MEK-ERK signaling diametrically controls the stimulation of IL-23p19 and EBI3 expression in epithelial cells by IL-36γ

Glen M. Scholz, Jacqueline E. Heath, Katrina A. Walsh, Eric C. Reynolds

Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia.

Running title: Regulation of IL-12 family cytokines by IL-36γ

Funding: This research was supported by the Australian Government, Department of Industry, Innovation and Science.

Keywords: IL-36, EBI3, IL-39, epithelial cells, ERK1/2, EGF.
ABSTRACT (250 word limit – currently 240)

Interleukin (IL)-36 (IL-36) cytokines are important regulators of mucosal homeostasis and inflammation. We previously established that oral epithelial cells strongly upregulate IL-36γ expression in response to the bacterial pathogen Porphyromonas gingivalis. Here, we have established that IL-36γ stimulates the expression of the IL-12 cytokine family members, IL-23p19 and Epstein-Barr Virus-Induced Gene 3 (EBI3), by oral epithelial cells; their expression was also selectively stimulated by IL-36α. Notably, IL-23p19 and EBI3 expression was not stimulated by P. gingivalis, thus suggesting that their expression by the oral epithelium in response to P. gingivalis is likely to be mediated in an autocrine manner by IL-36γ. The IL-36γ-inducible expression of IL-23p19 and EBI3 was found to be diametrically regulated by the mitogen-activated protein kinase/extracellular signal regulated kinase (MEK)-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, whereby the activation of MEK-ERK signaling likely functions as a negative feedback mechanism to limit EBI3 expression. Furthermore, epidermal growth factor (EGF) receptor (EGFR) signaling, which is important for mucosal homeostasis, was demonstrated to modulate, in a MEK-ERK-dependent manner, the stimulation of IL-23p19 and EBI3 expression by IL-36γ. IL-23p19 and EBI3 have recently been shown to heterodimerize to form the novel cytokine IL-39 and promote neutrophil expansion. EBI3 has been shown to also have IL-12 cytokine family-independent functions (e.g. mediating IL-6 trans-signaling). Thus, this study not only advances our understanding of how IL-36 cytokines may control mucosal inflammation, but also establishes EGFR signaling as a potentially important modulator of IL-36 cytokine function.
INTRODUCTION

Mucosal epithelial cells are critical mediators of host defense against infection by microbial pathogens. In addition to barrier function, they express pattern recognition receptors, including members of the Toll-like receptor (TLR) family, which enable them to also actively participate in host defense. Specifically, the engagement of TLRs by microbial ligands triggers downstream signaling pathways that activate the host immune response. For example, the TLR adapter protein myeloid differentiation primary response 88 can initiate downstream signaling via Interleukin (IL)-1 receptor associated kinase 1 (IRAK1), resulting in the activation of mitogen-activated protein (MAP) kinases (e.g. extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAP kinase) and transcription factors, including nuclear factor-κB (NF-κB). This ultimately culminates in the expression of inflammatory cytokines and chemokines that activate the immune response. IL-36 family cytokines (IL-36α, IL-36β, and IL-36γ), which belong to the IL-1 superfamily, have recently emerged as key regulators of immune responses at mucosal sites. They are expressed by a range of cell types, including mucosal epithelial cells, macrophages, and dendritic cells, and induced in response to TLR signaling. IL-36 cytokines are potent stimulators of the expression of neutrophil chemokines, such as IL-8 and chemokine (C-X-C motif) ligand 1 (CXCL1), by mucosal epithelial cells and innate immune cells, and accordingly are important regulators of neutrophil responses during infection. IL-36 cytokines can also regulate immune responses by stimulating the expression of T cell chemokines, including CXCL10 and chemokine (C-C motif) ligand 20 (CCL20). They can also directly regulate T cell responses by stimulating the proliferation of CD4+ T helper (Th) cells.

IL-12 family cytokines are likewise important regulators of immune responses. These heterodimeric cytokines are formed by the chain-pairing of an alpha subunit
(IL-12p35, IL-23p19, and IL-27p28) with a soluble receptor-like beta subunit (IL-12p40 and IL-12p40), IL-23 (IL-23p19/IL-12p40), IL-27 (IL-27p28/EBI3), IL-35 (IL-12p35/EBI3), and IL-39 (IL-23p19/EBI3). The family includes: IL-12 and IL-23, which are largely produced by macrophages and dendritic cells, are pro-inflammatory and regulate the development and effector functions of Th cells, namely Th1 and Th17 cells, respectively. IL-27 exerts mainly anti-inflammatory effects, such as inducing T regulatory cells and inhibiting the development of Th17 cells. IL-35 is an anti-inflammatory cytokine, and primarily produced by T regulatory cells. IL-39 was identified only very recently, and has been shown to be expressed by keratinocytes and B cells. Although a role for IL-39 in the regulation of T cells has not been reported, it induces inflammation and promotes the expansion of neutrophils in lupus-prone mice. EBI3 also has IL-12 family cytokine-independent functions, including mediating IL-6 trans-signaling in CD4+ T cells, and inhibiting collagen expression in dermal fibroblasts. Significantly, IL-36 cytokines can synergize with IL-12 to promote the Th1 polarization of naïve T cells, and conversely inhibit the development of T regulatory cells.

We recently established that oral epithelial cells specifically up-regulate the expression of IL-36γ in response to the bacterial pathogen Porphryromonas gingivalis. P. gingivalis is a keystone pathogen in chronic periodontitis, an inflammatory disease in which the breakdown of periodontal tissues can result in tooth loss as well as compromise systemic health. In addition to neutrophil chemokines, IL-36γ also potently stimulates the expression of T cell chemokines (e.g. CCL5 and CCL20) by oral epithelial cells. Here, we investigated whether IL-36 cytokines may regulate immune responses by also stimulating the expression of IL-12 family cytokines. We show that IL-36γ selectively stimulated the expression of IL-23p19 and EBI3 by oral epithelial cells. Mechanistically, IL-23p19 and EBI3
expression were diametrically regulated by the MEK-ERK pathway, whereby the activation of MEK-ERK signaling likely functions as a negative feedback mechanism to limit EBI3 expression. Significantly, the IL-36γ-inducible expression of IL-23p19 and EBI3 were modulated, in a MEK-ERK-dependent manner, by epidermal growth factor (EGF) receptor (EGFR) signaling. Together, these findings extend our understanding of how IL-36 cytokines regulate immune responses, as well as establish how EGFR signaling may modulate IL-36 cytokine function.
RESULTS

IL-36γ selectively stimulates IL-23p19 and EBI3 expression in oral epithelial cells

The inflammatory cytokine response of mucosal epithelia to microbial pathogens is important for activating the immune response. We recently established that IL-36γ plays a role in the inflammatory response of oral epithelial cells to the bacterial pathogen *P. gingivalis*. For instance, IL-36γ was shown to strongly stimulate the expression of T cell chemokines (e.g. CCL5 and CCL20) by not only dendritic cells and macrophages, but also by oral epithelial cells. This indicates that oral epithelium-derived IL-36γ likely activates the immune response to microbial pathogens by also functioning in an autocrine manner. IL-12 family cytokines are important regulators of T cell responses, and therefore we investigated the ability of IL-36γ to stimulate their expression in oral epithelial cells (e.g. TIGK cells). We have previously shown that IL-36γ can stimulate strong cytokine responses in TIGK cells. Although IL-36γ did not stimulate IL-12p35 expression in TIGK cells (Figure 1a), it strongly stimulated IL-23p19 expression (Figure 1b), and weakly stimulated IL-27p28 expression (Figure 1c). Interestingly, although IL-12p40 expression was not stimulated (Fig. 1d), EBI3 expression was robustly stimulated by IL-36γ (Figure 1e). To confirm that the increased IL-23p19 and EBI3 mRNA levels were due to increased transcription, TIGK cells were treated with actinomycin D (ActD) prior to IL-36γ stimulation. Consistently, ActD inhibited the increase in IL-23p19 and EBI3 mRNA levels (Figures 1f and g). IL-23p19 was recently shown to heterodimerize with EBI3 to form IL-39. Additionally, EBI3 can also function independently of IL-23p19 (and IL-12p35 and IL-27p28). Thus, the levels of IL-23p19 and EBI3 in the cell culture supernatants were measured. Although IL-23p19 was not detected in the supernatants (data not shown), EBI3 levels were greatly increased in culture supernatants from IL-36γ-stimulated cells (Figure 1h). Oral epithelium-derived IL-36γ is likely to also function in a paracrine manner to
stimulate inflammation. Therefore, we tested the ability of IL-36γ to stimulate the expression of IL-23p19 and EBI3 in human monocyte-derived dendritic cells and monocyte-derived macrophages. Notably, IL-36γ did not stimulate significant increases in the expression levels of IL-23p19 and EBI3 in dendritic cells (Figure 1i and j) and macrophages (Figure 1k and l). Taken together, these data suggest that oral epithelium-derived IL-36γ may regulate the immune response to pathogen infection, in part, by stimulating in an autocrine manner the expression of IL-23p19 and EBI3.

IL-23p19 and EBI3 expression is also selectively stimulated by IL-36α and IL-1β

In addition to shared functions, *in vivo* studies indicate that IL-36 cytokines (IL-36α, IL-36β, and IL-36γ) also have unique functions. Therefore, we tested the ability of IL-36α to stimulate the expression of IL-12 cytokines by oral epithelial cells. We also tested their stimulation by IL-1β for comparison. As with IL-36γ, IL-36α and IL-1β did not stimulate the expression of *IL-12p35* in TIGK cells (Figure 2a). In contrast, they strongly stimulated *IL-23p19* expression (Figure 2b) and weakly stimulated *IL-27p28* expression (Figure 2c). Although IL-36α and IL-1β did not stimulate significant *IL-12p40* expression (Figure 2d), they both robustly stimulated *EBI3* expression (Figure 2e). The secretion of EBI3 was also strongly stimulated by IL-36α and IL-1β (Figure 2f). These data indicate that IL-36 cytokines (and IL-1β) can stimulate oral epithelial cells to selectively express the IL-12 family members *IL-23p19* and *EBI3*.

P. gingivalis does not stimulate IL-23p19 and EBI3 expression in oral epithelial cells

Given our previous report demonstrating the stimulation of IL-36γ expression in oral epithelial cells in response to *P. gingivalis*, we sought to establish whether *P. gingivalis* may therefore also stimulate *IL-23p19* and *EBI3* expression. Consistent with our earlier
report, IL-36γ expression in TIGK cells was strongly stimulated in response to *P. gingivalis* (Figure 3a). However, IL-23p19 expression was not stimulated (Figure 3b), and EBI3 expression was stimulated only weakly (Figure 3c). Although this might suggest that the stimulation of IL-36γ expression by *P. gingivalis* does not subsequently result in the stimulation of IL-23p19 and EBI3 by autocrine IL-36γ signaling, IL-36γ is secreted as pro-IL-36γ, which is at least 1,000-fold less active than mature IL-36γ. Pro-IL-36γ needs to be proteolytically processed to IL-36γ by neutrophil proteases to activate significant IL-36 receptor (IL-36R) signaling. The absence of neutrophils in our in vitro culture system precludes such processing of secreted pro-IL-36γ, thereby explaining, at least in part, the lack of IL-23p19/EBI3 stimulation in response to *P. gingivalis*.

Diametric regulation of the IL-36γ-inducible expression of IL-23p19 and EBI3 by MEK-ERK signaling

In view of the above findings, we next sought to identify the signaling pathways that mediate the stimulation of IL-23p19 and EBI3 expression by IL-36γ. We have previously established that the stimulation of neutrophil chemokine expression (e.g. IL-8 and CXCL1) in oral epithelial cells (e.g. TIGK cells) by IL-36γ is regulated by IRAK1-dependent signaling. The transfection of TIGK cells with IRAK1-targeting siRNA, which reduced IRAK1 expression levels by >90% (Figure 4a), significantly inhibited the stimulation of IL-23p19 and EBI3 expression by IL-36γ (Figure 4b and c). Oral epithelial cells express IRAK2, and thus the incomplete inhibition of IL-36γ-inducible EBI3 expression might be due to partial compensation by IRAK2. IRAK1 can activate several signaling proteins downstream of the IL-36R, including NF-κB and MAP kinases (e.g. p38 MAP kinase and ERK1/2). To further elucidate the signaling pathways controlling the IL-36γ-inducible expression of IL-23p19 and EBI3, we tested the ability of IL-36γ to activate NF-κB, p38 MAP kinase, and ERK1/2 in
Western blotting of cell lysates with phospho-specific antibodies revealed the rapid activation of NF-κB (Figure 4d). p38 MAP kinase and ERK1/2 were likewise shown to also be rapidly activated (Figure 4d). Next, we used pharmacologic inhibitors to establish the importance of their activation for IL-23p19 and EBI3 expression. The NF-κB inhibitor, BAY11-7082, reduced the stimulation of both IL-23p19 and EBI3 expression by IL-36γ (Figure 4e and f). IL-36γ-inducible IL-23p19 expression was also significantly inhibited when the cells were pretreated with either the p38 MAP kinase inhibitor, SB203580, or the mitogen-activated protein kinase/extracellular signal regulated kinase kinase (MEK) inhibitor, U0126 (Figure 4g). In contrast, the stimulation of EBI3 expression was not inhibited by the p38 MAP kinase inhibitor (Figure 4h). Moreover, its IL-36γ-inducible expression was potentiated by the MEK inhibitor (Figure 4h). The basal expression level of EBI3 in unstimulated TIGK cells was not affected by the MEK inhibitor (data not shown).

Collectively, these data suggest that the p38 MAP kinase pathway enables the expression of IL-23p19 to be regulated independently of EBI3, and that the activation of the MEK-ERK pathway may function as a feedback mechanism to limit EBI3 expression.

MEK-ERK signaling represses the stimulation of EBI3 transcription by IL-36γ

The MEK-ERK pathway can transcriptionally as well as post-transcriptionally (e.g. mRNA stability) regulate the expression of inflammatory genes. Therefore, to determine the mechanism underlying the potentiation of the IL-36γ-inducible expression of EBI3 by the MEK inhibitor, TIGK cells were treated concurrently with ActD and U0126, and then stimulated with IL-36γ. Significantly, ActD inhibited the ability of U0126 to potentiate the upregulation of EBI3 mRNA levels by IL-36γ (Figure 5a), suggesting that MEK-ERK signaling negatively regulates EBI3 at the level of gene transcription. However, because the U0126-independent stimulation of EBI3 mRNA levels by IL-36γ was also inhibited, this
Experimental approach did not enable us to establish whether MEK-ERK signaling may also regulate the stability of *EBI3* mRNA transcripts. Therefore, TIGK cells were stimulated with IL-36γ for 2 h to induce *EBI3* transcription; thereafter, the cells were treated with ActD in the absence and presence of U0126, and *EBI3* mRNA levels monitored over the next 8 h. As shown in Figure 5b, *EBI3* mRNA levels were unchanged over the 8 h time-course, even when MEK-ERK signaling was inhibited with U0126. Collectively, these data indicate that MEK-ERK signaling negatively-regulates the IL-36γ-inducible expression of *EBI3* at the level of gene transcription. We also examined the effects of U0126 on the stability of *IL-23p19* mRNA transcripts for comparison. *IL-23p19* mRNA levels declined slowly over the 8 h time-course, and were not affected by U0126 (Figure 5b).

EGFR signaling can differentially modulate the IL-36γ-inducible expression of *IL-23p19* and *EBI3*

Signaling by the EGFR, which activates the MEK-ERK pathway, has been shown to differentially regulate the expression of inflammatory cytokines (e.g. *IL-8* and *CCL2*) in epidermal keratinocytes. Therefore, we investigated the effect of EGFR signaling on the stimulation of *IL-23p19* and *EBI3* expression in oral epithelial cells by IL-36γ. Specifically, TIGK cells were cultured for 24 h in the presence of 5 ng mL⁻¹ EGF and 50 ng mL⁻¹ EGF to induce different levels of EGFR and ERK1/2 activity, which was confirmed by Western blotting with phospho-specific antibodies (Figure 6a). Consistent with ligand-induced receptor internalization and degradation, EGFR expression levels were reduced when TIGK cells were cultured in the presence of 50 ng mL⁻¹ EGF (Figure 6a). Culturing the cells under those conditions enhanced the IL-36γ-inducible expression of *IL-23p19*, and this effect was abolished when the cells were treated with U0126 prior to IL-36γ stimulation (Figure 6b). In contrast, the IL-36γ-inducible expression of *EBI3* was significantly reduced in a MEK-ERK-
dependent manner (Figure 6c). To determine whether the inhibitory effect of EGFR signaling on the IL-36γ-inducible expression of EBI3 might be due to decreased IL-36R expression, we also measured the expression levels of the IL-36R subunits, IL-1RL2 and IL-1RAcP. IL-1RL2 expression was found to be increased around 2-fold when TIGK cells were cultured in the presence of 50 ng mL\(^{-1}\) EGF (Figure 6d), while IL-1RAcP expression was unchanged (Figure 6e). Taken together, these data indicate that the EGFR can differentially modulate the IL-36γ-inducible expression of IL-23p19 and EBI3 by activating MEK-ERK signaling.
DISCUSSION

IL-36 cytokines are important regulators of mucosal homeostasis and inflammation.6 In this study, we discovered that IL-36γ stimulates oral epithelial cells to selectively express the IL-12 cytokine family members, *IL-23p19* and *EBI3*. IL-23p19 and EBI3 have recently been shown to form the novel cytokine IL-39 and regulate neutrophil responses.21-23 EBI3 has been shown to also have IL-12 cytokine-independent functions.24,25 The selective stimulation of *IL-23p19* and *EBI3* expression is therefore likely to play an important role in the control of mucosal immunity by IL-36 cytokines.

We previously established that oral epithelial cells up-regulate *IL-36γ* expression in response to the bacterial pathogen *P. gingivalis*, and that IL-36γ likely regulates immune responses in the oral mucosa in part by stimulating in both a paracrine and autocrine manner the expression of neutrophil and T cell chemokines.13 We have now found that IL-36γ also stimulates oral epithelial cells (e.g. TIGK cells) to express *IL-23p19* and *EBI3*; their expression was also selectively stimulated by IL-36α. In contrast, *IL-12p35* and *IL-12p40* expression was not stimulated. Although TIGK cells exhibit characteristics of primary oral epithelial cells, the possibility that subtle differences exist needs to be considered. Regardless, our data indicate that *IL-23p19* and *EBI3* are likely to be conserved targets of IL-36 cytokines in human oral epithelial cells.

IL-36γ did not stimulate *IL-23p19* and *EBI3* expression in human monocyte-derived dendritic cells and macrophages. A recent study found that *IL-23p19* expression in human monocyte-derived dendritic cells was also not stimulated by IL-36β.15 Another study, however, reported that *IL-23p19* expression in human monocyte-derived dendritic cells was stimulated by IL-36 cytokines.15 Interestingly, although the authors found that *IL-12p35* expression in human dendritic cells was only weakly stimulated, its expression was strongly stimulated in mouse bone marrow-derived dendritic cells.15 IL-36γ has been reported to
stimulate the expression of *IL-23p19* in mouse bone marrow-derived macrophages.\(^6\) Therefore, stimulation of IL-12 family cytokine subunit expression in dendritic cells and macrophages by IL-36 cytokines may be species-dependent and/or depend on *in vitro* culture conditions.

IL-23p19 and EBI3 have recently been shown to heterodimerize to form IL-39.\(^{21,22}\) Although we did not detect IL-23p19 secretion by IL-36γ-stimulated TIGK cells, it remains possible that *in vivo* IL-36γ, potentially in concert with other inflammatory cytokines, stimulates the secretion of IL-23p19 and results in the formation of IL-39 (IL-23p19/EBI3).

Unlike other IL-12 family cytokines, IL-39 does not appear to regulate T cells; instead, IL-39 has been shown in lupus-prone mice to promote the expansion of neutrophils.\(^{23}\) This raises the possibility that IL-36 cytokines might also drive the neutrophil-mediated host response to microbial pathogens (e.g. *P. gingivalis*) by stimulating IL-23p19/EBI3 (IL-39) production.

EBI3 is also secreted independent of a pairing alpha subunit (e.g. IL-12p35, IL-23p19, and IL-27p28).\(^{21,36}\) This suggests that EBI3 also has IL-12 family cytokine-independent functions. Indeed, EBI3 was recently shown to mediate IL-6 *trans*-signaling in endothelial cells and CD4\(^+\) T cells.\(^{24}\) IL-6 *trans*-signaling differs from “classical” signaling in that IL-6 binds to a soluble form of the IL-6 receptor, which then activates intracellular signaling via transmembrane gp130.\(^{37}\) IL-6 signaling plays a critical role in promoting the development of Th17 cells.\(^{38}\) Moreover, the maintenance of IL-17-secreting Th17 cells is mediated by IL-6 *trans*-signaling.\(^{39}\) IL-6 *trans*-signaling also activates inflammatory responses (e.g. *CCL2* expression) in other cell types, including endothelial cells, fibroblasts, and epithelial cells.\(^{37}\) IL-36γ has previously been shown to stimulate IL-6 expression, including in oral epithelial cells.\(^{12,13,15}\) The ability of IL-36γ to coordinately stimulate both IL-6 and EBI3 expression by epithelial cells may therefore be important for the differential regulation of the responses that are activated by “classical” and “*trans*” IL-6 signaling in the oral mucosa.
The infection of TIGK cells by \textit{P. gingivalis} did not stimulate IL-23p19 expression, and EBI3 was only weakly stimulated, despite the strong stimulation of IL-36\(\gamma\) expression. IL-36\(\gamma\) is secreted as pro-IL-36\(\gamma\), which is around 1,000-fold less active than mature IL-36\(\gamma\).\footnote{In vivo, pro-IL-36\(\gamma\) is thought to be proteolytically processed to IL-36\(\gamma\) by neutrophil proteases (e.g. cathepsin G and elastase).\cite{31} Such processing of pro-IL-36\(\gamma\) would not have occurred in our TIGK cell-\textit{P. gingivalis} co-culture system, thus precluding autocrine stimulation of IL-23p19 and EBI3 expression. Furthermore, the major virulence factors of \textit{P. gingivalis} (Kgp and RgpA/B) are lysine-specific and arginine-specific proteases. Cytokines that are secreted into the cell culture medium in response to \textit{P. gingivalis} have previously been shown to be degraded by these proteases, which prevents autocrine cytokine responses.\footnote{Indeed, the presence of nine lysine and five arginine residues in IL-36\(\gamma\) would likely make the cytokine highly susceptible to degradation by \textit{P. gingivalis} proteases. This raises the possibility that \textit{P. gingivalis} might be able to dysregulate the stimulation of IL-23p19 and EBI3 expression by autocrine IL-36\(\gamma\) signaling.} Remarkably, signaling by the MEK-ERK pathway was found to diametrically regulate the stimulation of IL-23p19 and EBI3 expression by IL-36\(\gamma\); i.e. IL-23p19 expression was stimulated and EBI3 expression inhibited by MEK-ERK signaling. The activation of MEK-ERK signaling by IL-36\(\gamma\) is therefore likely to function as a negative feedback mechanism to limit EBI3 expression (Figure 7). Although this would likely restrain IL-39-mediated responses (e.g. neutrophil expansion), the inhibitory effects on EBI3-mediated responses (e.g. IL-6 \textit{trans}-signaling) would arguably be greater. Interestingly, the expression of IL-23p19, but not EBI3, was also dependent on signaling by the p38 MAP kinase pathway. Further studies will be required to understand the importance of the diametric regulation of IL-23p19 and EBI3 by the MEK-ERK pathway, and the selective regulation of IL-23p19 by the p38 MAP kinase pathway.
Importantly, the MEK-ERK pathway might enable the modulation of the IL-36γ-inducible expression of *IL-23p19* and *EBI3* by other host factors (e.g. growth factors). We demonstrated that EGF, which activates MEK-ERK signaling in epithelial cells, enhanced the stimulation of *IL-23p19* expression and inhibited that of *EBI3*. Consequently, the local growth factor milieu might play a role in modulating the expression of IL-23p19/EBI3 by the oral epithelium in response to inflammatory stimuli (e.g. IL-36 cytokines). This may be important during mucosal wound healing, when the levels of EGFR ligands are upregulated and promote wound healing by stimulating the proliferation of epithelial cells. It is worth noting that *P. gingivalis* has been proposed to interfere with wound healing by inactivating EGF. The dysregulation of *IL-23p19* and *EBI3* expression in the oral mucosa might be one consequence of the inactivation of EGF by *P. gingivalis*.

In summary, IL-36 cytokines stimulate oral epithelial cells to selectively express IL-23p19 and EBI3. Although the immunoregulatory functions of IL-39 (IL-23p19/EBI3) are still to be clearly defined, the cytokine appears to play a role in the control of neutrophil responses. Furthermore, the stimulation of EBI3 expression may enable IL-36 cytokines to also indirectly control inflammatory responses in other cell types, for example, by facilitating IL-6 *trans*-signaling. Finally, the diametric regulation of *IL-23p19/EBI3* expression by MEK-ERK signaling may be important for the resolution of mucosal inflammation. Thus, this study not only extends our understanding of how IL-36 cytokines regulate immune responses, but also establishes a likely role for EGFR signaling in the modulation of IL-36 cytokine function.
METHODS

Reagents

DermaLife keratinocyte growth medium and supplements (TGFα, insulin, epinephrine, apo-transferrin, hydrocortisone, bovine pituitary extract, and glutamine) were from Lifeline Cell Technology. Human IL-1β (Ala117-Ser269), IL-36α (Lys6-Phe158), and IL-36γ (Ser18-Asp169) were from R&D Systems. The human IL-23p19 and EBI3 ELISA kits were from Aviva Systems Biology. Opti-MEM I reduced serum medium, Lipofectamine RNAiMAX transfection reagent, and precast 10% NuPAGE gels were from Life Technologies. The ON-TARGETplus IRAK1 and non-targeting control siRNA were from GE Healthcare. The anti-phospho-EGFR (pY1068), anti-EGFR, anti-phospho-ERK1/2, anti-ERK1/2, anti-phospho-p38 MAP kinase, anti-phospho-p65 NF-κB, and anti-p65 NF-κB antibodies were from Cell Signaling Technology. BAY11-7082, SB203580, and U0126 were from Merck Millipore, while actinomycin D was from Sigma-Aldrich.

Mammalian cell culture

Human TIGK gingival epithelial cells \(^46\) were cultured in DermaLife keratinocyte growth medium supplemented with 0.5 ng mL\(^{-1}\) TGFα, 5 μg mL\(^{-1}\) insulin, 1 μM epinephrine, 5 μg mL\(^{-1}\) apo-transferrin, 100 ng mL\(^{-1}\) hydrocortisone, 0.4% bovine pituitary extract, and 6 mM glutamine. Human monocyte-derived dendritic cells and monocyte-derived macrophages were cultured as previously described.\(^13\) All cells were cultured at 37 °C in a humidified atmosphere of 5% CO\(_2\).

Bacterial cell culture

P. gingivalis (ATCC 33277) was maintained on horse-blood agar plates at 37 °C in an anaerobic atmosphere of 5% H\(_2\), 80% N\(_2\), and 15% CO\(_2\). Bacterial colonies were used to
inoculate Brain Heart Infusion medium supplemented with 0.5 mg mL\(^{-1}\) cysteine, 5 µg mL\(^{-1}\) hemin, and 5 µg mL\(^{-1}\) menadione.\(^{13,47}\)

Infection human oral epithelial cells with *P. gingivalis*

P. gingivalis cell concentrations were determined spectrophotometrically and confirmed retrospectively by counting viable cell colonies on horse-blood agar plates. Late logarithmic growth phase bacteria were harvested by centrifugation at 7,000 x g for 20 min at 4 °C, and suspended in antibiotic-free keratinocyte growth medium. TIGK cells were infected with *P. gingivalis* at a multiplicity-of-infection (MOI) of 100:1.\(^{13}\)

RNA purification, reverse transcription, and quantitative real-time PCR

Total RNA was purified using the ReliaPrep RNA Cell miniprep system (Promega), which included an on-column DNase-treatment step. RNA was reverse-transcribed using random primers and GoScript Reverse Transcriptase (Promega), per the manufacturer’s instructions. Quantitative real-time PCR (qPCR) was performed in duplicate using GoTaq qPCR Master Mix (Promega) and pre-developed TaqMan assays (Life Technologies) for the following genes: *EBI3* (Hs01057148_m1), *IL-1RAcP* (Hs00895050_m1), *IL-1RL2* (Hs00909276_m1), *IL-12p35* (Hs01073447_m1), *IL-12p40* (Hs01011518_m1), *IL-23p19* (Hs00372324_m1), *IL-27p28* (Hs00377366_m1), *IRAK1* (Hs01018347_m1), and *IRAK2* (Hs00176394_m1). PCR was performed on a QuantStudio 7 Flex Real-Time PCR system (Life Technologies). The data were normalized against the *hypoxanthine guanine phosphoribosyl transferase* and *TATA-box binding protein* genes.

RNA interference-mediated gene-silencing

A reverse transfection protocol was used for siRNA transfection of TIGK cells.\(^{13}\) Briefly, the
siRNA were diluted to 120 nM with 100 µL Opti-MEM I reduced serum medium, mixed
with 100 µL Opti-MEM medium containing 1 µL Lipofectamine RNAiMAX transfection
reagent, and incubated at room-temperature for 20 min. TIGK cells (2 x 10^5 cells in 1 mL
keratinocyte growth medium) were seeded in 12-well plates and cultured with the
transfection cocktail for 24 h. Thereafter, the medium was replaced and the cells cultured for
an additional 24 h.

Enzyme-linked immunosorbent assays

ELISA assays were performed by incubating diluted culture supernatants and standards in
capture antibody-coated 96-well microplates at 37 °C for 2 h, per the manufacturer’s
instructions (Aviva Systems Biology). The wells were washed prior to the addition of
biotinylated anti-IL-23p19 and anti-EBI3 antibodies, and incubated at 37 °C for 1 h. The
plates were washed, and then incubated with an avidin-horse radish peroxidase conjugate at
37 °C for 1 h. Following washing, 3,3',5,5'-tetramethylbenzidine substrate was added and the
plates incubated at room temperature. Color development was subsequently stopped and
measured at 450 nm with wavelength correction at 560 nm using a microplate reader
(Victor3, PerkinElmer).

Cell lysis and Western blotting

TIGK cells were washed with ice-cold PBS, and then lysed on ice with lysis buffer (20 mM
Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% IGEPAL CA-630, 10% glycerol, 20
mM β-glycerol phosphate, 1 mM sodium orthovanadate, 10 mM NaF, and protease
inhibitors) for 30 min. The lysates were clarified by centrifugation (13,000 x g for 10 min at
4 °C) and the protein concentrations measured using a protein assay kit (Bio-Rad). Cell
lysates were incubated with NuPAGE LDS sample buffer for 10 min at 70 °C, and then
subjected to electrophoresis on a 10% NuPAGE gel using MOPS buffer (Life Technologies). The proteins were transferred to a PVDF membrane, which was then blocked with 3% BSA in TBST (20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.02% Tween-20) for 60 min at room temperature. The membrane was incubated with the primary antibody (diluted in 1% BSA in TBST) overnight at 4 °C. The membrane was washed with TBST, followed by incubation with a HRP-conjugated secondary antibody (diluted in 1% BSA in TBST) for 60 min at room temperature. Following washing with TBST, immunoreactive proteins were visualized using enhanced chemiluminescence reagents (Millipore) and a Fujifilm Las-3000 Imager (Fujifilm, Japan).

Statistical analysis
Data combined from n independent replicate experiments are presented as the mean ± SEM. Statistical analyses were performed using GraphPad Prism 7. Differences between two groups were evaluated using the Student’s t-test. For multiple comparisons, statistical analysis was performed by ANOVA with Dunnett’s post-hoc test. A P value <0.05 was considered statistically significant.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
This work was supported by the Australian Government Department of Industry, Innovation and Science Grant ID 20080108. We thank Professor Richard Lamont (University of Louisville) for generously providing the TIGK cells.
REFERENCES

5. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. *Immunity* 2011; **34**: 637-650.

30. Towne JE, Garka KE, Renshaw BR et al. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. *J Biol Chem* 2004; 279: 13677-13688.

40. Towne JE, Renshaw BR, Douangpanya J et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. *J Biol Chem* 2011; **286**: 42594-42602.

FIGURE LEGENDS

Figure 1. Stimulation of IL-12 family cytokine expression in oral epithelial cells and innate immune cells by IL-36γ. (a-e) TIGK cells were stimulated with IL-36γ (100 ng mL\(^{-1}\)) for the time indicated. (a) *IL-12p35*, (b) *IL-23p19*, (c) *IL-27p28*, (d) *IL-12p40*, and (e) *EBI3* mRNA expression levels were then measured. Data combined from \(n = 3 \) replicate experiments are presented as the mean ± SEM. (f and g) TIGK cells were treated with actinomycin D (1 μg mL\(^{-1}\)) for 30 min, and then stimulated with IL-36γ for 2 h. (f) *IL-23p19* and (g) *EBI3* mRNA expression levels were then measured. Data combined from \(n = 3 \) replicate experiments are presented as the mean ± SEM. (h) TIGK cells were stimulated with IL-36γ (100 ng mL\(^{-1}\)) for the time indicated, and the concentrations of EBI3 in the cell culture supernatants were then measured. Data combined from \(n = 3 \) replicate experiments are presented as the mean ± SEM. (i and j) Human monocyte-derived dendritic cells, and (k and l) human monocyte-derived macrophages were stimulated with IL-36γ (100 ng mL\(^{-1}\)) for 2 h. (i and k) *IL-23p19*, and (j and l) *EBI3* mRNA expression levels were then measured. Data combined from \(n = 3 \) separate donors are presented as the mean ± SEM. *** \(P < 0.001 \), ** \(P < 0.01 \), * \(P < 0.05 \).

Figure 2. Stimulation of IL-12 family cytokine expression in oral epithelial cells by IL-36 cytokines and IL-1β. (a-e) TIGK cells were stimulated with IL-36γ (100 ng mL\(^{-1}\)), IL-36α (100 ng mL\(^{-1}\)), or IL-1β (20 ng mL\(^{-1}\)) for 2 h. (a) *IL-12p35*, (b) *IL-23p19*, (c) *IL-27p28*, (d) *IL-12p40*, and (e) *EBI3* mRNA expression levels were then measured. Data combined from \(n = 3 \) replicate experiments are presented as the mean ± SEM. (f) TIGK cells were stimulated with IL-36γ (100 ng mL\(^{-1}\)), IL-36α (100 ng mL\(^{-1}\)), or IL-1β (20 ng mL\(^{-1}\)) for 24 h. The concentrations of EBI3 in the cell culture supernatants were then measured. Data combined from \(n = 3 \) replicate experiments are presented as the mean ± SEM. *** \(P < 0.001 \), ** \(P <
Figure 3. Effects of *P. gingivalis* on IL-23p19 and EBI3 expression in oral epithelial cells. TIGK cells were cultured with *P. gingivalis* (MOI 100:1) for the time indicated. (a) IL-36γ, (b) IL-23p19, and (c) EBI3 mRNA expression levels were then measured. Data combined from n = 3 replicate experiments are presented as the mean ± SEM. *** P < 0.001, ** = p < 0.01.

Figure 4. Signaling pathways that regulate the IL-36γ-inducible expression of IL-23p19 and EBI3 in oral epithelial cells. (a-c) TIGK cells were transfected with an IRAK1 (+) or control (−) siRNA, and subsequently stimulated with IL-36γ (100 ng mL⁻¹) for 2 h. (a) IRAK1, (b) IL-23p19, and (c) EBI3 mRNA expression levels were then measured. Data combined from n = 3 replicate experiments are presented as the mean ± SEM. (d) TIGK cells were stimulated with IL-36γ (100 ng mL⁻¹) for the indicated time. Thereafter, the cells were lysed and aliquots subjected to Western blotting with the indicated antibodies. The data are representative of three independent experiments. (e-h) TIGK cells were treated with (e and f) 10 μM BAY11-7082 or (g and h) 5 μM SB203580 or 10 μM U0126 for 30 min, and then stimulated with IL-36γ (100 ng mL⁻¹) for 2 h. (e and g) IL-23p19 and (f and h) EBI3 mRNA expression levels were then measured. Data combined from n = 3 replicate experiments are presented as the mean ± SEM. ** P < 0.01, * P < 0.05.

Figure 5. Negative-regulation of IL-36γ-inducible EBI3 transcription by the MEK-ERK pathway. (a) TIGK cells were treated with 1 μg mL⁻¹ actinomycin D (ActD) and 10 μM U0126 for 30 min, and then stimulated with IL-36γ (100 ng mL⁻¹) for 2 h. EBI3 mRNA expression levels were then measured. Data combined from n = 3 replicate experiments are...
presented as the mean ± SEM. (b) TIGK cells were stimulated with IL-36γ (100 ng mL⁻¹) for 2 h, and then treated with 1 μg mL⁻¹ actinomycin D (ActD) and 10 μM U0126 for the time indicated. IL-23p19 and EBI3 mRNA expression levels were then measured. Data combined from n = 2 replicate experiments are presented as the mean ± SEM. ** P < 0.01, * P < 0.05.

Figure 6. Regulation of the IL-36γ-inducible expression of IL-23p19 and EBI3 by EGF signaling. TIGK cells were cultured in the presence of 5 ng mL⁻¹ and 50 ng mL⁻¹ EGF for 24 h. Thereafter, the cells were treated with 10 μM U0126 for 30 min, and then stimulated with IL-36γ (100 ng mL⁻¹) for 2 h. (a) The cells were lysed and aliquots subjected to Western blotting with the indicated antibodies. The data are representative of two independent experiments. (b) IL-23p19, (c) EBI3, (d) IL-1RL2, and (e) IL-1RacP mRNA expression levels were measured. Data combined from n = 3 replicate experiments are presented as the mean ± SEM. ** P < 0.01, * P < 0.05.

Figure 7. A proposed model for the regulation of IL-23p19 and EBI3 expression in epithelial cells by IL-36 cytokines. The activation of p38 MAP kinase and MEK-ERK signaling by the IL-36 receptor (IL-36R) stimulates the transcriptional upregulation of IL-23p19. In contrast, the IL-36R stimulates the transcriptional upregulation of EBI3 independently of p38 MAP kinase signaling, while its activation of MEK-ERK signaling represses EBI3 expression. The EGF receptor (EGFR) positively- and negatively-regulates IL-23p19 and EBI3 expression, respectively, by activating MEK-ERK signaling.
Author/s:
Scholz, GM; Heath, JE; Walsh, KA; Reynolds, EC

Title:
MEK-ERK signaling diametrically controls the stimulation of IL-23p19 and EBI3 expression in epithelial cells by IL-36

Date:
2018-07-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/220328

File Description:
Submitted version