELn | ê = e =⇒ Fê = Fe · n. Nevertheless, n will not alter
the value of MAFk, as shown below.

MAFk(Ln,P) =
Σe∈EL1

Cb(e,ICb(e)) ·Fe ·n
Σe∈EL Fe ·n

=

n ·Σe∈EL1
Cb(e,ICb(e)) ·Fe

n ·Σe∈EL Fe
= MAFk(L,P)

It follows MAFk(Ln,P) = MAFk(L,P).
Proposition-7. Given a process model P and a log L, if

BL ⊆ BP =⇒ MAFk(L,P) = 1. From Theorem 1 the fol-
lowing relation holds: EL ⊆ EP, it follows that ∀e ∈
EL =⇒ Cb(e,ICb(e)) = 0, because for any e in EL there
exists an equal matching edge in EP. Consequently,
Σe∈ELCb(e,ICb(e)) ·Fe = 0 and MAFk(L,P) = 1.

4.3 Markovian Abstraction-based Precision

Given the GMA ICl , an event log L and a process P as inputs,
we compute the kth-order Markovian abstraction-based precision
(hereby MAPk) applying Equation 2.

MAPk(L,P) = 1−
Σe∈EPCl(e,ICl (e))

|EP|
(2)

Recollecting the BPMN models shown in Figure 3 and their
respective Markovian abstractions (for k = 1 and k = 2, Figures 4a-
4c and 5a-5c). We can observe that by increasing k the quality
of the behavioral abstractions increases, capturing more details.
Consequently, our MAPk outputs a finer result. Note that, our
proposed precision measure fulfils the properties of an ordinal
scale. Specifically, given an event log L and a k, MAPk induces
an order over the possible process models that fit log L . This

9

property is desirable given that the purpose of a precision measure
is to allow us to compare two different process models in terms of
their extra behavior.

4.4 Proofs of the 5-Axioms of Precision
We now turn our attention to show that our Markovian
abrastraction-based precision measure fulfils the axioms presented
in Section 2.
Axiom-1. MAPk(L,P) is a deterministic function. Given a log

L and a process P, The construction of Mk
L and Mk

P is fully
deterministic for BP and BL (see Definition 7). Furthermore,
being the graph matching algorithm ICl deterministic, and
being MAPk(L,P) function of EL, EP and ICl (see Equa-
tion 2), it follows that MAPk(L,P) is also deterministic with
codomain [0,1] by definition.

Axiom-2. Given two processes P1,P2 and an event log L, s.t.
BL ⊆ BP1 ⊆ BP2 , then MAPk(L,P1) ≥ MAPk(L,P2). First,
the following relation holds, EL⊆EP1 ⊆EP2 (see Theorem 1).
Then, we distinguish two possible cases:
1. if EP1 = EP2 , then it follows straightforward

MAPk(L,P1) = MAPk(L,P2) (see Axiom-1 proof and
Equation 2).

2. if EP1 ⊂ EP2 , then EL ⊂ EP2 ∧ (|EP2 |− |EP1 |) > 0. In
this case, we show that MAPk(L,P2)−MAPk(L,P1) < 0
is always true, as follows.

1−
Σe2∈EP2

Cl(e2,ICl (e2))

|EP2 |
−

(
1−

Σe1∈EP1
Cl(e1,ICl (e1))

|EP1 |

)
=

Σe1∈EP1
Cl(e1,ICl (e1))

|EP1 |
−

Σe2∈EP2
Cl(e2,ICl (e2))

|EP2 |
< 0

For each edge e1 that can be found both in EP1 and
EL, the cost Cl(e1,ICl (e1)) is 0, being ICl (e1) = e1.
Instead, for each edge e1 that can be found in EP1

but not in EL, the cost Cl(e1,ICl (e1)) is 1, being
ICl (e1) = ε . It follows that the total cost of matching
EP1 over L is Σe1∈EP1

Cl(e1,ICl (e1)) = |EP1 | − |EL|. A
similar reasoning can be done for the matching of EP2

over L. Indeed, ∀e2 ∈ EP2 ∩ EL =⇒ Cl(e2,ICl (e2)) = 0
and ∀e2 ∈ EP2 \ EL =⇒ Cl(e2,ICl (e2)) = Cl(e2,ε) = 1,
therefore Σe2∈EP2

Cl(e2,ICl (e2)) = |EP2 |− |EL|.
Applying these results to the above inequality, it turns into
the following:

|EP1 |− |EL|
|EP1 |

−
|EP2 |− |EL|
|EP2 |

=
|EL|(|EP1 |− |EP2 |)
|EP1 | |EP2 |

< 0

This latter is always true, since the starting hypothesis of
this second case is (|EP1 |− |EP2 |)< 0.

Axiom-3. Given two processes P1,P2 and an event log L, s.t.
BL ⊆ BP1 ⊂ BP2 = ΓΩ then MAPk(L,P1) > MAPk(L,P2).
For any k ∈ N, the relation MAPk(L,P1) ≥ MAPk(L,P2)
holds for Axiom-2. The case MAPk(L,P1) = MAPk(L,P2)
occurs when Mk

P2
over-approximates the behavior of P2, i.e.

BP1 ⊂BP2 and EP1 = EP2 . Nevertheless, for any BP1 there
always exists a k∗ s.t. EP1 ⊂ EP2 . This is true since being
BP1 strictly contained in BP2 , there exists a trace τ̂ ∈BP2

s.t. τ̂ 6∈ BP1 . Choosing k∗ = |τ̂|, the Mk∗
P2

would produce
an edge ê = (−, τ̂) ∈ EP2 s.t. ê 6∈ EP1 because τ̂ 6∈BP1 (see
also Definition 7).9 Consequently, for any k ≥ k∗, we have

9. Formally, ∃τ̂ ∈BP2 \BP1 , s.t. for k∗ = |τ̂|=⇒∃(−, τ̂) ∈ EP2 \EP1 .

EP1 ⊂ EP2 and MAPk(L,P1) > MAPk(L,P2) holds, being this
latter the case 2 of Axiom-2.

Axiom-4. Given two processes P1,P2 and an event log L, s.t.
BP1 = BP2 then MAPk(L,P1) = MAPk(L,P2). If BP1 = BP2 ,
then EP1 = EP2 (see Theorem 1). It follows straightforward
that MAPk(L,P1) = MAPk(L,P2) (see proof Axiom-1 and
Equation 2).

Axiom-5. Given two event logs L1,L2 and a process P, s.t. BL1 ⊆
BL2 ⊆BP, then MAPk(L2,P) ≥MAPk(L1,P). Consider the
two following cases:
1. if BL1 = BL2 , then EL1 = EL2 (see Theorem 1). It follows

MAPk(L2,P) = MAPk(L1,P), because MAPk(L,P) is a
deterministic function of EL, EP and ICl (see Axiom-1
proof and Equation 2).

2. if BL1 ⊂BL2 , then EL1 ⊆ EL2 (see Theorem 1). In this
case, the graph matching algorithm would find match-
ings for either the same number or a larger number of
edges between Mk

P and Mk
L2

, than between Mk
P and Mk

L1
(this follows from EL1 ⊆ EL2). Thus, a smaller or equal
number of edges will be mapped to ε in the case of
MAPk(L2,P) not decreasing the value for the precision,
i.e., MAPk(L2,P)≥MAPk(L1,P).

In Axiom-3 we showed that there exists a specific value of
k, namely k∗, for which MAPk∗(Lx,Px) satisfies Axiom-3 and we
identified such value being k∗ = |τ̂|, where τ̂ can be any trace of
the set difference ΓΩ \BPx . In the following, we show how to
identify the minimum value of k∗ such that all the 5-Axioms are
satified. To identify the lowest value of k∗, we have to consider
the traces τ̂ ∈ ΓΩ such that does not exists a τ ∈BPx where τ̂ ⊆ τ .
If a trace τ̂ ∈ ΓΩ that is not a sub-trace of any other trace of the
process model behavior (BPx) is found, by setting k∗ = |τ̂| would
mean that in the Mk∗ -abstraction of ΓΩ there will be a state ŝ = τ̂

and an edge (−, τ̂) that are not captured by the Mk∗ -abstraction
of BPx . This difference will allow us to distinguish the process Px
from the flower model (i.e. the model having a behavior equal to
ΓΩ), satisfying in this way the Axiom-3. At this point, considering
the set of the lengths of all the subtraces not contained in any trace
of BPx , Z = {|τ̂| : τ̂ ∈ ΓΩ ∧ 6 ∃ τ ∈BPx | τ̂ ⊆ τ}, we can set the
lower-bound of k∗ ≥ min(Z).

Note that the value of k∗ is equal to 2 for any process model
with at least one activity that cannot be executed twice in a row.
If we have an activity t̂ that cannot be executed twice in a row,
it means that

∣∣〈t̂, t̂〉∣∣ ∈ Z and thus we can set k∗ = 2. In practice,
k∗ = 2 satisfies all the 5-Axioms in real-life cases, since it is very
common to find process models that have the above topological
characteristic.

5 EVALUATION

In this section, we report on a two-pronged evaluation we per-
formed to assess the following two objectives: i) comparing our
measures to the state-of-the-art fitness and precision measures; and
ii) analysing the role of the order k.

To do so, we implemented the Markovian Abstraction-based
Fitness and Precision (MAFk and MAPk) in a standalone open-
source tool10 and used it to carry out a qualitative evaluation on
synthetic data and a quantitative evaluation on real-life data.11

10. Available at http://apromore.org/platform/tools
11. The public data used in the experiments can be found at http://doi.org/

10.6084/M9.FIGSHARE.7397006.V1

10

Fig. 6: Original model [16].

Fig. 7: Single trace model [16].

All the experiments were executed on an Intel Core i5-6200U
@2.30GHz with 16GB RAM running Windows 10 Pro (64-bit)
and JVM 8 with 12GB RAM (8GB Stack and 4GB Heap). For
each measurement we set a timeout of two hours.

5.1 Qualitative evaluation dataset

In a previous study, van Dongen et al. [16] showed that their
anti-alignment precision was able to generate more intuitive rank-
ings of model-log pairs than existing state-of-the-art precision
measures using a synthetic dataset of model-log pairs. Table 1
(Section 2) shows the synthetic event log used in [16], while
Figure 6 shows the “original model” that was used in that paper
to derive eight process model variants. The set of models includes
a single trace model capturing the most frequent trace, Fig. 7; a
model incorporating all separate traces, Fig. 8; a flower model
of all activities in the log, Fig. 9; a model with activities G and
H in parallel (Opt. G || Opt. H, see Fig. 10); one with G and
H in self-loop (G, 	H, Fig. 11); a model with D in self-loop
(D, Fig. 12); a model with all activities in parallel (All parallel,
Fig. 13); and a model where all activities are in round robin (Round
robin, Fig. 14).

Fig. 8: Separate traces model [16].

Fig. 9: Flower model [16].

Fig. 10: Opt. G || Opt. H model [16].

Fig. 11: 	G, 	H model [16].

Fig. 12: 	D model [16].

Fig. 13: All parallel model [16].

Fig. 14: Round robin model [16].

11

To evaluate the MAFk fitness measures, we generated from
each of the above models, an event log containing the whole
behavior of the process model. In doing so, we capped the number
of times each cycle in the model was executed to two iterations
each. We held out the Flower model because we were unable to
generate its corresponding event log, given that this model has
almost one million unique traces if each cycle is executed at most
twice. This led to a total of eight model-log pairs.

Below, we evaluate the proposed fitness and precision mea-
sures using the above model-log pairs.

5.2 Qualitative evaluation of MAFk

Using the original model (Figure 6), we measured the fitness of the
eight logs synthetized from the process model variants. We com-
pared our fitness measure MAFk to the fitness measures discussed
in Section 2, namely: token-based fitness (Token), alignment-based
fitness (Alignment), and PCC fitness, with projections size equal
to 10 (PCC10). We chose a size of 10 for PCC because this was
the highest value for which we were able to obtain more than 50%
of measurements.

Table 4 gives the numerical results of the fitness measure-
ments. We note that some of the fitness values returned by the
Token measure are counter-intuitive. For example, for the log
generated from the original model, this measure scores a value
different than 1 despite this model fully fits this log. As such,
this result brakes Proposition-7 of fitness. Other counter-intuitive
values are returned for the logs generated from the separate traces
and the all parallel models, respectively 0.951 and 0.556. The
former should also be 1 as per Proposition-7, whilst the latter,
given that none of the log traces are contained in the original
model behavior, should return a value as close as possible to 0.

Alignment and PCC10 also return high values of fitness for
the all parallel log, respectively 0.464 and 1. These results are
clearly counter-intuitive if we consider that the all parallel log
contains more than 350 thousand different traces and none of them
is contained in the original model behavior. A similar reasoning
can be done for the fitness values of Token and Alignment on the
log generated from the round robin model. This latter log contains
no traces of the original process behavior, yet both measurements
are very high (respectively 0.655 and 0.501).

As for our fitness measure MAFk, we note that the numeric
values for all the logs generated from the acyclic models stabilize
at k equal to 4, whilst the values for the logs generated from the
three cyclic models (1: 	G, 	H, 2: 	D and 3: Round robin) tend
to 0 as we increase k. This is expected as the higher the k, the larger
the behavior captured in the Mk-abstractions, and consequently the
more precise the measurement. In line with Proposition-7, MAFk

returns a fitness value of 1 for all the logs fully fitting the original
model (first three rows of Table 4).

In contrast with the state of the art, our measure is able to
identify the large difference between the behavior of the original
model and that recorded in the all parallel log, as it returns a
value close to 0 already for k equal to 2, similarly to the round
robin log. The only measure that returns a value close to 0 for the
round robin log is PCC10, besides our measure.

Since each fitness measure assesses the fitness of a log over a
model in a different way, it is useful to analyse the ranking yielded
by each measure for the set of logs in question. This is shown in
Table 5. Alignment and MAFk agree on the most intuitive ranking
(having exactly the same ranking with k between 4 and 6). They

assign the highest rank to the fully fitting logs, followed by the
partially fitting logs with acyclic behavior (i.e. Opt. G || Opt. H),
then by the logs containing cyclic behavior (G, 	H, and 	D)
and finally by the two completely unfitting logs (all parallel and
round robin). These latter two logs are ranked equally only by
MAF7, which is able to identify that none of the them contains
any behavior of the original model.

5.3 Qualitative evaluation of MAPk

Using the original log (as in Table 1), we measured the precision of
the nine model variants (as shown in Fig. 6 to 14), and compared
our precision measure MAPk with the state of the art discussed in
Section 2, which includes the same precision measures evaluated
by van Dongen et al. [16]). These are: traces set difference
precision (SD), alignment-based ETC precision (ETCa), negative
events precision (NE), projected conformance checking with its
projections size equal to 2 (PCC2), and anti-alignment precision
(AA). We chose size 2 for PCC since this is the highest value for
which we were able to obtain more than 50% of the measurements.
We left out the advanced behavioral appropriateness (ABA) as it is
not defined for some of the models in this dataset. We limited the
order k to 7, because it is the length of the longest trace in the log.
Setting an order greater than 7 would only (further) penalise the
cyclic behavior of the models.

Table 6 reports the results of our qualitative evaluation.12

To discuss these results, we use two precision measures as a
reference, as these have been advocated as possible ground truths
of precision, though none of them satisfies the axioms in [4]. The
first one is AA. This measure has been shown [16] to be intuitively
more accurate than other precision measures. The second one is
SD, as it closely operationalizes the definition of precision by
capturing the exact percentage of model behavior that cannot be
found in the log. As discussed in Section 2 though, this measure
can only be computed for acyclic models, and uses by design a
value of zero for cyclic models.

From the results in Table 6, we can observe that MAP1 does
not penalise enough the extra behavior of some models, such as
the original model, which cannot be distinguished from the single
trace and the separate traces models (all have a precision of 1).
Also, the values of MAP1 are far away from those of both AA and
SD (with the exception of the simplest models, i.e. single trace
and separate traces). As we increase k, MAPk tends to get closer
to AA and to SD, barring a few exceptions. In particular, the more
the cyclic behavior allowed by a model, the quicker MAPk tends
to zero. In this respect, let us consider the cyclic models in our
datasets: i) the flower model, ii) the 	G, 	H model (Fig. 11), iii)
the 	D model (Fig. 12), and iv) the round robin (Fig. 14). The
value of our precision measure immediately drops to zero in the
flower model (k = 3) because this latter model allows the greatest
amount of cyclic behavior, due to all the possible combinations of
activities being permitted. This is consistent with both SD and AA.

On the contrary, MAPk tends to zero slower in the round robin
model because this model is very strict on the order in which
activities can be executed, despite having infinite behavior. In fact,
it only allows the sequence 〈A,B,C,D,F,G,H, I〉 to be executed,
with the starting activity and the number of repetitions being
variable. This is taken into account by our measure, since even
with k = 7 we do not reach a value of zero for this model, as

12. Some values differ from those in [16] as we used each measure’s latest
implementation.

12

Log Token Alignment PCC10 MAP1 MAF2 MAF3 MAF4 MAF5 MAF6 MAF7

Original model 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Single trace 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Separate traces 0.951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Opt. G || Opt. H 0.920 0.956 0.500 0.889 0.679 0.563 0.500 0.500 0.500 0.500

	G, 	H 0.880 0.918 0.231 0.889 0.633 0.409 0.259 0.167 0.143 0.200
	D 0.781 0.873 0.171 0.889 0.633 0.419 0.250 0.138 0.094 0.109

All parallel 0.556 0.464 1.000 0.222 0.038 0.006 0.001 < 0.001 < 0.001 0.000
Round robin 0.655 0.501 0.000 0.444 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 4: Values of the fitness measures over the synthetic dataset.

Log Token Alignment PCC10 MAP1 MAF2 MAF3 MAF4 MAF5 MAF6 MAF7

Original model 7 6 5 6 6 6 6 6 6 6
Single trace 8 6 5 6 6 6 6 6 6 6

Separate traces 6 6 5 6 6 6 6 6 6 6
Opt. G || Opt. H 5 5 4 2 5 5 5 5 5 5

	G, 	H 4 4 3 2 3 3 4 4 4 4
	D 3 3 2 2 3 4 3 3 3 3

All parallel 1 2 5 1 2 2 2 2 2 1
Round robin 2 1 1 5 1 1 1 1 1 1

TABLE 5: Model ranking induced by the fitness measures over the synthetic dataset.

Process Variant Model Traces (#) SD ETCa NE PCC2 AA MAP1 MAP2 MAP3 MAP4 MAP5 MAP6 MAP7

Original model 6 0.833 0.900 0.995 1.000 0.871 1.000 0.895 0.833 0.786 0.778 0.833 0.833
Single trace 1 1.000 1.000 0.893 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Separate traces 5 1.000 1.000 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Flower model 986,410 0.000 0.153 0.117 0.509 0.000 0.176 0.021 0.002 t/o t/o t/o t/o

Opt. G || Opt. H 12 0.417 0.682 0.950 0.991 0.800 0.889 0.607 0.469 0.393 0.389 0.417 0.417
	G, 	H 362 0.000 0.719 0.874 0.889 0.588 0.800 0.370 0.134 0.041 0.011 0.003 0.001

	D 118 0.000 0.738 0.720 0.937 0.523 0.889 0.515 0.273 0.128 0.055 0.028 0.021
All parallel 362,880 0.000 0.289 0.158 0.591 0.033 0.222 0.034 0.005 0.005 t/o t/o t/o

Round robin 27 0.000 0.579 0.194 1.000 0.000 0.600 0.467 0.425 0.340 0.267 0.200 0.213

TABLE 6: Values of the precision measures over the synthetic dataset.

Process Variant SD ETCa NE PCC2 AA MAP1 MAP2 MAP3 MAP4 MAP5 MAP6 MAP7

Original model 7 7 9 6 7 7 7 7 7 7 7 7
Single trace 8 8 6 6 8 7 8 8 8 8 8 8

Separate traces 8 8 8 6 8 7 8 8 8 8 8 8
Flower model 1 1 1 1 1 1 1 1 1 1 1 1

Opt. G || Opt. H 6 3 7 5 6 5 6 6 6 6 6 6
	G, 	H 1 5 5 3 5 4 3 3 3 3 3 3

	D 1 6 4 4 4 5 5 4 4 4 4 4
All parallel 1 2 2 2 3 2 2 2 2 2 2 2

Round robin 1 4 3 6 1 3 4 5 5 5 5 5

TABLE 7: Model rankings induced by the precision measures over the synthetic dataset.

opposed to SD and AA. This allows us to discriminate the round
robin model from other models with very large behavior such as
the flower model. This is not possible with SD and AA, because
both models have a precision of zero in these two measures.

As for the other two cyclic models in our dataset, MAPk tends
to zero with speeds between those of the flower model and the
round robin model, with the 	G, 	H model dropping faster than
the 	D, due to the former allowing more cyclic behavior than the
latter. Similar considerations as above apply to these two models.
Even for k = 7, their precision does not reach zero, allowing us
to distinguish the precision of these two models. While in SD
the precision of these two models is set to zero by design, in
AA these two models have a precision well above zero, with the
	G, 	H model having a higher precision than the 	D model
(0.588 vs. 0.523). This is counter-intuitive, since the former model
allows more behavior not permitted by the log (in terms of number
of different traces) than the latter model does. In addition, AA
penalizes more the round robin model, despite this model having
less behavior than the two models with self-loop activities.

Altogether, these precision results show that the higher the k,
the more the behavioral differences our measure can catch and
penalise. Furthermore, in line with the time complexity analysis

of MAPk, we can see that when k increases, the execution time
increases faster for those models allowing a huge amount of
behavior, timing out for k > 3 and k > 4 on the flower and all
parallel models (respectively).

In terms of ranking (see Table 7), our measure is the most
consistent with the ranking of the models yielded by both SD (for
acyclic models) and AA (for all models), than all other measures.
As discussed above, the only differences are in the swapping of
the order of the two models with self loops, and in the order of
the round robin model. Note that given that both the round robin
and the flower model have a value of zero in AA, the next model
in the ranking (all parallel) is assigned a rank of 3 instead of
2 in MAPk. This is just the way the ranking is computed and is
not really indicative of a ranking inconsistency between the two
measures. Another observation is that the ranking yielded by our
precision measure remains the same for k > 2. This indicates that
as we increase k, while the extent of behavioral differences we can
identify and penalize increases, this is not achieved at the price of
changing the ranking of the models.

13

5.4 Quantitative evaluation dataset
In our second evaluation, we used two datasets for a total of 20
logs. The first dataset is the collection of real-life logs publicly
available from the 4TU Centre for Research Data.13 Out of this
collection, we retained twelve logs related to business processes,
as opposed to e.g. software development processes. These include
the BPI Challenge (BPIC) logs (2012-17), the Road Traffic Fines
Management Process (RTFMP) log, and the SEPSIS log. These
logs record executions of business processes from a variety of
domains, e.g. healthcare, finance, government and IT service
management. In seven logs (BPIC14, the BPIC15 collection, and
BPIC17), we applied the filtering technique proposed in [26] to
remove infrequent behavior. This was required otherwise most of
the fitness and precision measures would throw an out-of-memory
exception. The second dataset is composed of eight proprietary
logs sourced from several companies in the education, insurance,
IT service management and IP management domains.

Table 8 reports the characteristics of both datasets. For each
of these 20 logs, we automatically discovered three process
models using three state-of-the-art automated process discovery
methods [2]: Split Miner [18] (SM), Inductive Miner [27] (IM),
and Structured Heuristics Miner [28] (SHM), totalling 60 log-
model pairs that we used for our quantitative evaluation.

5.5 Quantitative evaluation of MAFk

We measured our MAFk on each of the 60 log-model pairs, varying
k in the range 2–5. For our comparison, we retained the Alignment
fitness and PCC2 fitness. For PCC we used a projections size of
2 as this was the highest value for which we were able to obtain
more than 50% of the measurements. We held out the Token fitness
since it does not scale to real-life models.

Table 9 and 10 show respectively the numerical values of each
measurement and the fitness ranking of the models discovered by
SM, IM and SHM for each log. 14 As a baseline for our compar-
ison we used Alignment, since it is to date the most-scalable and
widely-accepted fitness measure for automated process discovery
in real-life settings [2].

Also in this evaluation, we can observe that the values of
MAFk reduce as we increase the order k. This is by design, since
the higher the k the more are the behavioral details captured by
the measure, and the more are the mismatches identified by our
measure. Furthermore, we recall that our MAFk is very strict since
it uses a boolean function to penalise behavioral mismatches.

In Table 9, we can see that for the models discovered by SM
from the logs PRT1 and PRT6, the values of MAFk quickly drop
when moving from k = 3 to k = 4. The results of Alignment and
MAF2 for the model of SM discovered from the log PRT9, are
also interesting: Alignment returns a value of 0.915, suggesting an
almost fully-fitting model, while our MAFk returns a low value of
fitness (0.197) already at k = 2. This can be linked to the fact that
Alignment is sometimes too accommodative leading to counter-
intuitive results, as shown in the qualitative evaluation.

If we look at the ranking yielded by the measures, MAFk

agrees with Alignment more than 30% of the times at k = 3 and
k = 5, and more than 25% of the times at k = 2 and k = 4. Instead,
PCC2 agrees with Alignment only 10% of the times. Increasing k
for our MAPk does not alter frequently the ranking yielded: indeed

13. https://data.4tu.nl/repository/collection:event_logs_real
14. A “–” symbol is used to report a failed measurement due to either a

time-out or an exception.

50% of the times the ranking was stable already at k = 2 and 75%
at k = 3.

Finally, Tables 11 and 12 report the time performance of
MAFk, Alignment and PCC2.15 We separated the results by public
and proprietary logs to allow the reproducibility of the experiments
for the set of public logs. We note that PCC2 underperforms
Alignment, despite this measure was designed to be more effi-
cient. Instead, MAFk is significantly faster than Alignment in the
majority of the log-model pairs, especially when the input model
has a reasonable state space as that produced by SM and SHM
(i.e. when flower-like constructs are absent). On the other hand,
by increasing k the performance of MAFk reduces sharply for
flower-like models, as those produced by IM.

For the sake of measuring the time performance of Alignment
we also considered the alternative implementation reported in [29].
However, this latter implementation consistently performed worse
than the standard implementation for the majority of log-model
pairs used in our evaluation.

5.6 Quantitative evaluation of MAPk

Similarly, we assessed our MAPk against each real-life log-model
pair while varying the order k in the range 2–5. Unfortunately,
we were not able to use any of the reference measures used in
the qualitative evaluation, because SD does not work for cyclic
models (all models discovered by IM were cyclic) while AA does
not scale to real-life models [16]. Furthermore, we excluded NE
precision, since we were not able to perform the measurements
for more than 50% of the log-model pairs within the two-hour
timeout. Thus, we resorted to ETCa and PCC2 as two baselines.

Table 13 shows the results of the quantitative evaluation. In
line with the former evaluation, the value of MAPk decreases when
k increases. However, being the behavior of the real-life models
more complex than that of the artificial models, for some logs
(e.g. the BPIC15 logs), it was not possible to compute MAP4

and MAP5 for the models discovered by IM. This was due to
scalability issues,16 as the models discovered by IM exhibit flower-
like behavior (with more than 50 distinct activities per flower
construct), which is already identified by MAP2 and MAP3, whose
values are very low for these models. We recall that by design,
for small values of k, MAPk compares small chunks of the model
behavior to small chunks of the log behavior. Thus, low values of
MAP2 and MAP3 already indicate poorly-precise models.

ETCa and MAP5 agree on the precision ranking 50% of the
times (cf. Table 14), whilst ETCa and PCC2 agree on the 30%
of the rankings. Also, in-line with the former evaluation, ETCa
is tolerant to infinite model behavior, regardless of the type of
such behavior. An example that illustrates this flaw is the SEPSIS
log. The models discovered by IM and SM are shown in Fig. 15
and 16. We observe that more than the 80% of the activities in the
IM model are skippable and over 60% of them are inside a long
loop, resembling a flower construct with some constraints, e.g. the
first activity is always the same. Instead, the model discovered
by SM, even if cyclic, does not allow many variants of behavior.
Consequently, for the IM model, the value of MAPk drastically
drops when increasing k from 2 to 3, whilst it remains 1 for the
SM model. In contrast, ETCa gives a precision of 0.445 for IM,
which is counter-intuitive considering its flower-like structure.

15. Highlighted in bold the best scores, underlined the second best scores.
16. The allocated RAM was not enough to complete the measurements.

14

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f BPIC152f BPIC153f BPIC154f BPIC155f BPIC17f
Total Traces 13,087 1,487 7,554 41,353 902 681 1,369 860 975 21,861
Dist. Traces 33.4 12.3 20 36.1 32.7 61.7 60.3 52.4 45.7 40.1
Total Events 262,200 6,660 65,533 369,485 21,656 24,678 43,786 29,403 30,030 714,198
Dist. Events 36 7 13 9 70 82 62 65 74 41

(min) 3 1 1 3 5 4 4 5 4 11
Tr. length (avg) 20 4 9 9 24 36 32 34 31 33

(max) 175 35 123 167 50 63 54 54 61 113

Log RTFMP SEPSIS PRT1 PRT2 PRT3 PRT4 PRT6 PRT7 PRT9 PRT10
Total Traces 150,370 1,050 12,720 1,182 1,600 20,000 744 2,000 787,657 43,514
Dist. Traces 0.2 80.6 8.1 97.5 19.9 29.7 22.4 6.4 0.01 0.01
Total Events 561,470 15,214 75,353 46,282 13,720 166,282 6,011 16,353 1,808,706 78,864
Dist. Events 11 16 9 9 15 11 9 13 8 19

(min) 2 3 2 12 6 6 7 8 1 1
Tr. length (avg) 4 14 5 39 8 8 8 8 2 1

(max) 2 185 64 276 9 36 21 11 58 15

TABLE 8: Descriptive statistics of the real-life logs (public and proprietary).

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.970 0.990 - 0.989 0.820 0.940 0.977 0.920 0.910 0.767 0.890 - 0.900 0.970 -
PCC2 0.043 0.043 0.687 0.480 0.308 0.696 0.000 0.035 0.000 0.407 0.106 0.261 0.598 0.266 0.000
MAF2 0.400 0.840 0.896 0.636 0.364 0.636 0.667 0.667 0.583 0.441 0.971 1.000 0.758 0.960 0.992
MAF3 0.308 0.834 0.715 0.565 0.217 0.478 0.548 0.613 0.419 0.338 0.796 0.972 0.614 0.949 0.990
MAF4 0.267 0.834 0.416 0.568 0.091 0.364 0.429 0.586 0.271 0.212 0.626 0.903 0.510 0.934 0.983
MAF5 0.257 0.370 0.197 0.537 0.061 0.256 0.356 0.557 0.188 0.154 0.465 0.788 0.434 0.535 0.901

Log BPIC152f BPIC153f BPIC154f BPIC155f BPIC17f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.773 0.948 0.981 0.780 0.950 0.950 0.731 0.955 0.991 0.791 0.937 1.000 0.962 0.979 0.954
PCC2 0.015 0.087 0.013 0.523 0.024 0.016 0.000 0.000 0.007 0.005 0.301 0.016 0.244 0.466 0.013
MAF2 0.538 0.853 0.919 0.413 0.894 0.894 0.543 0.921 0.974 0.591 0.922 0.987 0.935 0.935 0.903
MAF3 0.335 0.793 0.885 0.224 0.804 0.811 0.329 0.842 0.959 0.371 0.874 0.982 0.923 0.885 0.769
MAF4 0.226 0.688 0.855 0.147 0.643 0.734 0.230 0.558 0.938 0.263 0.347 0.981 0.904 0.843 0.675
MAF5 0.168 0.307 0.825 0.105 0.290 0.678 0.169 0.372 0.916 0.191 0.135 0.982 0.909 0.818 0.606

Log RTFMP SEPSIS PRT1 PRT2 PRT3
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 1.000 0.980 0.980 0.763 0.991 0.920 0.977 0.902 0.883 0.811 - - 0.824 0.975 1.000
PCC2 0.000 0.062 0.757 0.000 0.129 0.296 0.276 0.225 0.883 0.000 0.000 0.802 0.264 0.420 0.056
MAF2 0.257 0.843 0.957 0.226 0.930 0.757 0.459 0.730 0.811 0.291 0.987 0.747 0.581 0.977 0.977
MAF3 0.187 0.743 0.930 0.155 0.953 0.678 0.318 0.418 0.691 0.111 0.880 0.637 0.291 0.882 0.976
MAF4 0.151 0.655 0.889 0.164 0.962 0.654 0.258 0.154 0.585 0.071 0.803 0.640 0.185 0.807 0.982
MAF5 0.125 0.576 0.882 0.187 0.647 0.631 0.223 0.035 0.502 0.077 0.354 0.684 0.131 0.778 0.985

Log PRT4 PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.833 0.927 1.000 0.943 0.989 1.000 0.910 1.000 1.000 0.915 0.900 0.964 0.969 0.964 -
PCC2 0.082 0.309 0.318 0.632 0.320 0.503 0.426 0.385 0.533 0.780 0.011 0.990 0.327 0.623 -
MAF2 0.541 0.892 1.000 0.545 1.000 1.000 0.605 1.000 1.000 0.197 0.818 0.833 0.471 0.966 -
MAF3 0.284 0.622 1.000 0.220 0.898 1.000 0.243 1.000 1.000 0.106 0.596 0.652 0.374 0.925 -
MAF4 0.154 0.318 1.000 0.082 0.776 1.000 0.161 1.000 1.000 0.074 0.312 0.476 0.343 0.934 -
MAF5 0.084 0.118 1.000 0.044 0.716 1.000 0.141 1.000 1.000 0.055 0.127 0.349 0.343 0.852 -

TABLE 9: Comparison of fitness measures over the 20 real-life logs.

As discussed in Section 3, k = 2 is sufficient to satisfy all
the 5-Axioms in practice. However, as we also observe from the
results of this second experiment for precision, higher values of k
lead to finer results for MAPk. In fact, the notable drops of value
from k = 2 to k = 3 (e.g. in SEPSIS, BPIC17f and PRT9), confirm
that the 5-Axioms are a necessary but not sufficient condition for
a reliable precision measure [4].

Finally, Tables 15 and 16 report the time performance of
MAPk, PCC2 and ETCa.15 Similarly to the quantitative evaluation
of fitness, we separated the results by public and proprietary logs
to allow the reproducibility of the experiments for the public
logs. The results are consistent with those obtained for fitness:
PCC2 is the slowest measure while MAPk is overall the fastest
measure, especially for those models that do not exhibit flower-like
structures (SM and SHM), while ETCa outperforms our measure
when the state space of the model is very large (in the case of
models discovered by IM, for high values of k).

5.7 The role of k

As expected, the results of both qualitative and quantitative evalu-
ation show that the order k directly influences how our Markovian
fitness and precision measures penalise behavioral mismatches
between log and model, and ultimately how they rank process
models by accuracy. Furthermore, k plays an important role on
the time performance of our proposed measures. Indeed, while for
low k’s MAFk and MAPk scale well to large real-life logs, outper-
forming the state of the art, for high k’s, the time performance in
some cases deteriorates even dramatically. However, we showed
that in practice a low value of k does approximate well the fitness
and precision ranking that would be obtained with hight k values,
over a set of automatically discovered process models.

We remind that k+ 1 defines the size of the subtraces in the
log and in the process model that we compare with each other to
detect mismatches. Bearing this in mind, we advise that whenever
possible k should be set to the length of the longest trace recorded

15

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 2 3 - 3 1 2 3 2 1 2 3 - 2 3 -
PCC2 1 1 2 2 1 3 1 2 1 3 1 2 3 2 1
MAF2 1 2 3 3 1 3 3 3 2 1 2 3 1 2 3
MAF3 1 3 2 3 1 2 2 3 1 1 2 3 1 2 3
MAF4 1 3 2 2 1 2 2 3 1 1 2 3 1 2 3
MAF5 2 3 1 3 1 2 2 3 1 1 2 3 1 2 3

Log BPIC152f BPIC153f BPIC154f BPIC155f BPIC17f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 1 2 3 2 3 3 1 2 3 1 2 3 2 3 1
PCC2 2 3 1 3 2 1 1 1 2 1 3 2 2 3 1
MAF2 1 2 3 2 3 3 1 2 3 1 2 3 3 3 1
MAF3 1 2 3 1 2 3 1 2 3 1 2 3 3 2 1
MAF4 1 2 3 1 2 3 1 2 3 1 2 3 3 2 1
MAF5 1 2 3 1 2 3 1 2 3 2 1 3 3 2 1

Log RTFMP SEPSIS PRT1 PRT2 PRT3
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 3 2 2 1 2 3 3 2 1 - - - 1 2 3
PCC2 1 2 3 1 2 3 2 1 3 1 1 2 2 3 1
MAF2 1 2 3 1 3 2 1 2 3 1 3 2 1 3 3
MAF3 1 2 3 1 3 2 1 2 3 1 3 2 1 2 3
MAF4 1 2 3 1 3 2 2 1 3 1 3 2 1 2 3
MAF5 1 2 3 1 3 2 2 1 3 1 2 3 1 2 3

Log PRT4 PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 1 2 3 1 2 3 2 3 3 2 1 3 3 2 -
PCC2 1 2 3 3 1 2 2 1 3 2 1 3 1 2 -
MAF2 1 2 3 2 3 3 1 3 3 1 2 3 2 3 -
MAF3 1 2 3 1 2 3 1 3 3 1 2 3 2 3 -
MAF4 1 2 3 1 2 3 1 3 3 1 2 3 2 3 -
MAF5 1 2 3 1 2 3 1 3 3 1 2 3 2 3 -

TABLE 10: Models ranking yielded by fitness measures over the 20 real-life logs.

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total
Alignment 30.1 217.8 0.5 361.0 33.7 155.2 0.5 404.8 37.2 174.4 0.7 335.0

PCC2 77.1 685.1 0.1 925.4 138.9 1344.9 0.1 1667.1 152.1 1378.8 0.1 1825.1
MAP2 0.2 2.0 >0.1 2.7 0.3 1.1 >0.1 4.2 0.9 4.6 >0.1 10.7
MAP3 0.1 0.3 >0.1 0.7 108.2 890.9 >0.1 1298.1 4.2 27.9 >0.1 50.4
MAP4 0.1 0.3 >0.1 0.9 1386.2 4383.9 >0.1 16634.9 14.1 84.7 >0.1 169.4
MAP5 0.1 0.6 >0.1 1.3 1612.4 5365.6 >0.1 19348.6 39.1 214.4 >0.1 469.2

TABLE 11: Time performance (in seconds) of fitness measures using the twelve public logs.

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total
Alignment 12.4 40.6 0.4 98.9 5.9 29.9 0.4 41.6 144.2 813.2 0.5 865.1

PCC2 154.2 1226.2 >0.1 1233.3 257.0 2048.9 >0.1 2056.3 287.3 1960.2 >0.1 2010.8
MAP2 0.2 1.0 >0.1 1.3 2.1 15.8 >0.1 17.2 0.7 2.1 >0.1 4.8
MAP3 0.1 0.3 >0.1 0.6 8.7 66.2 >0.1 69.4 1.5 6.0 >0.1 10.4
MAP4 0.1 0.4 >0.1 0.6 80.7 597.0 >0.1 645.2 12.5 52.6 >0.1 87.8
MAP5 0.1 0.5 >0.1 0.7 352.8 2792.9 >0.1 2822.6 21.8 90.5 >0.1 152.7

TABLE 12: Time performance (in seconds) of fitness measures using the eight proprietary logs.

sepsis_yam

Leucocytes
Release B

IV Liquid

ER Triage

Admission
NC

Admission
IC

IV
Antibiotics

Release C

Release D

CRP

ER
Registrati

on

ER Sepsis
Triage

Release A

LacticAcid

Release E

Return ER

Fig. 15: Model discovered by IM from the SEPSIS log.

16

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 0.762 0.502 - 0.974 1.000 0.992 0.979 0.558 0.978 0.673 0.646 - 0.880 0.566 -
PCC2 1.000 0.902 0.919 0.935 0.347 0.703 1.000 0.588 0.938 0.990 0.744 0.991 0.995 0.885 1.000
MAP2 1.000 0.399 0.316 1.000 1.000 0.708 1.000 1.000 1.000 1.000 0.786 0.500 1.000 0.144 0.054
MAP3 0.826 0.083 0.073 0.952 0.944 0.682 0.965 0.955 0.976 1.000 0.701 0.274 0.969 0.019 0.016
MAP4 0.640 0.013 0.027 0.931 0.917 0.638 0.919 0.898 0.911 1.000 0.656 0.164 0.932 - -
MAP5 0.362 - 0.015 0.907 0.925 0.626 0.893 0.828 0.883 1.000 0.631 0.162 0.896 - -

Log BPIC152f BPIC153f BPIC154f BPIC155f BPIC17f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 0.901 0.556 0.594 0.939 0.554 0.671 0.910 0.585 0.642 0.943 0.179 0.687 0.846 0.699 0.620
PCC2 1.000 0.912 1.000 0.979 0.974 1.000 1.000 1.000 1.000 0.998 0.913 1.000 0.939 0.600 0.911
MAP2 1.000 0.160 0.995 1.000 0.196 1.000 1.000 0.121 1.000 1.000 0.092 1.000 1.000 0.843 0.347
MAP3 0.972 0.022 0.835 0.986 0.032 0.787 0.963 0.015 0.789 0.964 0.006 0.817 0.705 0.566 0.151
MAP4 0.930 - 0.588 0.967 - 0.502 0.920 - 0.531 0.917 - 0.577 0.482 0.370 0.069
MAP5 0.878 - 0.356 0.939 - 0.275 0.877 - 0.321 0.858 - 0.366 0.340 0.245 0.034

Log RTFMP SEPSIS PRT1 PRT2 PRT3
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 1.000 0.700 0.952 0.859 0.445 0.419 0.985 0.673 0.768 0.737 - - 0.914 0.680 0.828
PCC2 1.000 0.831 0.793 1.000 0.745 0.689 0.970 0.607 0.793 1.000 0.788 0.617 0.945 0.716 0.996
MAP2 1.000 0.939 0.745 1.000 0.603 0.521 1.000 0.868 0.842 1.000 0.975 1.000 1.000 0.913 1.000
MAP3 0.955 0.492 0.309 0.954 0.210 0.193 0.966 0.729 0.655 0.995 0.960 0.992 0.907 0.878 0.954
MAP4 0.862 0.182 0.087 0.895 0.048 0.062 0.939 0.677 0.467 0.995 0.631 0.895 0.839 0.763 0.631
MAP5 0.756 0.070 0.025 0.831 - - 0.917 0.658 0.309 0.979 0.442 0.410 0.775 0.560 0.293

Log PRT4 PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 0.995 0.753 0.865 1.000 0.822 0.908 0.999 0.726 0.998 0.999 0.611 0.982 0.972 0.790 -
PCC2 0.955 0.705 0.822 0.800 0.694 0.832 0.857 0.743 0.857 0.927 0.658 0.738 1.000 0.804 -
MAP2 1.000 0.917 1.000 1.000 0.957 1.000 1.000 0.927 1.000 1.000 0.991 0.958 1.000 0.387 -
MAP3 1.000 0.979 1.000 1.000 0.873 0.983 1.000 0.920 0.972 0.971 0.526 0.542 0.814 0.061 -
MAP4 1.000 0.977 1.000 1.000 0.830 0.950 1.000 0.699 0.725 0.913 0.207 0.208 0.639 0.007 -
MAP5 0.998 0.982 0.968 1.000 0.574 0.632 1.000 0.543 0.645 0.853 0.076 0.064 0.435 - -

TABLE 13: Comparison of precision measures over 20 real-life logs.

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 2 - 1 3 2 3 1 2 3 2 - 3 2 -
PCC2 3 1 2 3 1 2 3 1 2 2 1 3 2 1 3
MAP2 3 2 1 3 3 2 3 3 3 3 2 1 3 2 1
MAP3 3 2 1 3 2 1 2 1 3 3 2 1 3 2 1
MAP4 3 1 2 3 2 1 3 1 2 3 2 1 - - -
MAP5 3 - 2 2 3 1 3 1 2 3 2 1 - - -

Log BPIC152f BPIC153f BPIC154f BPIC155f BPIC17f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 1 2 3 1 2 3 1 2 3 1 2 3 2 1
PCC2 3 2 3 2 1 3 3 3 3 2 1 3 3 1 2
MAP2 3 1 2 3 2 3 3 2 3 3 2 3 3 2 1
MAP3 3 1 2 3 1 2 3 1 2 3 1 2 3 2 1
MAP4 3 - 2 3 - 2 3 - 2 3 - 2 3 2 1
MAP5 3 - 2 3 - 2 3 - 2 3 - 2 3 2 1

Log RTFMP SEPSIS PRT1 PRT2 PRT3
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 1 2 3 2 1 3 1 2 - - - 3 1 2
PCC2 3 2 1 3 2 1 3 1 2 3 2 1 2 1 3
MAP2 3 2 1 3 2 1 3 2 1 3 2 3 3 2 3
MAP3 3 2 1 3 2 1 3 2 1 3 1 2 2 1 3
MAP4 3 2 1 3 1 2 3 2 1 3 1 2 3 2 1
MAP5 3 2 1 - - - 3 2 1 3 2 1 3 2 1

Log PRT4 PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 1 2 3 1 2 3 1 2 3 1 2 3 2 -
PCC2 3 1 2 2 1 3 3 2 3 3 1 2 3 2 -
MAP2 3 2 3 3 2 3 3 2 3 3 2 1 3 2 -
MAP3 3 2 3 3 1 2 3 1 2 3 1 2 3 2 -
MAP4 3 2 3 3 1 2 3 1 2 3 1 2 3 2 -
MAP5 3 2 1 3 1 2 3 1 2 3 2 1 - - -

TABLE 14: Models ranking yielded by precision measures over 20 real-life logs.

17

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total

ETCa 60.0 351.9 0.3 720.3 84.2 642.7 0.1 1009.8 34.0+ 101.4+ 0.2+ 305.9+
PCC2 145.8 1482.8 0.1 1749.6 157.3 1598.3 0.1 1887.3 164.8 1530.4 0.1 1977.8
MAP2 0.1 0.8 >0.1 1.6 0.9 3.3 >0.1 10.9 1.1 5.7 >0.1 12.9
MAP3 0.1 0.4 >0.1 1.5 323.2 2844.0 >0.1 3878.9 8.4 43.2 >0.1 100.4
MAP4 0.2 0.6 >0.1 1.9 818.5+ 4377.6+ >0.1+ 5729.3+ 49.8 340.2 >0.1 547.6
MAP5 0.7 3.2 >0.1 8.7 - - - - 97.2+ 357.4+ >0.1+ 972.4+

TABLE 15: Time performance (in seconds) of precision measures using the twelve public logs (’+’ indicates a result obtained on a
subset of the twelve logs, due to some of the measurements not being available).

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total

ETCa 16.1 106.5 0.2 129.1 16.4 99.2 0.2 114.9 74.3 350.2 0.7 520.1
PCC2 184.8 1468.9 >0.1 1478.8 152.7 1213.9 >0.1 1221.3 242.6 1649.4 >0.1 1698.5
MAP2 0.1 0.4 >0.1 0.6 2.1 15.9 >0.1 16.7 0.7 2.3 >0.1 4.7
MAP3 0.1 0.2 >0.1 0.5 7.0 47.0 >0.1 55.9 2.7 12.6 >0.1 19.1
MAP4 0.1 0.4 >0.1 0.7 146.2 1131.2 >0.1 1169.9 29.4 120.0 >0.1 205.9
MAP5 0.8 5.8 >0.1 6.8 55.5 332.6 0.1 388.2 77.8 329.4 0.1 544.4

TABLE 16: Time performance (in seconds) of precision measures using the eight proprietary logs.sepsis_sm-wg

Release E

CRPER
Registration

Release B

Release D

IV Liquid IV Antibiotics Return ERLeucocytesER Triage Admission
NC

ER Sepsis
Triage

Admission IC

Release C

Release A

LacticAcid

Fig. 16: Model discovered by SM from the SEPSIS log.

in the log, in order to obtain the most accurate results.

6 CONCLUSION

This article presented a family of fitness and precision measures
to assess the accuracy of process models automatically discovered
from event logs. The key idea of the proposal is to compare the
kth-order Markovian abstraction of a process model against that of
an event log using a graph matching algorithm. We showed that
the fitness measures fulfill six out of the seven fitness properties
in [5] for any value of k and all seven properties for a suitably
chosen value of k dependent on the log. Conversely, the precision
measures fulfil four of the five precision properties in [4] for any
value of k and all five properties for a value of k dependent on
the log. To the best of our knowledge, these are the first fitness
and precision measures that fulfil all of the above-mentioned
properties.

While fulfiling the proposed properties is a desirable qual-
ity, it does not guarantee that the proposed measures provide
intuitive results in practice. To validate the intuitiveness of the
proposed measures, we compared the ranking they induce against
those induced by existing fitness and precision measures using
a collection of model-log pairs proposed in [16] (extended to
cover fitness in addition to precision). For k ≥ 4, the proposed
fitness measures induce rankings that coincide with alignment-
based fitness – a commonly used fitness measure. Meanwhile, for
k≥ 3, the proposed precision measures induce rankings consistent
with those of the anti-alignment precision measure, which has
been previously posited as a ground-truth for precision measures.

A second evaluation using real-life logs showed that the
execution times of the proposed fitness measures (for k ≤ 5) are

considerably lower than existing fitness measures, except when
applied to process models that contain flower structures, in which
case alignment-based fitness offers the best performance. Simi-
larly, the execution times of the proposed precision measures (for
k ≤ 5) are considerably lower than existing precision measures,
except for models that contain flower structures in which case
ETCa precision provides the best performance.

The experimental evaluation also put into evidence the scala-
bility limitations of the proposed approach for k > 5, highlighting
the trade-off between the ability to measure fitness and precision
in a principled manner (i.e. in a way that fulfils all theoretical
properties) and the imperative of scalability. Possible avenues for
future work include the design of more efficient fitness and pre-
cision measures by exploring alternative behavioral abstractions
(besides Markovian ones) or by combining the proposed approach
with divide-and-conquer approaches, which have been recently
explored in the context of alignment-based fitness [30].

ACKNOWLEDGMENTS

This research is funded by the Australian Research Council (grant
DP180102839) and the Estonian Research Council (IUT20-55).

REFERENCES

[1] J. D. Weerdt, M. D. Backer, J. Vanthienen, and B. Baesens, “A multi-
dimensional quality assessment of state-of-the-art process discovery
algorithms using real-life event logs,” Information Systems, vol. 37, no. 7,
2012.

[2] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. Maggi, A. Marrella,
M. Mecella, and A. Soo, “Automated discovery of process models from
event logs: Review and benchmark,” IEEE Transactions on Knowledge
and Data Engineering (to appear), 2018.

18

[3] G. Janssenswillen, N. Donders, T. Jouck, and B. Depaire, “A comparative
study of existing quality measures for process discovery,” Information
Systems, vol. 71, pp. 1–15, 2017.

[4] N. Tax, X. Lu, N. Sidorova, D. Fahland, and W. van der Aalst, “The
imprecisions of precision measures in process mining,” Information
Processing Letters, vol. 135, pp. 1–8, 2018.

[5] W. M. P. van der Aalst, “Relating process models and event logs - 21
conformance propositions,” in International Workshop on Algorithms &
Theories for the Analysis of Event Data. Springer, 2018, pp. 56–74.

[6] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. L. Rosa,
and D. Reißner, “Abstract-and-compare: A family of scalable precision
measures for automated process discovery,” in International Conference
on Business Process Management (BPM). Springer, 2018, pp. 158–175.

[7] A. Rozinat and W. M. Van der Aalst, “Conformance testing: Measuring
the fit and appropriateness of event logs and process models,” in Interna-
tional Conference on Business Process Management. Springer, 2005,
pp. 163–176.

[8] S. K. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Baesens, and
J. Vanthienen, “Event-based real-time decomposed conformance analy-
sis,” in OTM Confederated International Conferences "On the Move to
Meaningful Internet Systems". Springer, 2014, pp. 345–363.

[9] A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Con-
formance checking using cost-based fitness analysis,” in IEEE Interna-
tional on Enterprise Distributed Object Computing Conference (EDOC).
IEEE, 2011, pp. 55–64.

[10] S. Leemans, D. Fahland, and W. van der Aalst, “Scalable process
discovery and conformance checking,” Software & Systems Modeling,
2016.

[11] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, “Discovering expressive
process models by clustering log traces,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 18, no. 8, 2006.

[12] A. Rozinat and W. van der Aalst, “Conformance checking of processes
based on monitoring real behavior,” Information Systems, vol. 33, no. 1,
2008.

[13] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A robust f-
measure for evaluating discovered process models,” in IEEE Symposium
on CIDM. IEEE, 2011.

[14] J. Munoz-Gama and J. Carmona, “A fresh look at precision in process
conformance,” in BPM. Springer, 2010.

[15] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, and W. van
der Aalst, “Measuring precision of modeled behavior,” ISeB, vol. 13,
no. 1, 2015.

[16] B. van Dongen, J. Carmona, and T. Chatain, “A unified approach for
measuring precision and generalization based on anti-alignments,” in
BPM. Springer, 2016.

[17] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from event logs - a constructive approach,”
in International Conference on Petri Nets and Other Models of Concur-
rency. Springer, 2013.

[18] A. Augusto, R. Conforti, M. Dumas, and M. L. Rosa, “Split miner:
Discovering accurate and simple business process models from event
logs,” in IEEE International Conference on Data Mining (ICDM). IEEE,
2017.

[19] S. vanden Broucke and J. De Weerdt, “Fodina: a robust and flexible
heuristic process discovery technique,” Decision Support Systems, vol.
100, pp. 109–118, 2017.

[20] A. Weijters and J. Ribeiro, “Flexible heuristics miner (FHM),” in IEEE
Symposium on Computational Intelligence and Data Mining (CIDM),
2011.

[21] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[22] ——, “Variants of the hungarian method for assignment problems,”
Naval Research Logistics Quarterly, vol. 3, no. 4, pp. 253–258, 1956.

[23] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the society for industrial and applied mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[24] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[25] A. Backurs and P. Indyk, “Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false),” in 47th Annual ACM Sympo-
sium on Theory of Computing (STOC). ACM, 2015, pp. 51–58.

[26] R. Conforti, M. L. Rosa, and A. ter Hofstede, “Filtering out infrequent
behavior from business process event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 2, pp. 300–314, 2017.

[27] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from event logs containing infrequent be-
haviour,” in BPM Workshops. Springer, 2014.

[28] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, and G. Bruno,
“Automated discovery of structured process models from event logs: The
discover-and-structure approach,” Data and Knowledge Engineering, vol.
117, pp. 373–392, 2018.

[29] B. F. van Dongen, “Efficiently computing alignments - using the extended
marking equation,” in International Conference on Business Process
Management (BPM). Springer, 2018, pp. 197–214.

[30] W. L. J. Lee, H. M. W. Verbeek, J. Munoz-Gama, W. M. P. van der Aalst,
and M. Sepúlveda, “Recomposing conformance: Closing the circle on
decomposed alignment-based conformance checking in process mining,”
Information Science, vol. 466, pp. 55–91, 2018.

