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Abstract

The goal of this paper is to obtain an Age/Period/Cohort (A/P/C) decomposition of his-

torical U.S. mortality improvement. Two different routes to achieving this goal are considered.

In the first route, the desired components are obtained by fitting an A/P/C model directly

to historical mortality improvement rates. In the second route, an A/P/C model is estimated

to historical crude death rates and the desired components are then obtained by differencing

the estimated model parameters. For each route, various possible A/P/C model structures

are experimented, and are evaluated on the basis of their robustness to several factors (e.g.,

changes in the calibration window) and their ability to explain historical changes in mortal-

ity improvement. Based on the evaluation results, an A/P/C decomposition for each gender

is recommended. The decomposition will be examined in a follow-up project, in which the

linkages between the A/P/C components and certain intrinsic factors will be identified.

Keywords: Age-period-cohort models; Longevity risk; U.S. mortality.

1 Introduction

While mortality experience studies have been at the core of the research efforts of the Society of

Actuaries (SOA) since its inception, wide-ranging mortality and related longevity studies have

received increasing attention within the Society over the past few years. Indeed, “Mortality and

Longevity” has been selected as one of the SOA’s five Strategic Research Programs for 2018. And

as the technology, tools, and data available to better understand and model mortality patterns

has been evolving at an ever quickening pace, the Longevity Advisory Group (LAG) has been

given a mandate to keep the SOA membership apprised of major developments in these fields.

One of the first projects LAG initiated was an inventory of mortality projection techniques

used for various applications across each of the SOA disciplines that require estimates of future

mortality rates. Without any overarching methodology for these projections, it is not surprising

that a number of different approaches evolved for a procedure that – at its core – should produce

similar results. In reaction to the wide variety of techniques currently in use by the membership,

LAG decided that it would be worthwhile to assess the possibility of developing a more consistent
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framework for mortality projection. Such a framework would be comprehensive enough to accom-

modate most applications but also flexible enough to reflect different underlying populations and

different provisions for conservatism.

The SOA and LAG anticipate that any model that emerges from such a consistent framework

would ultimately produce two-dimensional (age and calendar year) gender-specific mortality pro-

jection scales, similar in format to those produced by the SOAs Retirement Plans Experience

Committee for retirement plans (e.g., Scale MP-2017) and by the Continuous Mortality Investi-

gation (e.g., CMI Mortality Projections Model: CMI 2017). The development of these and other

two-dimensional projection scales typically begins with a decomposition of historical mortality

experience for the covered group into separate age, period (time-related), and cohort (year-of-

birth-related) (A/P/C) components.

The historical A/P/C decomposition process can be performed in a variety of ways using a

number of different underlying mortality models. Therefore, the first step in the larger “consistent

framework” project has been to determine which A/P/C decomposition methodologies are most

robust when applied to U.S. population mortality experience. In 2017, the SOA commissioned

a study called “Components of Historical Mortality Improvement,” which aims to compare and

contrast methodologies for allocating historical gender-specific mortality improvement experience

in the U.S. into A/P/C components. This paper documents the research work performed for the

study, with an emphasis on explaining how and why a certain model structure is identified (from

a large collection of candidate model structures) as the best suited for deriving an A/P/C decom-

position of historical U.S. mortality improvement experience. While this paper does identify one

methodology that proves especially robust for the U.S. population, it also provides useful back-

ground for those who are interested in gaining a better understanding of the range of approaches

currently being used by leading mortality model researchers around the world and the techniques

they use to assess their efficacy for individual populations.

Subsequent phases of the “consistent framework” project will research how effectively the

historical A/P/C components identified in this paper can be attributed to specific mortality

drivers. A short list of the potential mortality drivers includes:

• Medical/pharmacological advances; e.g., gene therapy and statins

• Government programs; e.g., Medicare/Medicaid and anti-smoking campaigns

• Societal trends; e.g., increased incidence of obesity and opioid use

Assuming that a number of the more important causal relationships can be identified, LAG will

then be in a better position to assess how reliably the evolution of these drivers can be projected

into the future. In conjunction with this research project, LAG is in the process of organizing a

forum of experts from a broad range of disciplines (including those in various medical professions,

demographers, futurists, and actuaries) to discuss past, present and anticipated future drivers of

mortality. The expectation is that the results of these research projects and the knowledge gained
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from the forum of experts will play important roles in shaping the SOA’s ultimate mortality

improvement framework.

In the search for the most effective A/P/C decomposition methodology, the project team relies

on the following three criteria:

1. Adequacy

The resulting A/P/C decomposition should adequately capture the observable patterns

in the historical mortality improvement experience. That being said, after filtering the

historical mortality improvement experience with an A/P/C decomposition, the residuals

left behind should appear to be reasonably random.

2. Robustness

The resulting A/P/C decomposition should remain largely unchanged when there are small

changes to the data input or model set-up. This property is important because, for instance,

if an additional year of data becomes available and the model is updated accordingly, there

should not be significant, unexplainable changes to the A/P/C components.

3. Smoothness

It is anticipated that several peaks and troughs will be found in the resulting A/P/C com-

ponents. However, on top of that, the resulting A/P/C components should not contain any

noise which carries no possible demographic meaning.

The search for the most effective methodology is conducted in two pathways, namely, Route A

and Route B. As explained in the following paragraphs, the difference between these two pathways

lies in the quantity being fed into the candidate models.

In Route A, the quantity being modeled is mortality improvement rate, defined as the percent-

age reduction in the conditional probability of death at a certain age and in a certain calendar

year. All of the Route A candidate models are fitted to historical mortality improvement rates

directly. Given how Route A models are defined, the parameters in an estimated Route A model

can be regarded as an A/P/C decomposition of historical mortality improvement. Although the

approach of modeling mortality improvement rates directly is not very common in the literature,

it has been considered in several recent papers including those authored by Plat (2011) and Hunt

and Villegas (2017).

In Route B, the quantity being modeled is either death rate or death probability. This approach

is in line with the well-known Lee-Carter (Lee and Carter, 1992) and Cairn-Blake-Dowd (Cairns

et al., 2006) methods for stochastic mortality modeling. As the Route B candidate models are

applied to death rates/probabilities instead of mortality improvement rates, a transformation

(first differencing) has to be performed for some of the parameters in a Route B model before an

A/P/C decomposition of historical mortality improvement can be obtained.

For both pathways, we ‘horse race’ a large number of candidate model structures. We assess

how well they meet the adequacy and robustness criteria using the backtesting methods outlined
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in the work of Cairns et al. (2009) and Dowd et al. (2010b). The smoothness criterion is taken

into account by means of a roughness penalty in the estimation process, and is assessed by visually

inspecting the resulting A/P/C decompositions.

We emphasize that the scope of this paper is confined to analyzing historical mortality im-

provement experience. As such, no attempt has been made in this paper to project future U.S.

mortality. The SOA believes that a comprehensive mortality projection model requires addi-

tionally input from experts in related fields such as demography and medical science, and, as

previously mentioned, has planned to invite such experts to participate in follow-up projects that

will draw from the results presented in this paper. Since forecasting is beyond the scope of this

paper, we have not considered attaching stochastic processes to the identified A/P/C components,

and have not performed any ex-post evaluation (Cairns et al., 2011; Dowd et al., 2010a) of the

mortality density forecasts produced by the candidate models.

The remainder of this paper is organized as follows. Section 2 describes the data sets on

which the “Component of Historical Mortality Improvement” study is based. Section 3 defines

the notation that is used throughout the paper. Section 4 provides an overview of the model

selection process, which is then detailed in Section 5 (for Route A) and Section 6 (for Route B).

Finally, Section 7 concludes the paper with a recommendation. It also discusses the caveats of

our work, and how the results of this paper may be used in anticipated future SOA projects.

2 Data

2.1 The Data Sets Used

We consider two data sets, which are provided by the Human Mortality Database (HMD) and

the U.S. Social Security Administration (SSA), respectively. Both data sets have the same age

range (20 to 95) and the same sample period (1968 to 2014).

For ages 65 and over, the origins of the two data sets are different. In particular, the SSA data

set is based on the death and exposure counts from the Medicare-enrolled population, whereas the

HMD data set is based on deaths reported by states and census population (exposure) estimates.

Goss et al. (2015) argue that the SSA data set is more reliable for the following reasons:

1. age accuracy (Medicare requires proof of age when enrolling);

2. representation of almost the entire Social Security area population;

3. both death and exposure counts are obtained from a single, consistent source.

In addition, according to the HMD documentation, the HMD data at higher ages are not ‘raw’.1

1Above age 80, population estimates in the HMD data set are derived by the method of extinct generations for

all cohorts that are extinct and by the survivor ratio method for non-extinct cohorts who are older than age 90 at

the end of the observation period.
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For these reasons, the conclusions drawn in this study are based primarily on the SSA data set.

The HMD data set is used as a benchmark only.

2.2 Exploratory Data Analyses

Before performing the modeling work, we examine the historical mortality improvement rates and

identify the features that we expect the candidate models to capture.

Figures 1 and 2 display the heat maps of the historical mortality improvement rates for U.S.

males and females, respectively.2 The labels in the diagram represent the ages at which the peaks

and troughs of mortality improvement are located. For both genders, the following observations

are made:

• Variation of colors along the vertical dimension

Each row in the diagram represents mortality improvement rates for a specific age. The

variation of colors along the vertical dimension therefore represents the age effect of mortality

improvement.

• Variation of colors along the horizontal dimension

Each column in the diagram represents mortality improvement rates for a specific calendar

year. The variation of colors along the horizontal dimension therefore represents the period

(time-related) effect of mortality improvement.

• Variation of colors among diagonals

Each diagonal (from lower-left to upper-right) in the diagram represents mortality improve-

ment rates for a specific year of birth. As such, the variation of colors among diagonals

represents the cohort (year-of-birth-related) effect of mortality improvement.

The chosen model should capture all of these three observed effects, leaving residuals that exhibit

no observable pattern.

Finally, we note that the historical mortality improvement rates from the two data sets are

very similar. Hence, the differences between the two data sets do not seem to be a big concern.

3 Notation

The following notation is used throughout the rest of this paper:

• x represents the age of an individual;

2To facilitate identification of patterns, the mortality improvement rates are calculated from mortality rates that

have been smoothed by a two-dimensional (age/cohort) P-Spline (Currie et al., 2004). The mortality improvement

rate used here is defined in equation (2) in Section 4.
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Figure 1: Heat maps of the smoothed mortality improvement rates for U.S. males, calculated

from the HMD data set (left panel) and the SSA data set (right panel).
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Figure 2: Heat maps of the smoothed mortality improvement rates for U.S. females, calculated

from the HMD data set (left panel) and the SSA data set (right panel).
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• t represents calendar year (running from time point t− 1 to t);

• [x0, x1] is the sample age range;

• [t0, t1] is the sample period (i.e., the calibration window);

• na = x1 − x0 + 1 is the number of ages covered by the sample age range;

• ny = t1 − t0 + 1 is the length of the sample period;

• c = t − x is the year of birth; note that within the data sample c ranges from t0 − x1 to

t1 − x0;

• mx,t is the central rate of death at age x and in year t;

• qx,t is the (conditional) probability that an individual who has survived to age x exact at

the beginning of year t dies during year t;

• x̄ = (x0 + x1)/2 is the mid-point of the sample age range;

• t̄ = (t0 + t1)/2 is the mid-point of the sample period;

• (x̄− x)+ = max(x̄− x, 0) is the maximum of x̄− x and 0.

In some calculations, we need a relationship between mx,t and qx,t. Unless otherwise specified,

we use the following approximation:

qx,t ≈ 1− exp(−mx,t), (1)

which holds exact if the force of mortality between two consecutive integer ages and time points

is constant.

Finally, in describing the A/P/C model structures, the following conventions are used:

• β(i)x , i = 1, 2, 3, are age-specific parameters:

– β
(1)
x is a stand-alone age-specific parameter,

– β
(2)
x is an age-specific parameter that interacts with a time-varying parameter,

– β
(3)
x is an age-specific parameter that interacts with a cohort-related parameter;

• κ(i)t , i = 1, 2, 3, are time-varying parameters:

– κ
(1)
t is a stand-alone time-varying parameter;

– κ
(2)
t is a time-varying parameter that interacts with an age-specific parameter or a

linear function of age;

– κ
(3)
t is a time-varying parameter that interacts with a non-linear function of age;

• γc is a cohort-related parameter;

• ex,t is the error term.
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4 An Overview of the Methodology

4.1 The Two Pathways

We consider two pathways to obtaining A/P/C decompositions of historical mortality improve-

ments: Route A and Route B.

In Route A, various candidate A/P/C models are fitted to the historical mortality improvement

rates directly. More precisely, the candidate models in Route A are fitted to the observed values

of

Zx,t = 1− qx,t
qx,t−1

, (2)

for x = x0, . . . , x1 and t = t0, . . . , t1, a quantity representing the reduction in the conditional

probability of death for age x from year t− 1 to year t.3 Given how Route A models are defined,

the parameters in an estimated Route A model can be regarded as an A/P/C decomposition of

historical mortality improvement. Further details concerning Route A are provided in Section 5.

In Route B, a number of candidate age-period-cohort models are applied to the death rates

(mx,t) or death probabilities (qx,t), for x = x0, . . . , x1 and t = t0, . . . , t1. Since Route B models

are applied to death rates/probabilities instead of mortality improvement rates, a transformation

(first differencing) has to be performed for some of the parameters in a Route B model before

an A/P/C decomposition of historical mortality improvement can be obtained. Further details

concerning Route B are provided in Section 6.

4.2 The Model Selection Process

For both pathways, we use the following multi-step procedure to identify the most effective model

for the data sets under consideration.

1. A large number of candidate models are fitted to the historical mortality improvement rates

(Route A) or death rates/probabilities (Route B).

2. Robustness tests are performed for each candidate model. On the basis of the robustness

test results, a smaller number of models are shortlisted for further consideration.

3. The standardized residuals produced by the shortlisted models are carefully examined. For

each pathway, the most effective model is the one that yields standardized residuals with

the least unexplained patterns.

Finally, we compare the A/P/C decompositions from the most effective models in Routes A

and B, and make a recommendation.

3We calculate the observed value of Zx,t using equation (1) with mx,t being set to the ratio of the death count

to the exposure count at age x in year t.
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5 Route A

This section details the modeling work associated with Route A. We first define the Route A

candidate models, and explain how they are estimated. These are followed by a collection of

robustness tests which allow us to shortlist a smaller number of model structures for further

consideration. We then perform a residual analysis to identify the model structure that is best

suited for decomposing historical U.S. mortality improvements.

5.1 The Candidate Models

We consider seven candidate APC models, including M2, M3, M6, M7, M8, the full Plat model

and the simplified Plat model, in Route A. These models were originally developed to model death

rates or probabilities (mx,t’s or qx,t’s), but here we use them to model mortality improvement rates

(Zx,t’s) instead.

Using the notation defined in Section 3, we have the following definitions of the seven candidate

models in Route A.

• Model M2 – The Renshaw-Haberman Model (Renshaw and Haberman, 2006)

Zx,t = β(1)x + β(2)x κ
(2)
t + β(3)x γc + ex,t

• Model M3 – The Age-Period-Cohort Model (Osmond, 1985)

Zx,t = β(1)x + κ
(1)
t + γc + ex,t

• Model M6 – The CBD Model with a Cohort Effect (Cairns et al., 2009)

Zx,t = κ
(1)
t + κ

(2)
t (x− x̄) + γc + ex,t

• Model M7 – The CBD Model with Quadratic Age and Cohort Effects (Cairns et al., 2009)

Zx,t = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2x) + γc + ex,t

• Model M8 – The CBD Model with an Age-Dependent Cohort Effect (Cairns et al., 2009)

Zx,t = κ
(1)
t + κ

(2)
t (x− x̄) + γc(xc − x) + ex,t

• The Full Plat model (Plat, 2009):

Zx,t = β(1)x + κ
(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + γc + ex,t

• The Simplified Plat model (Plat, 2009):

Zx,t = β(1)x + κ
(1)
t + κ

(2)
t (x̄− x) + γc + ex,t
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Model Identifiability constraints

Model M2
∑x1

x=x0
β
(1)
x = 0,

∑x1
x=x0

β
(2)
x = 1,

∑x1
x=x0

β
(3)
x = 1,∑t1−x0

c=t0−x1 ncγc = 0

Model M3
∑x1

x=x0
β
(1)
x = 0,

∑t1−x0
c=t0−x1 γc = 0,

∑t1−x0
c=t0−x1 cγc = 0

Model M6
∑t1−x0

c=t0−x1 γc = 0,
∑t1−x0

c=t0−x1 cγc = 0.

Model M7
∑t1−x0

c=t0−x1 γc = 0,
∑t1−x0

c=t0−x1 cγc = 0,
∑t1−x0

c=t0−x1 c
2γc = 0

Model M8
∑t1−x0

c=t0−x1 ncγc = 0

Full Plat
∑x1

x=x0
β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1
t=t0

κ
(3)
t = 0,∑t1−x0

c=t0−x1 γc = 0,
∑t1−x0

c=t0−x1 cγc = 0,
∑t1−x0

c=t0−x1 c
2γc = 0

Simplified Plat
∑x1

x=x0
β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1−x0
c=t0−x1 γc = 0,∑t1−x0

c=t0−x1 cγc = 0,
∑t1−x0

c=t0−x1 c
2γc = 0

Table 1: The baseline identifiability constraints used in estimating model parameters

We do not consider Model M1 (the Lee-Carter model), Model M4 (the P-splines regression)

and Model M5 (the original Cairns-Blake-Dowd model), because Models M1 and M5 do not

incorporate any cohort effect while Model M4 does not give an explicit A/P/C decomposition.

All of the model structures under consideration are subject to an identifiability problem (that

is, the problem that the optimal parameters are not unique). For example, if β
(1)
x , β

(2)
x , β

(3)
x , κ

(2)
t

and γc, for x = x0, . . . , x1, t = t0, . . . , t1, c = t0 − x1, . . . , t1 − x0, are parameters for Model M2,

then

β(1,∗)x = β(1)x −
a1
a2
β(2)x −

a4
a3
β(3)x , β(2,∗)x =

1

a2
β(2)x , β(3,∗) =

1

a3
β(3)x ,

κ
(2,∗)
t = a1 + a2κ

(2)
t and γ∗c = a3γc + a4,

where a1, a2, a3 and a4 are arbitrary constants, are equivalent parameters for Model M2, because

β(1,∗)x + β(2,∗)x κ
(2,∗)
t + β(3,∗)x γ∗c

=

(
β(1)x −

a1
a2
β(2)x −

a4
a3
β(3)x

)
+

1

a2
β(2)x (a1 + a2κ

(2)
t ) +

1

a3
β(3)x (a3γc + a4)

= β(1)x + β(2)x κ
(2)
t + β(3)x γc.

To stipulate parameter uniqueness, we need to impose some identifiability constraints. The iden-

tifiability constraints used for each candidate model are shown in Table 1. Note that nc in the

table stands for the number of data points associated with year-of-birth c.4

4Our data sample spans ages 20 to 95 and years 1968 to 2014. For the earliest cohort (c = 1968 − 95 = 1873),

we have n1873 = 1 as there is only one data point (which corresponds to age 95 and year 1968) associated with this

cohort. Likewise, for the second earliest cohort c = 1874, we have n1874 = 2 as there are two data points (one of

which corresponds to age 94 and year 1968 and the other of which corresponds to age 95 and year 1969) associated

with this cohort. The values of nc for other cohorts can be deduced in a similar manner.

10



The identifiability problem reflects the fact that there are infinitely many possible A/P/C

decompositions, even if the model for decomposition purposes is fixed. For any model, the age,

period and cohort parameters have no meaning in isolation.

In particular, the cohort and period components are defined with reference to each other. For

all candidate models (except M2 and M8), the chosen identifiability constraints ensure that the

cohort component will fluctuate around zero with no observable trend.5 Therefore, for each of

these models, the identified period component is the one that is conditioned on a cohort component

that exhibits no trend, and the identified cohort component is the one that is conditioned on a

period component that absorbs the entire trend.

5.2 Estimation

We consider two methods for estimating Route A candidate models. It is found that the two

methods yield very similar parameter estimates.6

5.2.1 A Two-Staged Method

In the first method, we first calculate smoothed historical mortality improvement rates by apply-

ing a two-dimensional (age/cohort) P-splines regression to the raw central rates of death. The

smoothed mortality improvement rate at age x and in year t is denoted by Z̃x,t. Then, we obtain

parameter estimates by minimizing the sum of squared differences between Z̃x,t and the param-

eterized structure, subject to the identifiability constraints shown in Table 1; for example, for

Model M3, parameter estimates are obtained by minimizing

x1∑
x=x0

t1∑
t=t0

(Z̃x,t − β(1)x − κ
(1)
t − γc)2,

subject to
∑x1

x=x0
β
(1)
x = 0,

∑t1−x0
c=t0−x1 γc = 0, and

∑t1−x0
c=t0−x1 cγc = 0. The minimization is solved

by using an iterative Newton’s method, in which parameters are updated one at a time until

convergence is achieved.7 We remark that this estimation method is also used in Working Papers

38 and 39 produced by the CMI (CMI, 2009a,b).

5.2.2 The Penalized Least Squares Method

The second method (penalized least squares) is extended from the work of Delwarde et al. (2007).

It integrates parameter smoothing and estimation in one single process. In this method, model

5We refer interested readers to Cairns et al. (2009) for an explanation as to why the identifiability constraints

we use ensure that the resulting cohort component will fluctuate around zero and will exhibit no linear and/or

quadratic trend.
6We refer interested readers to Section 8 of Volume 1 of the full report of this study (Li et al., 2018a) for a

comparison between the two methods.
7At the end of each iteration (when all of the parameters are updated), the parameters are rescaled so that the

applicable identifiability constraints are satisfied.
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parameters are estimated by minimizing an objective function, which is formulated as the sum of

the squared errors plus the roughness penalty for each parameter series. The sum of squared errors

measures the goodness-of-fit, whereas the roughness penalty for a parameter series measures the

jaggedness of the parameter series.

We now explain the method of penalized least squares by way of an example. Let us consider

Model M3, which encompasses three parameter series: {β(1)x }, {κ(1)t } and {γc}. When the method

of penalized least squares is applied to Model M3, estimates of the model parameters are obtained

by minimizing the following objective function:

x1∑
x=x0

t1∑
t=t0

(Zx,t − β(1)x − κ
(1)
t − γc)2 + (β(1))′Pβ(β(1)) + (κ(1))′Pκ(κ(1)) + (γ)′Pγ(γ),

subject to the identifiability constraints stated in Section 5.1. In the objective function, β(1), κ(1)

and γ are the vectors of β
(1)
x ’s, κ

(1)
t ’s and γc’s, respectively,

Pβ = πβ∆
′
β∆β, with ∆β =


1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 1 −2 1 0

0 · · · 0 1 −2 1


(na−2)×na

is the roughness penalty for the age dimension,

Pκ = πκ∆
′
κ∆κ, with ∆κ =


1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 1 −2 1 0

0 · · · 0 1 −2 1


(ny−2)×ny

is the roughness penalty for the time dimension,

Pγ = πγ∆
′
γ∆γ , with ∆γ =


1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 1 −2 1 0

0 · · · 0 1 −2 1


(ny+na−3)×(ny+na−1)

is the roughness penalty for cohort dimension, and πβ, πκ and πγ are the smoothing parameters

for {β(1)x }, {κ(1)t } and {γc}, respectively. For fixed values of πβ, πκ and πγ , the objective function

can be minimized using an iterative Newton’s method.

The specifications of the ∆ matrices indicate that the degree of roughness is measured by the

sum of squared second-order differences (e.g., the sum of (β
(1)
x+2 − 2β

(1)
x+1 + β

(1)
x )2). In effect, we
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are using a second-order polynomial as the standard of smoothness.8

The tradeoff between goodness-of-fit and smoothness is determined by the smoothing param-

eters πβ, πκ and πγ . Following Delwarde et al. (2007), the smoothing parameters are carefully

selected by a leave-one-out cross-validation, which involves the following steps:

(i) Given the values of the smoothing parameters πβ, πκ and πγ , re-estimate the age, period

and cohort components to a pseudo data set with one observation being intentionally left

out; use the re-estimated model to ‘predict’ the corresponding missing observation; record

the ‘prediction error’:

(e−x,t)
2 = (Zx,t − β̂(1,−)x − κ̂(1,−)t − γ̂−c )2,

where β̂
(1,−)
x , κ̂

(1,−)
t and γ̂−c respectively represent the estimated values of β

(1)
x , κ

(1)
t and γc

that are calculated from the pseudo data set (in which the observations at age x and in year

t are excluded)

(ii) Repeat step (i) by leaving out one other observation at a time until all observations in the

full data set have been considered. The sum of squared prediction errors (SPE) can be

calculated by

SPE(πβ, πκ, πγ) =

x1∑
x=x0

t1∑
t=t0

(e−x,t)
2

(iii) Repeat steps (i) and (ii) for different possible values πβ, πκ and πγ ; choose the values of πβ,

πκ and πγ that lead to the smallest sum of squared prediction errors.

5.3 Robustness Tests

In this sub-section, we perform five robustness tests on the Route A candidate models, and

shortlist a subset of them for further consideration.

5.3.1 The Robustness Tests Performed

Robustness Relative to Changes in the Tolerance Value

To obtain an A/P/C decomposition, the objective function specified in Section 5.2 is minimized

with an iterative Newton’s method. The iterations stop when the change in the value of the

objective function is smaller than a pre-specified tolerance value. In this test, we examine how

the estimation results may change when the tolerance value is varied. Three tolerance values are

considered: 10−6, 10−8, and 10−10.

8In principle, a higher order polynomial can be used as the standard of smoothness instead. We have experi-

mented higher order polynomials, and found that the resulting age/period/cohort decompositions are similar.
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Model Identifiability constraints

Model M2
∑x1

x=x0
β
(1)
x = 0,

∑x1
x=x0

β
(2)
x = 1,

∑x1
x=x0

β
(3)
x = 1,∑t1−x0

c=t0−x1 γc = 0

Model M3
∑x1

x=x0
β
(1)
x = 0,

∑t1−x0
c=t0−x1 γc = 0,

∑t1−x0
c=t0−x1 nccγc = 0

Model M6
∑t1−x0

c=t0−x1 γc = 0,
∑t1−x0

c=t0−x1 nccγc = 0.

Model M7
∑t1−x0

c=t0−x1 γc = 0,
∑t1−x0

c=t0−x1 nccγc = 0,
∑t1−x0

c=t0−x1 ncc
2γc = 0

Model M8
∑t1−x0

c=t0−x1 γc = 0

Full Plat
∑x1

x=x0
β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1
t=t0

κ
(3)
t = 0,∑t1−x0

c=t0−x1 γc = 0,
∑t1−x0

c=t0−x1 nccγc = 0,
∑t1−x0

c=t0−x1 ncc
2γc = 0

Simplified Plat
∑x1

x=x0
β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1−x0
c=t0−x1 ncγc = 0,∑t1−x0

c=t0−x1 nccγc = 0,
∑t1−x0

c=t0−x1 ncc
2γc = 0

Table 2: The alternative identifiability constraints used in estimating model parameters

Robustness Relative to Changes in the Calibration Window

In this test, we examine how the estimation results may change when the calibration window

becomes different. We consider the three calibration windows, which have the same length (37

years) but different starting/ending years: 1968-2004, 1973-2009, 1978-2014. This set-up mimics

the situation when the models are updated every five years.

Robustness Relative to Changes in the Age Range

In this test, we examine how the estimation results may change when the age range used is altered.

The following three age ranges are considered: 20-95 (76 ages), 30-85 (56 ages), and 40-75 (36

ages).

Robustness Relative to Changes in the Identifiability Constraints

In this test, we examine how the estimation results may change when the identifiability constraints

are slightly modified. We consider two sets of identifiability constraints: the baseline constraints

shown in Table 1 and the alternative constraints presented in Table 2.

The difference between the baseline and alternative constraints lies in the inclusion/exclusion

of nc, which represents the number of data points that are related to year-of-birth c. By including

nc, the cohorts about which we have more information are weighted more heavily in the parameter

constraints.

We emphasize that, as discussed in Section 5.1, there are many other combinations of con-

straints that can be used to stipulate parameter uniqueness. When very different constraints are

used, the patterns of the resulting A/P/C components may be very different and may carry dif-

ferent interpretations. Our goal here is to examine the impact of small changes in the constraints
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used only.

Robustness Relative to the Inclusion/Exclusion of the Oldest and Newest Cohorts

In this test, we examine how the estimation results may change when the oldest and newest

cohorts in the data set are included/excluded. The following three situations are considered.

1. All available data are used.

2. The oldest and youngest five cohorts in the data sample are excluded.

3. The oldest and youngest ten cohorts in the data sample are excluded.

5.3.2 The Robustness Measure

We define the following measure of robustness for the candidate models in Route A:

robustness =
maxi(maximum absolute change in the i-th model term)

maxx,t(Z̃x,t)−minx,t(Z̃x,t)
, (3)

where maxx,t(Z̃x,t) and minx,t(Z̃x,t) represent the maximum and minimum values of the smoothed

mortality improvement rates in the dataset, respectively, and ‘the i-th model term’ refers to the i-

th term on the right-hand-side of the model structure (excluding the error term). The denominator

maxx,t(Z̃x,t)−minx,t(Z̃x,t) ‘standardizes’ the robustness measure by considering the variability of

the data being fed into the model.

To illustrate, let us consider testing the robustness of Model M6 relative to changes in the

calibration window. We consider three calibration windows: (a) 1968-2004, (b) 1973-2009, and

(c) 1978-2014. Recall that Model M6 has the following structure:

Zx,t = κ
(1)
t + κ

(2)
t (x− x̄) + γc + ex,t,

which contains three model terms, namely κ
(1)
t , κ

(2)
t (x− x̄) and γc. The following steps are taken

to obtain the relevant robustness measure:

1. Since the maximum and minimum values of the smoothed mortality improvement rates over

year 1968 to 2014 and age 20 to 95 are 0.0860 and −0.0530, respectively, the denominator

of equation (7) is calculated as 0.0860− (−0.0530) = 0.1363.

2. Fit Model M6 using calibration window (a) and obtain estimates of the three model terms:

κ
(1,a)
t , κ

(2,a)
t (x− x̄), and γ

(a)
c .

3. Re-fit Model M6 using calibration window (b) and obtain new estimates of the three model

terms: κ
(1,b)
t , κ

(2,b)
t (x− x̄), and γ

(b)
c .
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4. Compare the estimation results from calibration windows (a) and (b), and calculate the

maximum change in each of the three model terms for this comparison:

max
t=1974,...,2004

|κ(1,a)t − κ(1,b)t | = 0.0017;

max
x=20,...,95;t=1974,...,2004

|κ(2,a)t (x− x̄)− κ(2,b)t (x− x̄)| = 0.0036;

max
c=1879,...,1984

|γ(a)c − γ(b)c | = 0.0040.

5. Re-fit Model M6 using calibration window (c) and obtain new estimates of the three model

terms: κ
(1,c)
t , κ

(2,c)
t (x− x̄), and γ

(c)
c .

6. Compare the estimation results from calibration windows (a) and (c), and calculate the

maximum change in each of the three model terms for this comparison:

max
t=1979,...,2004

|κ(1,a)t − κ(1,c)t | = 0.0027;

max
x=20,...,95;t=1979,...,2009

|κ(2,a)t (x− x̄)− κ(2,c)t (x− x̄)| = 0.0045;

max
c=1884,...,1984

|γ(a)c − γ(c)c | = 0.0071.

7. Compare the estimation results from calibration windows (b) and (c), and calculate the

maximum change in each of the three model terms for this comparison:

max
t=1979,...,2009

|κ(1,b)t − κ(1,c)t | = 0.0018;

max
x=20,...,95;t=1979,...,2009

|κ(2,b)t (x− x̄)− κ(2,c)t (x− x̄)| = 0.0030;

max
c=1884,...,1989

|γ(b)c − γ(c)c | = 0.0059.

8. Calculate the overall maximum change in each of the model term:

maximum change in κ
(1)
t = max(0.0017, 0.0027, 0.0018) = 0.0027;

maximum change in κ
(2)
t = max(0.0036, 0.0045, 0.0020) = 0.0045;

maximum change in γc = max(0.0040, 0.0071, 0.0059) = 0.0071.

9. Set the maximum of the three values obtained in Step (8) as the numerator in equation (7),

and calculate the robustness:

max(0.0027, 0.0045, 0.0071)

0.1363
= 5.2%.

In the following robustness tests, we rate the robustness of the candidate models using the

following criteria:

• High robustness: 0 ≤ robustness measure ≤ 10%

• Medium robustness: 10% < robustness measure ≤ 20%

• Low robustness: robustness measure > 20%
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5.3.3 Test Results

The test results are reported in Table 3. To demonstrate the differences among the three levels

of robustness, we show in Figures 3, 4 and 5 the estimation results for models that exhibit low,

medium and high levels of robustness relative to changes in the tolerance value, respectively.

For the model with a high level of robustness, we observe that the three tolerance values lead to

almost identical parameter estimates. For the model with a low level of robustness, the parameter

estimates based on different levels of tolerance are highly different.

Robustness Test
Model Model Model Model Model Full Simplified

M2 M3 M6 M7 M8 Plat Plat

SSA males

Tolerance value
19.8% 0.0% 0.1% 0.2% 0.4% 6.2% 0.0%

Medium High High High High High High

Calibration window
136.3% 11.1% 5.2% 24.9% 5.8% 24.2% 10.8%

Low Medium High Low High Low Medium

Age range
80.3% 11.1% 11.8% 13.0% 14.1% 27,4% 11.1%

Low Medium Medium Medium Medium Low Medium

Parameter constraints
24.0% 1.6% 4.9% 11.9% 0.4% 7.8% 6.7%

Low High High Medium High High High

Exclusion of cohorts
38.7% 4.1% 4.7% 12.1% 2.7% 8.3% 7.9%

Low High High Medium High High High

SSA females

Tolerance value
131.1% 0.0% 0.1% 0.2% 21.1% 10.5% 0.0%

Low High High High Medium Medium High

Calibration window
62.0% 9.8% 9.2% 12.9% 31.6% 75.8% 9.4%

Low High High Medium Low Low High

Age range
120.0% 16.4% 13.9% 19.4% 75.4% 60.3% 13.9%

Low Medium Medium Medium Low Low Medium

Parameter constraints
129.5% 4.0% 1.3% 6.1% 12.3% 13.6% 3.0%

Low High High High Medium Medium High

Exclusion of cohorts
144.8% 4.1% 6.1% 8.7% 15.4% 15.3% 7.1%

Low High High High Medium Medium High

Table 3: The results of the robustness tests performed for Route A candidate models

We remark here that the low robustness of Models M2 and M8 to changes in the tolerance

value is due possibly to the convergence problem. The optimization for Models M2 and M8 often

converges very slowly. For instance, when applying M2 to the SSA female dataset, it takes 7,276

iterations to reach the tolerance value of 10−8.9 In addition, we have to bound the absolute value

of the cohort component γc in these models, or otherwise the optimization may never converge.

From Table 3 we observe that Model M2, Model M7, Model M8 and the full Plat model show

low robustness in some tests. Therefore, we only consider Model M3, Model M6 and the simplified

9Typically, it takes less than 100 iterations to reach convergence.
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Figure 3: An example of high robustness to the tolerance value used: The estimated parameters

in the Route A Model M3 fitted to SSA female data, using tolerance values of 10−6, 10−8 and

10−10.
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Figure 4: An example of medium robustness to the tolerance value used: The estimated param-

eters in the Route A full Plat model fitted to SSA female data, using tolerance values of 10−6,

10−8 and 10−10.
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Figure 5: An example of low robustness to the tolerance value used: The estimated parameters

in the Route A Model M2 fitted to SSA female data, using tolerance values of 10−6, 10−8 and

10−10.
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Plat model in the next stage of the model selection process.

5.4 Analyzing the Standardized Residuals for the Shortlisted Models

We now analyze the standardized residuals produced by Model M3, Model M6 and the simplified

Plat model, which show high to medium levels of robustness in the tests performed in the previous

sub-section. For models in Route A, the standardized residual for age x and year t is defined as

êx,t
s.d.(êx,t)

,

where s.d.(êx,t) is the sample standard deviation of êx,t over the entire age range and sample

period, and êx,t represents the estimated (non-standardized) residual for age x and year t.

First, we perform the Anderson-Darling test, of which the null hypothesis is that standardized

residuals come from a standard normal distribution. Based on the p-values reported in Table 4,

the following conclusions are drawn.

1. The standardized residuals from Model M6 for SSA males and females do not pass the test

at a 5% significance level.10

2. The p-values indicate that the standardized residuals from the simplified Plat model are

more ‘normal’ than those from Model M3.

Next, we calculate the standardized residuals’ descriptive statistics (mean, standard deviation,

skewness and kurtosis). If the standardized residuals follow a standard normal distribution, their

mean should be close to 0, standard deviation should be close to 1, skewness should be close to

0, and kurtosis should be close to 3. The values of the descriptive statistics (reported in Table 4)

also suggest that the residuals from the simplified Plat model are more in line with the standard

normal distribution compared to those from Model M3.

Then, we consider the Q-Q plots of the standardized residuals from the three shortlisted models

(Figures 6, 7 and 8). A Q-Q plot is a plot of the quantiles of two distributions against each other. In

each of the Q-Q plots shown, we compare the empirical distribution of the standardized residuals

against the standard normal distribution. If the standardized residuals follow the standard normal

distribution, then the points in the Q-Q plot should lie on the 45◦ line. The Q-Q plots indicate

that the distribution of the standardized residuals from Model M3 is quite different from the

standard normal distribution.

Finally, we examine the heat maps of the standardized residuals from the three shortlisted

models (Figure 9). If an estimated model is adequate, then its standardized residuals should show

a random pattern. The heat maps suggest that Model M3 seems to be adequate for U.S. females,

but not quite for U.S. males. In Model M3’s residuals heat map for U.S. males, we observe three

10At a 5% significance level, we reject the null hypothesis if p-value is smaller than 0.05; that is, we conclude that

the standardized residuals do not follow the standard normal distribution if the p-value is less than 0.05.
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Dataset Model M3 Model M6
Simplified

Plat

p-value
SSA males 0.0890 0.0069 0.3886

SSA females 0.0680 0.0258 0.4436

Mean
SSA males −0.0008 0.0282 −0.0010

SSA females -0.0013 0.0293 −0.0005

Standard deviation
SSA males 0.9896 1.0070 0.9902

SSA females 0.9898 1.0256 0.9904

Skewness
SSA males −0.0094 −0.0202 −0.0519

SSA females 0.0182 −0.0275 −0.0337

Kurtosis
SSA males 2.8572 2.7054 2.8789

SSA females 3.4885 2.9974 3.1917

Table 4: The p-value (for the Anderson-Darling test), mean, standard deviation, skewness, and

kurtosis of the standardized residuals: Model M3, Model M6 and the simplified Plat model.
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Figure 6: The Q-Q plots of standardized residuals obtained from the Route A Model M3 fitted

to the SSA dataset.
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Figure 7: The Q-Q plots of standardized residuals obtained from the Route A Model M6 fitted

to the SSA dataset.
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Figure 8: The Q-Q plots of standardized residuals obtained from the Route A simplified Plat

model fitted to the SSA dataset.
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Figure 9: Heatmaps of the standardized residuals produced by the shortlisted Route A models.

large vertical bands over the period of 1985 to 2005. These residual clusters suggest that some

characteristics that are specific to the historical mortality of U.S. males have not been picked up

by Model M3. This problem is much less significant in the residual heat maps from the simplified

Plat model for U.S. males.

Summing up, Model M3 and the simplified Plat model are the only two models that pass the

Anderson-Darling normality test, but Model M3 does not perform well in terms of the descriptive

statistics, residual heatmaps and Q-Q plots. We therefore conclude that the simplified Plat model

is the most effective model in Route A.

6 Route B

This section is devoted to the modeling work associated with Route B. We first define the Route B

candidate models (which are applied to death rates/probabilities instead of mortality improvement

rates), and derive the A/P/C components of historical mortality improvements implied by each

of the candidate models. We then describe the estimation procedure, the robustness tests (for

shortlisting the candidate models), and the residual analysis (for identifying the most effective
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model among the shortlisted models).

6.1 The Candidate Models

In Route B, we consider eight candidate models, which are applied to either mx,t’s or qx,t’s. Using

the notation defined in Section 3, the Route B candidate models are defined as follows.

• M2 – The Renshaw-Haberman Model (Renshaw and Haberman, 2006)

lnmx,t = β(1)x + β(2)x κ
(2)
t + β(3)x γc

• M3 – The Age-Period-Cohort Model (Osmond, 1985)

lnmx,t = β(1)x + κ
(1)
t + γc

• M6 – The CBD Model with a Cohort Effect (Cairns et al., 2009)

ln
qx,t

1− qx,t
= κ

(1)
t + κ

(2)
t (x− x̄) + γc

• M7 – The CBD Model with Quadratic Age and Cohort Effects (Cairns et al., 2009)

ln
qx,t

1− qx,t
= κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2x) + γc

• M8 – The CBD Model with an Age-Dependent Cohort Effect (Cairns et al., 2009)

ln
qx,t

1− qx,t
= κ

(1)
t + κ

(2)
t (x− x̄) + γc(xc − x)

• The Full Plat model (Plat, 2009):

lnmx,t = β(1)x + κ
(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + γc

• The Simplified Plat model (Plat, 2009):

lnmx,t = β(1)x + κ
(1)
t + κ

(2)
t (x̄− x) + γc

• The APCI model (CMI, 2017a,b,c):

ln(mx,t) = β(1)x + β(2)x (t− t̄) + κ
(1)
t + γc.

We remark that the APCI model is the model recommended by the Continuous Mortality Inves-

tigation (CMI) Bureau of the Institute and Faculty of Actuaries in their Working Paper 97 for

decomposing historical mortality improvements in the United Kingdom.
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The Route B candidate models also require identifiability constraints to stipulate unique pa-

rameters. For the APCI model, the following identifiability constraints are used:

t1−x0∑
c=t0−x1

γc = 0,

t1−x0∑
c=t0−x1

cγc = 0,

t1−x0∑
c=t0−x1

c2γc = 0,

t1∑
t=t0

κ
(1)
t = 0 and

t1∑
t=t0

tκ
(1)
t = 0.

For the other Route B candidate models, the identifiability constraints used are the same as those

for their Route A counterparts (see Table 1).

In contrast to the Route A models, the definitions of the Route B models do not contain an

error term. The absence of the error term is because a Poisson error structure is used in estimating

the Route B models (see Section 6.3), and in this estimation framework the estimation error is

captured by the difference between the actual and expected (Poisson) death counts.

Parameters β
(i)
x , κ

(i)
t and γc have different interpretations in the two pathways. In Route A,

as the models are fitted to historical mortality improvement rates directly, parameters β
(i)
x , κ

(i)
t

and γc can be interpreted to mean an A/P/C decomposition of historical mortality improvement

rates. In Route B, as the models are fitted to mx,t’s or qx,t’s, parameters β
(i)
x , κ

(i)
t and γc should

be regarded as the A/P/C components of historical mortality rates, and some transformations

are needed in order to obtain an A/P/C decomposition of historical mortality improvement rates.

The required transformations are explained in the next sub-section.

6.2 The Implied Mortality Improvement Rates

The following symbols are defined to represent the A/P/C components of historical mortality

improvement rates implied by the Route B candidate models:

• B(i)
x , i = ·,K,G are the age components of the mortality improvement rates:

– B
(·)
x is a stand-alone age component,

– B
(K)
x is an age component that interacts with a period component,

– B
(G)
x is an age component that interacts with a cohort component;

• K(i)
t , i = 1, 2, 3, are period components of the mortality improvement rates:

– K
(1)
t is a stand-alone period component;

– K
(2)
t is a period component that interacts with an age component or a linear function

of age;

– K
(3)
t is a period component that interacts with a non-linear function of age.

• Gc is the cohort component of the mortality improvement rates.

To obtain neat and interpretable parameterizations, two versions of mortality improvement

are used in Route B.
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The first definition is based on the change in log central death rates, and is given by

MIx,t = lnmx,t−1 − lnmx,t. (4)

We apply this definition of mortality improvement to Model M2, Model M3, the full Plat model,

the simplified Plat model and the APCI model, as they are all constructed to model lnmx,t. The

annual mortality improvement implied by these models can be expressed as follows.

• Model M2:

MIx,t = B(K)
x K

(2)
t +B(G)

x Gc,

where B
(K)
x = β

(2)
x , K

(2)
t = κ

(2)
t−1 − κ

(2)
t , B(G) = β

(3)
x and Gc = γc−1 − γc.

Comment: Model M2 in Route B implies that mortality improvement is driven by a period

component, a cohort component, and two age components which interact with the period and

cohort components, respectively.

• Model M3:

MIx,t = K
(1)
t +Gc,

where K
(1)
t = κ

(1)
t−1 − κ

(1)
t and Gc = γc−1 − γc.

Comment: Model M3 in Route B implies that mortality improvement is driven by the sum

of a period component and a cohort component. There is no age component.

• The Full Plat model:

MIx,t = K
(1)
t +K

(2)
t (x̄− x) +K

(3)
t (x̄− x)+ +Gc,

where K
(1)
t = κ

(1)
t−1 − κ

(1)
t , K

(2)
t = κ

(2)
t−1 − κ

(2)
t , K

(3)
t = κ

(3)
t−1 − κ

(3)
t and Gc = γc−1 − γc.

Comment: The full Plat model in Route B implies that mortality improvement is driven

by three period components and a cohort component. Among the period components, one is

stand-alone, one interacts with a linear function of age , and one interacts with a non-linear

function of age.

• The Simplified Plat model:

MIx,t = K
(1)
t +K

(2)
t (x̄− x) +Gc,

where K
(1)
t = κ

(1)
t−1 − κ

(1)
t , K

(2)
t = κ

(2)
t−1 − κ

(2)
t and Gc = γc−1 − γc.

Comment: The simplified Plat model in Route B implies that mortality improvement is

driven by two period components and a cohort component. Among the period components,

one is stand-alone and one interacts with a linear function of age.
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• The APCI model:

MIx,t = B(·)
x +K

(1)
t +Gc,

where B
(·)
x = −β(2)x , K

(1)
t = κ

(1)
t−1 − κ

(1)
t and Gc = γc−1 − γc.

Comment: The APCI model in Route B implies that mortality improvement is driven by a

(stand-alone) age component, a period component and a cohort component. There is neither

age-period nor age-cohort interaction.

The second definition of mortality improvement is based on the change in logit-transformed11

conditional death probabilities:

MIx,t = ln
qx,t−1

1− qx,t−1
− ln

qx,t
1− qx,t

. (5)

We use this definition of mortality improvement for Models M6, M7 and M8, because all of these

models are constructed to model ln(qx,t/(1 − qx,t)). The annual mortality improvement implied

by these models can be expressed as follows:

• Model M6:

MIx,t = K
(1)
t +K

(2)
t (x− x̄) +Gc,

where K
(1)
t = κ

(1)
t−1 − κ

(1)
t , K

(2)
t = κ

(2)
t−1 − κ

(2)
t and Gc = γc−1 − γc.

Comment: Model M6 in Route B implies that mortality improvement is driven by two period

components and one cohort component. One period component is stand-alone, while the

other period component interacts with a linear function of age.

• Model M7:

MIx,t = K
(1)
t +K

(2)
t (x− x̄) +K

(3)
t ((x− x̄)2 − σ̂2x) +Gc,

where K
(1)
t = κ

(1)
t−1 − κ

(1)
t , K

(2)
t = κ

(2)
t−1 − κ

(2)
t , K

(3)
t = κ

(3)
t−1 − κ

(3)
t and Gc = γc−1 − γc.

Comment: Model M7 in Route B implies that mortality improvement is driven by three

period components and one cohort component. Among the three period components, one is

stand-alone, one interacts with a linear function of age, and one interacts with a quadratic

function of age.

• Model M8:

MIx,t = K
(1)
t +K

(2)
t (x− x̄) +Gc(xc − x)

where K
(1)
t = κ

(1)
t−1 − κ

(1)
t , K

(2)
t = κ

(2)
t−1 − κ

(2)
t and Gc = γc−1 − γc.

Comment: Model M8 in Route B implies that mortality improvement is driven by two period

components and one cohort component. Among the two period components, one is stand-

alone and one interacts with a linear function of age. The cohort component interacts with

a linear function of age.

11The logit transform of a quantity y is defined as ln(y/(1 − y)).
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6.3 Estimation

6.3.1 The Objective Function

We estimate and smooth parameters in each Route B candidate model simultaneously by mini-

mizing the following objective function

Objective = Deviance +
∑
i

Penalty(β(i)x ) +
∑
j

Penalty(κ
(j)
t ) + Penalty(γc), (6)

subject to the applicable identifiability constraints. The minimization is accomplished by using

an iterative Newton’s method.

The deviance in the objective function measures goodness-of-fit. The smaller the deviance is,

the better the goodness-of-fit is. Let dx,t be the observed number of deaths at age x and in year t,

and Ex,t be the corresponding number of exposures-to-risk. Assuming that dx,t is a realization of

a Poisson distribution with a mean of Ex,tmx,t, the deviance can be calculated with the following

formula:

Deviance = 2

x1∑
x=x0

t1∑
t=t0

[
dx,t ln

dx,t
Ex,tmx,t

− (dx,t − Ex,tmx,t)

]
.

The other three terms in the objective function are roughness penalty terms. The more jagged

a parameter series is, the higher the penalty term for the parameter series is. The penalty terms

can be calculated with the following formulas:

Penalty(β(i)x ) = λ
β
(i)
x

x1∑
x=x0

(β(i)x − 3β
(i)
x−1 + 3β

(i)
x−2 − β

(i)
x−3)

2,

Penalty(κ
(j)
t ) = λ

κ
(j)
t

t1∑
t=t0

(κ
(j)
t − 2κ

(j)
t−1 + κ

(j)
t−2)

2

and

Penalty(γc) = λγc

t1−x0∑
c=t0−x1

(γc − 3γc−1 + 3γc−2 − γc−3)2,

where λ
β
(i)
x

, λ
κ
(j)
t

and λγc are smoothing parameters which determine the degrees of smoothness

of the parameters.

6.3.2 Choosing the Smoothing Parameters

The following procedure is used to select the smoothing parameter for β
(1)
x :

1. Set all smoothing parameters except λ
β
(1)
x

to zero.

2. Plot the estimated values of β
(1)
x for λ

β
(1)
x

= 100, 101, 102, . . . , 1010.
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3. The optimal value of λ
β
(1)
x

should be the one that removes the jaggedness and largely keeps

the shape of the unsmoothed series.

Similar procedures are used to select the smoothing parameters for other parameter series. The

smoothing parameters selected for each Route B candidate model are shown in Table 5.

Penalty parameter λ
β
(1)
x

λ
β
(2)
x

λ
β
(3)
x

λ
κ
(1)
t

λ
κ
(2)
t

λ
κ
(3)
t

λγc

M2 107 109 108 - 103 - 103

M3 106 - - 106 - - 107

M6 - - - 106 109 - 107

M7 - - - 106 109 1012 107

M8 - - - 106 109 - 109

Full Plat 106 - - 106 109 108 107

Simplified Plat 106 - - 106 109 - 107

APCI 106 107 - - - 106 106

Table 5: The selected smoothing parameters for each Route B candidate model

As an example, let us consider the choice of the smoothing parameter for κ
(1)
t in Model M3.

The following describes how this smoothing parameter is chosen.

• When λ
κ
(1)
t

is set to 105 (the left panel of Figure 10), the pattern of κ
(1)
t still exhibit some

jaggedness, indicating that the parameter series is under-smoothed.

• When λ
κ
(1)
t

is set to 107 (the right panel of Figure 10), some features in the unsmoothed

series (represented by circles in the diagram) between 1980 and 2000 are being smoothed

out. The over-smoothing problem can be more easily discerned in the pattern of K
(1)
t (the

period component in the historical mortality improvement rates), shown in Figure 11. When

the smoothing parameter is raised to 107, the locations of the peaks and troughs of K
(1)
t

become quite different.

• Therefore, we choose 106 as the optimal value for λ
κ
(1)
t

(see the middle panels of Figures 10

and 11).

We have experimented optimizing the smoothing parameters using a cross validation that is

similar to the one described in Section 5.2.2. Despite being more rigorous, this method does not

yield reasonable empirical results for Route B. One possible explanation for this problem is that

optimally smoothed A/P/C parameters in the mortality rate model do not necessarily guarantee

that the implied A/P/C components of historical mortality improvements are adequately smooth.
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Figure 10: The estimates of κ
(1)
t in the Route B Model M3 for SSA males when different smoothing

parameters are used.
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Figure 11: The values of K
(1)
t (the period component of the mortality improvement rates) implied

by the Route B Model M3 for SSA males when different smoothing parameters are used.
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6.4 Robustness Tests

6.4.1 The Robustness Tests Performed

We test the robustness of the Route B models relative to (1) changes in the tolerance value used

in optimizing the model parameters, (2) changes in the calibration window, (3) changes in the age

range, (4) changes in the identifiability constraints, and (5) the inclusion/exclusion of the oldest

and newest cohorts.

The set-up of the robustness tests is identical to that for the Route A models (see Section

5.3.1), except the following:

• When testing the robustness relative to changes in the tolerance value for Models M2 and

M8, the tolerance values considered are 10−4, 10−6 and 10−8 (instead of 10−6, 10−8 and

10−10). This special treatment is made because Models M2 and M8 do not converge when

a tolerance value of 10−10 is used.

• For the APCI model, the following two sets of identifiability constraints are considered:

1.
t1−x0∑
c=t0−x1

γc = 0,
t1−x0∑
c=t0−x1

cγc = 0,
t1−x0∑
c=t0−x1

c2γc = 0,
t1∑
t=t0

κ
(1)
t = 0 and

t1∑
t=t0

tκ
(1)
t = 0

2.
t1−x0∑
c=t0−x1

ncγc = 0,
t1−x0∑
c=t0−x1

nccγc = 0,
t1−x0∑
c=t0−x1

ncc
2γc = 0,

t1∑
t=t0

κ
(1)
t = 0 and

t1∑
t=t0

tκ
(1)
t = 0

6.4.2 The Robustness Measure

The robustness measure for Route B is identical to that for Route A, except that MIx,t is used

instead of Zx,t. More specifically, the robustness measure for the candidate models in Route B is

defined as follows:

robustness =
maxi(maximum absolute change in the i-th model term)

maxx,t(MIx,t)−minx,t(MIx,t)
, (7)

where maxx,t(MIx,t) and minx,t(MIx,t) represent the maximum and minimum values of the his-

torical mortality improvement rates in the dataset, respectively.12 Here, ‘the i-th model term’

refers to the i-th term on the right-hand-side of the equation specifying MIx,t. For instance, for

Model M3 in Route B, the first model term of MIx,t is K
(1)
t and the second model term of MIx,t

is Gc. To calculate this robustness measure, a procedure similar to that described in Section 5.3.2

is used.

As before, we rate the robustness of the candidate models using the following criteria:

12For Model M2, Model M3, the full Plat model, the simplified Plat model and the APCI model, we calculate the

historical mortality improvement rates as lnmx,t−1 − lnmx,t; for Models M6, M7 and M8, the historical mortality

improvement rates are calculated as ln
qx,t−1

1−qx,t−1
− ln

qx,t

1−qx,t
. This arrangement maximizes consistency with the way

in which MIx,t is defined for the models.
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• High robustness: 0 ≤ robustness measure ≤ 10%

• Medium robustness: 10% < robustness measure ≤ 20%

• Low robustness: robustness measure > 20%

6.4.3 Test Results

The test results are reported in Table 6. Model M3, Model M6, Model M7, the full Plat model,

the simplified Plat model and the APCI model exhibit medium to high levels of robustness in all

of the tests performed. These six models are therefore shortlisted for further consideration.

Robustness Test
Model Model Model Model Model Full Simplified

APCI
M2 M3 M6 M7 M8 Plat Plat

SSA males

Tolerance 29.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

value Low High High High High High High High

Calibration 7.1% 4.4% 6.2% 9.1% 8.2% 4.3% 4.1% 5.1%

window High High High High High High High High

Age range
38.5% 5.2% 12.7% 7.8% 26.9% 7.8% 5.7% 2.3%

Low High Medium High Low High High High

Parameter 10.5% 0.4% 0.7% 1.1% 0.0% 1.8% 1.4% 0.1%

constraints Medium High High High High High High High

Exclusion 35.0% 2.9% 7.6% 8.9% 9.3% 12.2% 6.9% 5.2%

of cohorts Low High High High High Medium High High

SSA females

Tolerance 25.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

value Low High High High High High High High

Calibration 8.8% 3.4% 11.3% 6.5% 8.5% 12.9% 5.2% 3.8%

window High High Medium High High Medium High High

Age range
27.2% 4.9% 10.2% 14.1% 59.8% 10.0% 5.6% 3.2%

Low High Medium Medium Low Medium High High

Parameter 23.5% 0.2% 0.0% 1.1% 18.5% 1.4% 0.7% 0.7%

constraints Low High High High Medium High High High

Exclusion 23.4% 3.7% 6.3% 6.7% 11.7% 11.0% 6.8% 3.2%

of cohorts Low High High High Medium Medium High High

Table 6: The results of the robustness tests performed for each Route B candidate model

6.5 Analyzing the Standardized Residuals from the Shortlisted Models

We now analyze the standardized residuals produced by the shortlisted models. Given how Route

B models are estimated, the standardized residuals for Route B models are calculated using the
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following formula:

dx,t − Ex,tm̂x,t√
Ex,tm̂x,t

,

where m̂x,t represents the fitted value of mx,t produced by the model being analyzed.13

Because Route B models are estimated using a Poisson death count assumption, their stan-

dardized residuals are not necessarily normally distributed even if the model is adequate. As such,

we cannot apply the ‘normal q-q plot’ and the normality test which we used when we pursue Route

A. However, we can still access the adequacy of a Route B model by examining the heat map of

its standardized residuals. If a model is adequate, then the pattern of its standardized residuals

should be random with little clustering.

Figure 12 compares the heatmaps of standardized residuals obtained from shortlisted Route

B models. The following observations are made:

• Models M6 and M7 perform the worst in the analysis of residuals. Large horizontal clusters

are found in the heat maps produced from these models, indicating that age effect is not

adequately captured.

• Significant clustering is observed in the residuals heatmaps produced by Model M3 and the

APCI model for males. Large vertical clusters are observed between mid-80s and mid-90s.

• The full Plat model performs the best in the analysis of residuals. The standardized residuals

produced from the full Plat model appear to be the most random, although there still exist

some gentle diagonal patterns.

• The simplified Plat model is the second best performing model in the analysis of residuals.

Compared to those from full Plat model, the standardized residuals from the simplified Plat

model exhibit slightly more clustering.

The heat maps of standardized residuals suggest that the Plat models (both full and simplified)

are reasonable choices. We recommend the simplified Plat model for use in Route B for the two

reasons. First, in the analysis of residuals, the full Plat model only wins the simplified Plat model

by a narrow margin. Second, the simplified Plat model outperforms the full Plat model in the

robustness tests.

13Because the standardized residuals for Route A and Route B models are calculated in different manners, the

standardized residuals presented in this section cannot be directly compared and contrasted with those shown in

Section 5.4.

33



M3, males

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10
M3, females

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10

M6, males

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10
M6, females

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10

M7, males

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10
M7, females

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10

Full Plat, males

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10
Full Plat, females

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10

Simplified Plat, males

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10
Simplified Plat, females

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10

APCI, males

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10
APCI, females

Year
1970 1980 1990 2000 2010

A
ge

20

40

60

80

-10

-5

0

5

10

Figure 12: Heatmaps of the standardized residuals produced by the shortlisted Route B models.
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7 Conclusion

7.1 A Summary of the Modeling Work Performed

We have considered two pathways (Route A and Route B) to obtaining an A/P/C decomposition

of historical mortality improvement rates.

The following summarizes the modeling work entailed in Route A.

• Estimate all candidate models to historical mortality improvement rates

The candidate models considered are Models M2, M3, M6, M7 and M8, the full Plat model

and the simplified Plat model.

• Perform robustness tests

Model M3, Model M6 and the simplified Plat model exhibit medium to high levels of ro-

bustness, and are therefore shortlisted for further consideration.

• Analyze the standardized residuals produced by the shortlisted models.

Among the shortlisted models, the simplified Plat model performs the best in the analysis

of residuals.

In Route A, the most effective model (the simplified Plat model) implies that mortality improve-

ment is driven by (1) a stand-alone age component, (2) a stand-alone period component, (3) a

period component that interacts with (a linear function) of age, and (4) a stand-alone cohort

component.

The following summarizes the modeling work involved in Route B.

• Estimate all candidate models to historical death rates/probabilities

The candidate models considered are Models M2, M3, M6, M7 and M8, the full Plat model,

the simplified Plat model, and the APCI model.

• Perform robustness tests

Model M3, Model M6, Model M7, the full Plat model, the simplified Plat model, and the

APCI model exhibit medium to high levels of robustness, and are therefore shortlisted for

further consideration.

• Analyze the standardized residuals produced by the shortlisted models.

Among the shortlisted models, the simplified Plat model is chosen on the basis of its per-

formance in the analysis of residuals and robustness tests.

In Route B, the most effective model (the simplified Plat model) implies that mortality improve-

ment is driven by (1) a stand-alone period component, (2) a period component that interacts with

(a linear function) of age, and (3) a stand-alone cohort component.
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Figures 13 and 14 provide a side-by-side comparison between the A/P/C components of his-

torical mortality improvements derived from the two pathways. Note that the ‘stand-alone age

component’ does not apply to Route B.

7.2 Recommendation and Caveats

We conclude that the simplified Plat model in Route A is the most appropriate model for identi-

fying the A/P/C components of the U.S. gender-specific historical mortality improvements. The

conclusion is drawn on the following bases.

• We have argued previously that the simplified Plat model performs the best in both Routes

A and B. From Figures 13 and 14 we observe that the A/P/C components derived from the

two pathways are not too different, but those from Route B are noticeably less smooth. The

lack of smoothness is a concern, in part because the underlying A/P/C components should

in principle be free of noise (the noise should be captured by the residual component) and

in part because it would be more challenging (for the researchers of the follow-up project)

to link the A/P/C components to intrinsic factors if they are jagged.

• One technical limitation of Route B is that the smoothing parameters for Route B models

are chosen with a rather subjective approach. Therefore, from a technical viewpoint, the

simplified Plat model in Route A is more preferred than its Route B counterpart.

We emphasize that the conclusion drawn is data-dependent, applicable to the data set under

consideration (U.S. gender-specific, ages 20-95, years 1968-2014) only. Although the model selec-

tion procedures (Routes A and B) stand for any data set, the conclusion drawn can be (very)

different when a different population is considered.

We also emphasize that the conclusion might be different if we focus on a particular age range

(say, pensionable ages) only. We have repeated the entire analysis using data for ages above 55

only, and found that for this age range the advantage of the simplified Plat model over the other

candidate models becomes less apparent.14

Further, the selected model (the simplified Plat model in Route A) is only the best currently.

While the robustness test results indicate that the conclusion is unlikely to change in the next

few years, it is entirely possible that the conclusion will change when a substantial volume of new

data is added to the analyses, for reasons such as structural changes in the underlying A/P/C

components.

Finally, we acknowledge that this study focuses only on the overall U.S. population, without

considering the possible differences in mortality improvements due to, for example, differences in

socioeconomic status. It is warranted to revisit this study using more granular data when such

data becomes available in the future.

14The additional analyses are documented in the full report of this study (Section 7, Li et al., 2018a; Section 5,

Li et al., 2018b).
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Figure 13: A comparison between the A/P/C components of historical mortality improvements

obtained from the most effective Route A and Route B models, U.S. males.
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Figure 14: A comparison between the A/P/C components of historical mortality improvements

obtained from the most effective Route A and Route B models, U.S. females.
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7.3 The Next Steps

The mortality models analyzed in this paper and the final conclusions regarding the A/P/C de-

composition of historical US population mortality experience have provided LAG with a solid

foundation upon which to build subsequent phases of its longer-term research objectives. In par-

ticular, the A/P/C components identified in this paper are essential to the next project phase,

which will be researching degrees of correlation between significant historical US population mor-

tality trends and specific mortality drivers.
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