Title Page

Mammographic density—a review on the current understanding of its association with breast cancer

1CW Huo, 1GL Chew, 2KL Britt, 3WV Ingman, 1, 2MA Henderson, 4, 5JL Hopper, 1, 6EW Thompson

1University of Melbourne Department of Surgery, St. Vincent’s Hospital; 2Peter MacCallum Cancer Centre; 3School of Medicine, University of Adelaide; 4Centre for M.E.G.A., The University of Melbourne; 5School of Public Health, Seoul National University, Korea; 6St Vincent’s Institute, Australia.

Corresponding author: CW Huo; email: wanchen.huo@svhm.org.au; telephone: +613 9288 2211; fax: +613 9288 4737.
Abstract

Purpose
There has been considerable recent interest in the genetic, biological and epidemiological basis of mammographic density (MD), and the search for causative links between MD and breast cancer (BC) risk. This report will critically review the current literature on MD and summarize the current evidence for its association with breast cancer.

Methods
Keywords “mammographic dens*”, “dense mammary tissue” or “percent dens*” were used to search the existing literature in English on PubMed and Medline. All reports were critically analyzed. The data was assigned to one of the following aspects of MD: general association with BC, its relationship with the breast hormonal milieu, the cellular basis of MD, the generic variations of MD, and its significance in the clinical setting.

Results
MD adjusted for age and BMI is associated with increased risk of BC diagnosis, advanced tumour stage at diagnosis, and increased risk of both local recurrence and second primary cancers. The MD measures that predict BC risk have high heritability, and to date several genetic markers associated with BC risk have been found to also be associated with these MD risk-predictors. Change in MD could be a predictor of the extent of chemoprevention with tamoxifen.

Conclusions
Although the biological and genetic pathways that determine and perhaps modulate MD remain largely unresolved, significant inroads are being made into the understanding of MD, which may lead to benefits in clinical screening, assessment, and treatment strategies. This review provides a timely update on the current understanding of MD’s association with breast cancer risk.
Keywords
Mammographic density; breast cancer risk; stroma; adipose tissue; tamoxifen; biochamber; extracellular matrix; breast cancer screening.
Mammographic density (MD) and its association with breast cancer risk

On a mammogram, stromal and epithelial tissues are thought to attenuate x-rays more than adipose tissues. Mammographic density (MD) describes the extent of white or radiopaque tissue (dense area) on a mammogram, and the term percent MD (PMD) is used to represent this dense area as a proportion of the total tissue area of the breast on a mammogram [1]. Published literature on MD since 2007 have been provided in Tables 1 to 9, using a format adapted from McCormack et al. [2] who provided a comprehensive review at that time.

Historically, the concept that certain aspects of the appearance of a mammogram were associated with breast cancer (BC) risk was first proposed by Wolfe et al. in 1976, who described four different breast parenchymal patterns [3]. Since then, many case-control studies, usually nested within a screening cohort, have consistently confirmed that after adjusting for age and BMI, MD as measured by Wolfe patterns and other methods- are risk factors for BC [4,2]. Conventional classification methods include the Breast Imaging-Reporting and Data system (BIRADS) [5], Wolfe [3] and Tabár [6] systems, and the novel Cumulus technique [7]. The specifics of which are detailed in Table 10. The increased risk associated with age- and BMI- adjusted MD as measured by Cumulus is about 40% per standard deviation, whether it be the dense area or the PMD [8].

The adjustment for age and BMI is necessary because MD decreases with age, and more strongly with body mass index (BMI). BC risk, however, increases with age and, for women of population screening age, with BMI, and this is more critical for PMD than for dense area [9]. Therefore the case-control studies have adjusted for this ‘negative confounding’, a point that needs to be remembered when interpreting the analyses. Not only is high BMI associated with increased non-dense area in the breast, which is a fat storage site [10-13], it has been found to negatively correlate with absolute dense area in many [14-17], but not all studies [12,18,11]. The reason for this possible inverse relationship is unclear. It is hypothesized that androgens derived from increased adiposity
may play a role in reducing fibroglandular components [19] or high BMI stimulates the differentiation of stromal preadipocytes into fat rather than collagen [20,21].

Studies have shown that BC arising within areas of high MD are more commonly associated with factors indicative of a poor prognosis, including large tumor size, high histological grade, lympho-vascular invasion (LVI) and advanced stage, compared to those arising within low MD tissue [22,23] [22-24]. Although this would suggest that high MD is associated with poor BC survival, two large retrospective studies using BIRADS found no association between MD and BC-specific survival [25,26]. The reason that high MD tumours have more aggressive features compared with low MD tumors remains elusive, although it is plausible that factors influencing the initiation of BC differ from those that affect prognosis once cancer progresses, or that MD influences on BC survival are nullified by current treatment approaches.

MD appears also to be associated with increased local recurrence and the risk of a second primary BC. Using the Wolfe classification of MD adjusted for age at diagnosis but not BMI, women with higher MD have a greater risk of local recurrence, particularly those who did not receive adjuvant radiotherapy following breast-conserving surgery (BCS) [27]. In addition, a recent study of 607 cases with almost 13 years of follow-up [25] found that higher MD, corrected for age and BMI and measured by Cumulus, was associated with a worse outcome for women who did not receive radiotherapy post-BCS. Moreover, higher MD was also found to be associated with an increased risk of a second BC. In another study with 5 years of follow-up, Buist et al. [28] found that BCS without radiation was associated with an increased risk of recurrence, and women with higher MD, measured by BIRADS, had a greater risk of a second primary, but not of a local recurrence. However, an interaction between radiation therapy and MD was not examined, and only 353 women had MD measured, so the sample size might have been too small to detect an association between MD and local recurrence. It is worthwhile noting that although BC arising from high MD areas has been found to demonstrate more aggressive features, most studies did not adjust for tumour size, LVI, nuclear grade and
stage when examining the relationship between MD and local recurrences [29,28,30,27] (see Table 3).

MD and the breast hormonal milieu

The use of HRT appears to increase MD. A Norwegian study of 2,424 post-menopausal women found that MD was higher for women currently using combined progestogen and oestrogen therapy (E+P HRT) than for former or non-users [31], and the use of high-dose norethisterone acetate (NETA) was particularly associated with higher MD. These findings are consistent with other published studies [32-34], in which Greendale et al. and Persson et al. observed higher MD for E+P HRT users in large Caucasian population studies [32,33]. A smaller decline in MD with aging was found for E+P HRT users compared with non-users by a combined Dutch and British study [34]. Furthermore, the association between E+P HRT use and PMD was stronger for women who later developed BC [35]. In a review of 80,867 mammograms from 39,296 postmenopausal women, oestrogen-alone HRT was found to be associated with higher MD, although the association was not as strong as that seen with combined HRT and MD [36].

Parity is inversely associated with MD, with a decrease of about 10% of the standard deviation of MD measures adjusted for age and BMI, per live-birth [9]. This is equivalent to about a 4% decrease in risk per birth that could be attributed to a decrease in MD, should the association be causal. Studies of the association between lactation and MD have to date produced conflicting results [37,38]. A longitudinal study of 2,000 women found that breastfeeding was inversely associated with PMD [37]. Using a xenograft model of human mammary tissue, Chew et al. observed that high MD human tissues have less stromal and more adipose components after murine postpartum involution or lactation [39]. However, the biological rationale behind these observations remains unclear.
Since MD might be reduced by the cessation of HRT and parity, and increases with HRT use, it is possible that MD is modulated by endogenous and exogenous hormonal exposures. For this reason, it has been proposed that tumours occurring in women with high MD are more likely to be oestrogen receptor (ER) or progesterone receptor (PR)-positive than those diagnosed in non-dense tissue [40,41]. However, Antoni et al. performed a meta-analysis of 7 cohort and 12 case-control studies and found that the magnitude of the association between MD and BC of differing subtypes was similar [42]. This finding is consistent with that of a Spanish study of 1,172 women, in which the strength of association between MD was not found to differ by BC subtypes based on their hormonal receptor status [43]. The reason for this observation, as hypothesized by some authors, could be that MD occurs secondary to long-term tissue-specific inflammation as a result of cumulative exposure to environmental factors such as androgen and estrogen, which are associated with an increased risk of both ER-positive and ER-negative tumors [44-47]. Refuting this hypothesis, a case-only study of 2,410 women reported an inverse association between MD and ER expression [48]. This was surprising considering MD has been associated with both extrinsic and intrinsic hormonal exposures such as HRT and parity. Despite the lack of an association between MD and ER-positive BC, MD was found to be positively associated with PR expression by the same study [48]. Research using mouse models [49,50] has shown that proliferation of mammary stem cells was under the influence of progesterone, which could underpin the MD associations. In addition, the association between MD and BC risk is not found to differ by human epidermal growth factor receptor (HER2) status in published population studies [23,43] [51].

The cellular basis of MD

Mammographically dense breast tissues have a higher composition of stroma, higher relative gland counts, and a lower proportion of fat than low MD counterparts [52,53]. Because high MD tissues have been positively associated with stromal and epithelial proliferation [54-57], investigations of cell proliferation markers such as Ki-67 have been
performed, but most studies did not find any association between Ki-67 expression and MD [58,22,59]. The only positive association was reported by Harvey et al., who examined the benign breast tissue of 56 postmenopausal women and found that higher MD was associated with increased Ki-67 activity [60]. In another study of 783 pre-menopausal and 436 post-menopausal women [61], mitogenic factors implicated in tumor development and progression, such as insulin-like growth factor-1 (IGF-1), insulin-like growth factor-binding protein-3 and growth hormone (GH), were examined from blood samples using ELISA assays, and were not found to be associated with MD.

The breast tissue stroma is composed of ECM proteins, adipocytes, fibroblasts and immune cells. CD-36, a transmembrane receptor that modulates many stromal processes including adipocyte differentiation, apoptosis, and cell-ECM interactions, was reduced in multiple cellular compartments within the stroma of high MD tissues compared with low MD tissues [62]. DeFilippis et al. found the level of CD-36 expression to be minimal in many cell types of mammary tumour stroma compared with non-malignant tissues in the same breast [62]. It would be valuable for future studies to examine the association between CD-36 and MD, and to assess its potential as a possible target for MD-associated BC prevention.

Higher MD has often been associated with increased collagen content and ECM stiffness [38,63,64]. This is potentially driven by macrophages, which promote collagen fibrillogenesis in the mouse mammary gland [65], and by tissue metalloproteinase-3 (TIMP3)-mediated inhibition of matrix degradation [66], however there are likely to be many other environmental and genetic regulators, some of which are discussed in the following section. Increased ECM stiffness has been shown to promote the focal adhesion kinase-Rho-extracellular signal-related kinase (FAK-Rho-ERK) signaling network to stimulate cell proliferation, and consequently results in a malignant phenotype of mouse mammary epithelial cells [67]. The authors have proposed a causal relationship between higher MD and BC tumourigenesis. Supporting this, dense matrix associated with MD has been found to raise Rho associated coiled-coil containing protein kinase 1 (ROCK1) activity, which plays a role in cell migration [68]. In addition, our collaborators
have shown that dense matrices of collagen (20 mg/cm3), similar in concentration to that found in dense connective tissue associated with high MD, stimulated ameboid-like cell migration of human BC cells [69]. The presence of such ameboid-like cells in dense connective tissue surrounding invasive ductal carcinomas has been tentatively associated with local recurrence [69]. The dense collagen network could also serve to increase migration of tumour-associated macrophages [70], which promote tumour progression and metastasis [71].

Given the complex interplay between the epithelial, stromal and ECM compartments in the breast microenvironment, as summarized in Figure 1, a robust animal model could help clarify the molecular mechanisms of MD associated malignancy risk. Indeed, mammary glands from genetically altered mice have been used to examine MD-like phenotypes in vivo [72], and we recently developed a novel model where high and low MD human breast tissues implanted in separate murine biochambers supported by the inferior epigastric pedicles maintained their viability and MD phenotype [73].

Genetic factors and variation in MD measures that predict BC

In 1987, a small within-pair twin study using BIRADs measures showed that MD measurements were correlated in twin pairs, but was not powered to address the hypothesis that this was due to genetic factors by testing if monozygotic (MZ) pairs were more highly correlated than dizygotic (DZ) pairs [74]. MD risk-associated measures based on CUMULUS were found to be correlated in sister and mother-daughter pairs [75], but a nuclear family design alone cannot differentiate genetic from shared environmental factors as causes of familial correlation.

The breakthrough publication in this regard came in 2002 when two large twin studies, one conducted in Australia and the other in North America, demonstrated that MZ pairs were about twice as correlated as DZ pairs, consistent with genetic factors explaining about 60% of the variance in the CUMULUS measures that predict BC risk [76,77]. The
study was also remarkable in finding highly consistent results in terms of variances and MZ and DZ pair co-variances across Caucasian women from the two continents.

While studies of common variants (polymorphisms) in candidate genes based on biological arguments identified some putative associations, these were not conclusive. The next major advance came from studies of single nucleotide polymorphisms (SNPs) found to be associated with BC risk by genome-wide association studies (GWAS) [78]. The findings of the twin study above were consistent with a small overlap in BC and MD genes, and this was borne out by a nested case-control study which predicted that there would be about a 14% overlap (95% CI 4-39%) [79].

Early attempts to examine if these BC associated SNPs were also associated with the MD measures that predict BC risk failed to find convincing evidence. A larger Australian study of twins and sisters showed that, taken as a group, the 12 BC susceptibility SNPs studied were more strongly associated with MD than would be expected by chance [80]. In particular, the SNP rs3817198 in the region of the LSP1 gene was significantly associated with dense and percent dense area.

A pooled cross-sectional study by the DENSNP consortium confirmed the association described above with the LSP1 region SNP, and also found evidence that a SNP in the region of RAD51L1 was implicated in MD [81]. A meta-analysis of five GWAS of MD measures by the MODE consortium found that the SNP rs10995 in the region of ZNF365, which had been shown to be associated with BC risk [82], was also associated with MD. Another GWAS implicated SNPs in a region on chromosome 12q24 [83]. Further studies by the MODE and DENSNP consortiums are being conducted.

In summary, around 10% of common SNPs associated with BC risk are also associated with the MD measures that predict BC risk, but to date these explain only a few percent of the variance. MD is likely to be affected by a number of genes that are largely unknown at the present time. With regards to gene expression profiles, Sun and colleagues found that high MD was associated with the inactive subtype of the
extratumoral gene expression signature. The inactive phenotype had a higher expression of adhesion genes than the active subtype; and similar to high MD, was associated with increased stromal composition, increased estrogen response and reduced TGF-β signaling. The authors highlighted the importance of studying the stromal microenvironment of high MD tissue, despite breast cancer being of epithelial origin [84]. Furthermore, novel molecular multigene tests such as Mammaprint® and Oncotype DX® are increasingly utilized as decision aids. It would be of clinical interest to examine whether there is any association between MD specific gene expression profiles and these predictive tests. To date, there is no published report in this regard.

Translation of MD into the clinical setting

To date, MD has not been reported systematically in the clinical setting due to the lack of an automated tool. Conventionally, assessments of MD are based on subjective reporting of mammographic parenchymal patterns, which can be time consuming and examiner dependent. Since these measures were not specifically designed for the purpose of selecting women at increased risk of developing BC, they may not be appropriate for incorporation into population screening programs. The current trend of moving from film-based screening mammograms to digital ones has enabled alternative approaches to be developed, such as calibrated planar and volumetric measures, and automated variation measure [85-87], in the hope of achieving efficient and standardized reporting that is comparable across studies. The aforementioned Cumulus has been validated by epidemiological studies and is currently considered to be the gold standard for measuring MD and predicting BC risk [88], with greater intra-observer reliability than BIRADS [89]. An automated version of Cumulus, AutoDensity, that could be suitable for digital mammography has recently been developed [90]. Despite the need for more studies to validate the novel MD assessment techniques, these automated approaches may hold the key to risk stratification in future screening, while reducing the time and cost of acquiring MD data.
MD can represent a preventative and therapeutic target. In the primary prevention IBIS-1 trial, women who received tamoxifen prophylaxis - and had a minimum of 10% reduction in MD in the first 1.5 years of taking tamoxifen - were found to have a 63% reduction in BC risk; whereas no effect on BC risk was observed for those women who had a less than 10% decrease in MD [91]. In addition, a recent retrospective study of 974 postmenopausal BC patients with a 15-year follow-up found a relative reduction of 20% in MD for women who received adjuvant tamoxifen, and this MD reduction was associated with a 50% risk reduction of BC-specific mortality [92]. Furthermore, Kim et al. found that changes in MD predicted recurrences in 1,065 women with ER-positive BC who were treated with tamoxifen for at least 5 years, with recurrence more than doubled in women with no change in MD compared with those who had at least a 10% decrease in MD [93]. However, MD was not adjusted for BMI, which is inversely associated with MD but directly associated with BC risk in this age group. Paradoxically, 18% of these women had increased MD post-endocrine therapy for reasons that are unclear. Overall, reduction in MD as a host response could be an effective and non-invasive biomarker to assess or predict the efficacy of tamoxifen for prevention and treatment. Women with dense breasts may benefit from a trial of tamoxifen for 12-18 months to help reduce MD, and therefore their BC risk. However, the current evidence is insufficient to make this recommendation at a population level, given potential side effects of endometrial cancer and thromboembolic events.

The recent mandating of MD reporting in several states in the USA [94] is raising awareness of the role of MD in increasing BC risk. The introduction of this legislation is largely in response to the high-profile campaign by the Density Education National Survivors’ Effort (Are you dense?) [95], which encourages women to ask for an ultrasound (US) or magnetic resonance imaging (MRI) if their breast tissues are reported as heterogenous or dense on mammogram. However, whether this move will improve clinical outcome and be cost-effective without unnecessarily increasing women’s anxiety remains to be examined. Breast-screening programs are designed to reduce mortality by detecting BC at an early stage when treatment options may be more effective. Imaging additional to mammography demands a higher level of resources and can produce
increased false-positive results, hence high MD can play a role in helping select women who need it most. Since the implementation of Connecticut Public Act 09, there have been two recent studies conducted to assess the role of US in detecting BC for women with dense breasts [96,97]. Both found that US contributed to increased cancer detection yield (an additional cancer detection rate of 3.2 per 1000 women screened) in women who have dense breasts and normal mammograms, with no additional risk factors. However, manual US is labour-intensive and subjective, being radiographer-operated. A newer modality, automated whole breast ultrasound (AWUS), may warrant further investigation as the automation reduces labour and time costs [96,98].

While breast MRI has high sensitivity in women with increased benign parenchyma enhancement, the high false positive rate and cost may render it a less attractive modality for screening in women with high MD [96]. The ACRIN 6666 study confirmed that use of a single screening MRI or addition of annual screening breast US in women with heterogeneously or extremely dense parenchyma in at least one quadrant on mammogram resulted in an increased BC detection yield (additional 14.7 cancers with MRI and 3.7 cancers with ultrasound per 1000 screens) but also increased false-positive findings and higher biopsy rates [99]. Breast tomosynthesis is also available as a diagnostic tool, but its role in screening of high MD women is unclear. There is no evidence to suggest that tomosynthesis is superior to mammogram; on the contrary, digital tomosynthesis has been found to significantly underestimate MD compared to digital mammogram [100].

A large prospective cohort study of 11,474 women with BC also found that annual mammography screening among women aged 40 to 49 years who had extremely dense breasts was associated with decreased risk of advanced-stage cancer or large tumour, compared to biennial screening in this age group. However, the probability of a false-positive result was high (65.5%). In addition, annual screening mammography for women aged 50 to 74 years did not reduce the risk of detecting advanced BC compared to biennial screening, regardless of their MD status [101].
We propose that women aged 40 to 74 at the initial screening mammogram with MD in the BIRADS category 4 (extremely dense) or in the ≥50% PMD category measured by Cumulus should be considered for additional imaging such as US to help detect early small BC. Consideration should be given as to whether a woman with extremely dense parenchyma ≥75% would be recommended for a single screening breast MRI at commencement. These considerations should also take into account the inverse relationship between MD and age/BMI, and the overall risk profile for BC, including family history and exogenous endocrine exposure. Nevertheless, we acknowledge this is currently a contentious topic and more studies are warranted to evaluate how MD can be best incorporated into clinical practice.

Conclusion

Research to date has confirmed the importance of MD in BC risk prediction and outcomes, as well as its association with changes in the breast tissue hormonal milieu and heritable factors. However, the evidence suggests that the underlying biological and genetic basis of MD is likely to be complex. Key areas for further investigation include how endogenous steroids affect MD, which could up- or down-regulate cellular signaling pathways that are related to altered BC risk. Although tamoxifen appears to modify MD, this finding needs to be externally validated by further studies and the mechanisms behind this relationship explored. Further clinical and epidemiological studies are also needed to try to determine how to effectively employ MD in a clinical environment. In the future, measurement of MD – especially if it is automated as part of digital mammography for the purpose of personalized medicine - might be used to improve BC screening and treatment strategies.

Competing interests

The authors declare that they have no conflict of interests.
Fig.

1. **The current understanding of possible biological mechanisms behind MD associated BC risk.**
HRT= hormonal replacement therapy; TGF-β= transforming growth factor beta; ECM= extracellular matrix; BC= breast cancer; MD= mammographic density; ROCK1= Rho associated coiled-coil containing protein kinase 1; FAK-Rho-ERK= focal adhesion kinase-Rho-extracellular signal-related kinase; TAM= tumour associated macrophage.
References

in pre- and postmenopausal Hispanic and non-Hispanic white women. Menopause 14 (2):243-250. doi:10.1097/01.gme.0000235362.72899.7b
10.1186/bcr3378
chambers during various murine peripartum states and over time. Breast Cancer Research and Treatment In press

10.1186/bcr2942

150. Eilertsen AL, Karssemeijer N, Skaane P, Qvigstad E, Sandset PM (2008) Differential impact of conventional and low-dose oral hormone therapy, tibolone and
raloxifene on mammographic breast density, assessed by an automated quantitative method. BJOG 115 (6):773-779. doi:10.1111/j.1471-0528.2008.01690.x

![Diagram of biological mechanisms behind mammographic density associated BC risk]

Table 1: Published literature on mammographic density as a risk factor for breast cancer

<table>
<thead>
<tr>
<th>First author, y [ref.]</th>
<th>Study design. Study population characteristics. Matching variables if applicable (Match). Variables adjusted for in analysis (Adj)</th>
<th>No. cases:</th>
<th>Age (y)</th>
<th>Mammographic feature</th>
<th>Key Finding</th>
</tr>
</thead>
</table>

Fig.1 The current understanding of possible biological mechanisms behind MD associated BC risk.

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Cohort</th>
<th>Country, Years</th>
<th>Match</th>
<th>Adj</th>
<th>BIRADS</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Tice</td>
<td>BCSC, USA, 1994-2009</td>
<td>Adj: A, race, HRT, BMI</td>
<td>1,359: 41,459</td>
<td>30+</td>
<td>BIRADS</td>
<td>Combination of atypical hyperplasia and HD was A/W high risk of BC (HR=5.34, 95% CI= 3.52-8.09, p<.001).</td>
</tr>
<tr>
<td>2013</td>
<td>Linton</td>
<td>CC. Sisters from BCFR, USA; WEBC, Canada; and Canadian twin study. Match: AAM. Adj: A, BMI, MS, parity, HRT</td>
<td>687: NK</td>
<td>Mean 50</td>
<td>Cumulus</td>
<td>PD was A/W an increased risk of BC when comparing cases to sister controls (IQOR=2.19) and to unrelated controls.</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Yaghjyan</td>
<td>NCC. NHS prospective cohort, USA. Match: ATC, MS, HRT, FUT. Adj: AAD, BMI, AAM, parity, AAFB, MS, HRT, Fhx, AC, S.</td>
<td>1,045: 567</td>
<td>30-55</td>
<td>Cumulus</td>
<td>The magnitude of the association between PD and BC remains similar for up to 10 years after the first mammogram.</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Pollán</td>
<td>CC. NBCSP, Spain. 1990-2004. Match: SR, SYB, POR. Adj: A, AAFB, MS, AAM, Fhx, HOPB.</td>
<td>1,172: 1,831</td>
<td>45-65</td>
<td>Boyd semiquantitative scale</td>
<td>OR for MD >75% compared to MD <10% was 3.47 for DCIS, and 2.95 for invasive tumours.</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Lokate</td>
<td>Cohort: EPIC-NL, the Netherlands, 2001-06. Adj: ATM, AM, AAFB, P, HRT, OCP, Fhx, BMI.</td>
<td>358:859</td>
<td>49-70</td>
<td>Cumulus</td>
<td>HD tissue and fat tissue were independently A/W higher BC risk (OR 2.8 and 2.4 respectively)</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Petterson</td>
<td>NCC. NHS (1976-1990) and NHS II (1989-1999), USA. Adj: BMI, AM, Fhx, P, AAFB, HRT, AAM.</td>
<td>1,424: 2,660</td>
<td>Mean 47</td>
<td>Cumulus</td>
<td>HD tissue was A/W a greater risk of BC (OR=2.01 for premenopausal and OR = 2.19 for postmenopausal women) whereas non dense area was A/W decreased risk of BC.</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Shepherd</td>
<td>CC. SPCPMC, USA, 2004-06. Match: A, R. Adj: Fhx, BMI, HOPB, AAFB.</td>
<td>275:825</td>
<td>18+</td>
<td>CAM</td>
<td>Fibroglandular volume and PD were A/W BC risk (highest vs. lowest quintile: OR 2.5 and 2.9 respectively)</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Stone</td>
<td>CC. CNBSP, UK, 1995-2003. Match: A.</td>
<td>634:1,88</td>
<td>50-75</td>
<td>CAM</td>
<td>Dense area was a better predictor on BC risk than PD.</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Chiu</td>
<td>Cohort: KRCT, Sweden.</td>
<td>15,658: 1,045</td>
<td>Mean 45-59</td>
<td>Tabár</td>
<td>Dense tissue was A/W BC incidence (RR=1.58) and BC mortality (RR=1.91)</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Martin</td>
<td>NCC. NBSS (1984-1990),</td>
<td>1,164:1,1</td>
<td>Mean</td>
<td>CAM</td>
<td>MD was A/W increased BC risk.</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Study Details</td>
<td>OR (95% CI)</td>
<td>Risk Factor(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olsen, 2009 [110]</td>
<td>Cohort: MSP, Denmark, 1991-2001. Adj: A.</td>
<td>989: 133,651</td>
<td>50-69</td>
<td>BIRADS The OR of an interval cancer for women with dense breasts was 1.62 and AARR was 2.45 for BC incidence. The risk of large screen-detected cancers was almost 3-fold for the second quintile, and about 4-fold for the third and fourth quintiles compared with low quintiles of MD.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kavanagh, 2008 [111]</td>
<td>CC. MSP, Australia, 1994-96. Adj: A, HRT, Fhx.</td>
<td>1,706:56</td>
<td>37</td>
<td>CAM The risk of large screen-detected cancers was almost 3-fold for the second quintile, and about 4-fold for the third and fourth quintiles compared with low quintiles of MD.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: A, age; A/W, associated with; AAM, Age at menopause; ATC, age at the time of blood collection; AAD, age at diagnosis; AAFB, age at first birth; AC, alcohol consumption; AM, age at menarche; AA, African American; AEP, age at entry to the program; AARR, age-adjusted rate ratio; BCSC, breast cancer surveillance consortium; BC, breast cancer; BMI, body mass index; BIRADS, Breast Imaging Reporting and Data Systems; BCFR, Breast Cancer Family Registry; CC, case-control; CBCS, Carolina Breast Cancer study; CAM, computer-assisted method; CNBSP, Cambridge and Norwich breast screening programs; DCIS, ductal carcinoma in situ; D, diabetes; EPIC-NL, the Dutch contribution to the European Prospective Investigation into Cancer and Nutrition; FUT, follow-up time; Fhx, family history of breast cancer; FSBC, fasting status at the time of blood collection; FSED, final screening exam date; G, grade; HD, high density;
Table 2. Published literature on the association of mammographic density with breast cancer prognosis and survival

<table>
<thead>
<tr>
<th>First author, year [ref.]</th>
<th>Study design. Study population characteristics. Matching variables if applicable (Match). Variables adjusted for in analysis (Adj)</th>
<th>No. cases: noncases</th>
<th>Age (y)</th>
<th>Mammo- graphic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eriksson, 2013 [114]</td>
<td>CC. SRCR, 1993-95. Adj: AAM, BMI, HRT, TS, NS, ERS, PRS, G, MOD.</td>
<td>1,774: 946</td>
<td>50-74</td>
<td>Cumulus</td>
<td>No association was found between density and survival.</td>
</tr>
</tbody>
</table>

Abbreviations: AAM, Age at menopause; AAD, age at diagnosis; BMI, body mass index; BIRADS, Breast Imaging Reporting and Data Systems; BC, breast cancer; BCSC, breast cancer surveillance consortium; CC, case-control; CM, co-morbidity; G, grade; HS, hormonal status; HRT, hormonal replacement therapy; ERS, estrogen receptor status; E, ethnicity; PRS, progesterone receptor status; MD, mammographic density; MOD, mode of detection; MEC, multi-ethnic cohort; MS, menopausal status; NK, not known; NS, nodal status; NCC, nested case-control; R, race; RRx, radiation treatment; SRCR, Swedish Regional Cancer Registries; SOD, stage of disease; TS, tumour size.
Table 3. Published literature on the association of mammographic density with breast cancer recurrence or new primary occurrence

<table>
<thead>
<tr>
<th>First author, y [ref.]</th>
<th>Study design. Study population characteristics. Matching variables if applicable (Match). Variables adjusted for in analysis (Adj)</th>
<th>No. cases: noncases</th>
<th>Age (y)</th>
<th>Mammo-graphic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habel, 2010 [29]</td>
<td>XS. KPNC, USA, 1990-97. Adj: A, BMI, RRx, AT, R, MS, Fhx, HOBD, TS, G.</td>
<td>935:286</td>
<td>20-84</td>
<td>BIRADS</td>
<td>High MD was A/W increased risk of subsequent BC in either breast in patients who had DCIS.</td>
</tr>
<tr>
<td>Cil, 2009 [27]</td>
<td>XS. WCH, Canada, 1987-88. Adj: A, MS, RRx.</td>
<td>355:232</td>
<td>35-87</td>
<td>Wolfe</td>
<td>High MD was A/W increased risk of local recurrence (10-year risks: 21% vs. 5% for density >50% and density <25%, HR=5.7)</td>
</tr>
</tbody>
</table>

Abbreviations: A, age; AT, adjuvant therapy; A/W, associated with; AAD, age at diagnosis; BC, breast cancer; BIRADS, Breast Imaging Reporting and Data Systems; BMI, body mass index; DCIS, ductal carcinoma *in situ*; FUT, follow-up time; Fhx, family history of breast cancer; G, grade; HOBD, history of benign breast disease; HR, hazard ratio; KPNC, patients recruited at Kaiser Permanente Northern California; MD, mammographic density; MS, menopausal status; NCC, nested case-control; NDAD, non-dense area at diagnosis; NK, not known; Re, registry; Rx, treatment; R, race; RRx, radiation treatment; SBCR, Stockholm Breast Cancer Register; S, stage; TS, tumour size; WCH, patients who underwent breast-conserving surgery at the Women’s College Hospital; XS, cross-sectional study.
Table 4. Published literature on the effect of hormonal replacement therapy on mammographic density

<table>
<thead>
<tr>
<th>First author, y [ref.]</th>
<th>Study design. Study population characteristics. Matching variables if applicable (Match). Variables adjusted for in analysis (Adj)</th>
<th>No. cases: noncases</th>
<th>Age (y)</th>
<th>Mammo- graphic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerlikowske, 2010 [24]</td>
<td>Cohort: BCSC, USA, 1996-2006. Adj: A, BMI, HRT, MS, 12,09:279</td>
<td>12,09:279</td>
<td>30-80+</td>
<td>BIRADS</td>
<td>BIRADS-4 MD was A/W increased BC risk, particularly among oestrogen +progestin users in women aged 55 to 59 years (5-year risk 4.2%).</td>
</tr>
<tr>
<td>Nielsen, 2010 [118]</td>
<td>Cohort: EEST, Denmark. Adj: TCBD, 42:43</td>
<td>42:43</td>
<td>45-65</td>
<td>BIRADS</td>
<td>1mg of oestrogen + 2mg of drospirenone in postmenopausal women for up to 2 years was A/W increased MD (10% to 26% from baseline to 2 years).</td>
</tr>
<tr>
<td>Stuedal, 2009 [119]</td>
<td>XS. NBCSP, 2003. Adj: AAS, P, BMI, 724:2</td>
<td>724:2</td>
<td>50-69</td>
<td>CAM</td>
<td>Use of estradiol and norethisterone acetate was A/W increased (6-8.8% increase) MD.</td>
</tr>
<tr>
<td>van Duijnhoven, 2007 [34]</td>
<td>Cohort: EPIC-NL, EPIC-UK, 1993-97. Adj: A, BMI, AM, MS, P, Fhx, OCP, S, AC, PA. 795:781</td>
<td>795:781</td>
<td>49-71</td>
<td>Cumulus</td>
<td>The absolute mean decline in PD with aging (median time 3.0 years) was larger in never users of HRT (7.3%), than in oestrogen therapy users (6.4%) and combined HT users (3.5%).</td>
</tr>
</tbody>
</table>
Abbreviations: AAS, age at screening; A/W, associated with; A, age; AHT, age at the start of hormonal therapy; AAM, age at menopause; AM, age at menarche; AC, alcohol consumption; BMI, body mass index; CAM, computer-assisted method; DR, duration of regimen; EEST, Estradiol Efficacy and Safety trial; EPIC-NL, the Dutch contribution to the European Prospective Investigation into Cancer and Nutrition; Fhx, family history of breast cancer; GMSP, the governmental mammographic screening program; HRT, hormonal replacement therapy; KCGMH, Keelung Chang Gung Memorial Hospital; OCP, oral contraceptive; PD, percent density; P, parity; PA, physical activity; MD, mammographic density; MS, menopausal status; NBCSP, Navarre Breast Cancer Screening Program; R, race; READ, Radiological Evaluation and Breast Density trial; S, smoking; TCBD, temporal changes in breast density with changes in serum estradiol level; XS, cross-sectional study.

Table 5. Published literature on the association of mammographic density with breast cancer subtypes and tumour characteristics

<table>
<thead>
<tr>
<th>First author, y [ref.]</th>
<th>Study design. Study population characteristics. Matching variables if applicable (Match). Variables adjusted for in analysis (Adj)</th>
<th>No. cases:</th>
<th>Age (y)</th>
<th>Mammo-graphic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eriksson, 2012 [121]</td>
<td>Cohort: CAHRES, 1993-95. Adj: A, BMI, HRT, AM, AAM, OCP, P, B, Fhx, MOD.</td>
<td>2,720: 625</td>
<td>50-74</td>
<td>Cumulus</td>
<td>No association found between MD and tumour phenotype, except for TS which was partially confounded by MOD.</td>
</tr>
</tbody>
</table>
Yaghjyan, 2011

Conroy, 2011

Anora, 2010

Passaperauma, 2010

Ding, 2010

Gierach, 2010

Ma, 2009

Ghosh, 2008

$\geq50\%$ MD showed a 3.39-fold increased risk of BC compared to $<10\%$ MD. The associations were stronger for: in situ (vs. invasive) tumours, high-grade, larger (>2cm) tumours, ER-negative (vs. positive) tumours.

Mean PD was significantly greater for ER-positive and PR-positive tumours.

BIRADS-4 dense breasts occurred more commonly in younger women, more often mammographically occult.

High MD was not A/W increased BC risk in women with BRCA mutations.

$\geq50\%$ MD was A/W 2.63-fold risk of developing BC compared to MD $<10\%$. High MD was also A/W ER-positive tumours.

No difference found in MD between unaffected BRCA mutation carriers and women at low-to-average risk of BC.

PD was positively A/W luminal-A and triple-negative BCs.

MD was not A/W TS, histological type, ER/PR receptor status, mitotic activity or nuclear pleomorphism.

Abbreviations:
- A, age
- AM, age at menarche
- AAM, age at menopause
- AAD, age at diagnosis
- AEP, age at entry to the program
- AC, alcohol consumption
- A/W, associated with
- AAFB, age at first birth
- BC, breast cancer
- BMI, body mass index
- BIRADS, Breast Imaging Reporting and Data System
- B, breastfeeding ever
- BCSC, breast cancer surveillance consortium
- ER, estrogen receptor
- Fhx, family history of breast cancer
- G, grade
- HRT, hormonal replacement therapy
- HOB, history of benign disease
- HOPB, history of previous biopsies
- OCP, oral contraceptive
- P, parity
- PR, progesterone receptor
- PBCS, post-menopausal breast cancer study
- MOD, mode of detection
- MS, menopausal status
- MEC, multi-ethnic cohort
- MSKCC, Memorial Sloan-Kettering Cancer Centre
- MT, mutation type
- MMHS, the Mayo Mammography Health Study
- MCBCS, the Mayo Clinic Breast Cancer Study
MCMAM, the Mayo Clinic Mammography Study; NHS, Nurses’ Health Study; NCC, nested case-control; NK, not known; NHSBCS, national health service breast cancer screening program; NCICGB, national cancer institute’s clinical genetics branch breast imaging study; R, race; S, smoking; SPORE, the San Francisco Bay Area Breast Cancer; SFMR, the San Francisco Mammography Registry; TS, tumour size; WCRES, Women’s contraceptive and Reproductive Experiences Study; XS, cross-sectional study.

<table>
<thead>
<tr>
<th>First author, y [ref.]</th>
<th>Study design. Study population characteristics.</th>
<th>No. cases: noncases</th>
<th>Age (y)</th>
<th>Mammo-graphic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollán, 2013 [131]</td>
<td>CC. SC, Spain, 2007-2010. Match: A. Adj: A, BMI, MS, Fhx, P, HRT.</td>
<td>655: 2,845</td>
<td>45-68</td>
<td>DM-Scan vs. Cumulus VBD vs. BIRADS</td>
<td>DM-Scan, a new semiautomatic tool and Cumulus were high concordant (CCC: 0.80-0.84) in assessing MD. VBD showed a significant positive correlation with BIRADS by radiologists (Spearman’s $p = 0.754, p<0.001$)</td>
</tr>
<tr>
<td>Tagliafico, 2012 100</td>
<td>Cohort: NICR, Italy, 2010.</td>
<td>50: NK</td>
<td>35-83</td>
<td>BIRADS</td>
<td>Ultrasound identified an additional 3.7 cancers per 1000 screens and MRI identified 14.7 per 1000 screens.</td>
</tr>
<tr>
<td>Berg, 2012 135</td>
<td>Cohort: ACRIN 6666, USA, 2004-06.</td>
<td>2,662: 147</td>
<td>25-91</td>
<td>BIRADS</td>
<td>Ultrasound identified an additional 3.7 cancers per 1000 screens and MRI identified 14.7 per 1000 screens.</td>
</tr>
</tbody>
</table>
Mean 50.9 PD ABUS and MRI showed high correlation for MD assessment.

US had a CDR (additional) of 4.4/1000 screens in dense breasts.

MRI PD is well correlated with mammographic PD (r = 0.76) but overall gives estimates 8.1 percentage points lower (p<0.0001).

PMDD, MD and MD adjusted for non-dense area showed similar positive and significant association with TS.

Measurement of the breast tissue volume did not improve BC risk prediction.

FAM and SAM correlated well with BIRADS and demonstrated good intra- and inter-observer variability.

FAM showed good correlation with Cumulus and BIRADS.

Digital mammography performed better than film for women younger than 50 with dense breasts.

Reliability of a single measurement was lower in the SMF than in the threshold method.
Table 7. Published literature on the effect of breast cancer hormonal treatment on mammographic density

<table>
<thead>
<tr>
<th>First author, year [ref.]</th>
<th>Study design. Study population characteristics.</th>
<th>No. cases:</th>
<th>Age (y)</th>
<th>Mammo- graphic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li, 2013 [144]</td>
<td>CC. CAHRES, 1993-95. Adj: AAD, BMI, HRT, ERS.</td>
<td>278: 432</td>
<td>50-74</td>
<td>CAM</td>
<td>Poor function of CYP2D6 was A/W less reduction in MD with tamoxifen Rx.</td>
</tr>
<tr>
<td>Henry, 2013 [145]</td>
<td>Cohort: ELPh trial, USA, 2005-09. Adj: A, BMI, AT, HRT.</td>
<td>259: 244</td>
<td>35-84</td>
<td>BIRADS</td>
<td>Mean PD reduction was 17.1% to 15.1% with AI therapy in 2/3 of patients, more pronounced in women with baseline PD ≥ 20%.</td>
</tr>
<tr>
<td>Li, 2013 [92]</td>
<td>CC. SBCR, 1993-95. Adj: AABM, HRT, BMI, ERS, TS, G, NS.</td>
<td>1,295: 2,050</td>
<td>50-74</td>
<td>Cumulus</td>
<td>>20% reduction in MD post tamoxifen Rx was A/W a reduced risk of death due to BC of 50%.</td>
</tr>
<tr>
<td>Vachon, 2013 [146]</td>
<td>CC. NCIC CTG, NCCTG, MC, USA. Match: AABM, BMI.</td>
<td>369: 205</td>
<td>41-91</td>
<td>Cumulus</td>
<td>14% of 387 patients had a MD reduction of at least 5% after an average of 10 months of AI Rx and the reduction was similar with that of matched controls.</td>
</tr>
<tr>
<td>Kim, 2012 [93]</td>
<td>Cohort: WBPD, Korea, 2003-06. Adj: A, TS, NS, AT, G.</td>
<td>1,065:47</td>
<td>24-77</td>
<td>Cumulus</td>
<td>MD reduction was significantly A/W recurrence-free survival after at least 2 years of tamoxifen or AI.</td>
</tr>
<tr>
<td>Cigler, 2011</td>
<td>Cohort: NCIC CTG, 44:23</td>
<td>55+</td>
<td>Cumulus</td>
<td>2.5mg of letrozole daily for 12 months.</td>
<td></td>
</tr>
</tbody>
</table>
Canada. Adj: A, BMI. 2010 [148] Mousa, Cohort: women from private clinics, Canada. 2006-07. 12 months with another 12 months follow-up did not affect MD. Letrozole 2.5mg TDS + HRT for a year was A/W a reduction in MD; whereas there was no change in MD in women who took HRT alone.

Cohort: RET, Norway, 2002-05. Adj: A, BMI. 40:16 54-74 BIRADS Raloxifene or Tibolone oral Rx for 12 weeks were not A/W changes in MD.

Abbreviations: AAD, age at diagnosis; A/W, associated with; A, age; AT, adjuvant therapy; AI, aromatase inhibitor; AABM, age at baseline mammogram; BC, breast cancer; BMI, body mass index; BIRADS, Breast Imaging Reporting and Data Systems; CC, case-control; CAHRES, the Cancer Hormone Replacement Epidemiology in Sweden study; DS, disease stage; ERS, oestrogen receptor status; ELPh, Exemestane and Letrozole Pharmacogenomics; G, grade; HRT, hormonal replacement therapy; HS, hormonal status; IBIS, the International Breast Cancer Intervention Study; PD, percent density; MC, the Mayo Clinic; NS, nodal status; NCCTG, National cancer institute of Canada clinical trials group; NCCTG: north central cancer treatment group; NCC, nested case-control; Rx, treatment; R, race; RET, raloxifene, oestrogen, tibolone study; SBCR, Swedish breast cancer register; SKCCC, Sidney Kimmel comprehensive cancer centre; TS, tumour size; TDS, three times per day; WBPD, web-based patient database.

Table 8. Published literature on the biology of mammographic density

<table>
<thead>
<tr>
<th>First author, y [ref.]</th>
<th>Study design. Study population characteristics.</th>
<th>No. cases: noncases</th>
<th>Age (y)</th>
<th>Mammo-graphic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chew, 2013 [39]</td>
<td>PC. PMSVH, Melbourne, Australia. 2012.</td>
<td>10: NK</td>
<td>38-57</td>
<td>BIRADS</td>
<td>HD human tissues had reduced stromal, increased adipose tissue compared to LD tissue during murine postpartum involution. Plasma IGF-1, IGFBP-3 and GH levels were not A/W MD.</td>
</tr>
<tr>
<td>Heusinger, 2012 [58]</td>
<td>XS. SC, Franconia, Germany, 1995-2008. Adj: A, BMI, P, HRT. 1,975: 1,989</td>
<td>1,975: 1,989</td>
<td>Mean PD</td>
<td>PD</td>
<td>No significant differences in PD between women with BC who had low and high Ki-67 values.</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Location</td>
<td>Tissue Type</td>
<td>Gland Count</td>
<td>BMI</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>DeFilippis</td>
<td>2012</td>
<td>PC</td>
<td>In vitro</td>
<td>NK</td>
<td>NK</td>
</tr>
<tr>
<td>Chew</td>
<td>2012</td>
<td>PC</td>
<td>PMSVH, Melbourne, Australia</td>
<td>10: NK</td>
<td>35-59 BIRADS</td>
</tr>
<tr>
<td>Ghosh</td>
<td>2012</td>
<td>PC</td>
<td>MC, USA</td>
<td>59: 179</td>
<td>40-82 BIRADS</td>
</tr>
<tr>
<td>Lin</td>
<td>2011</td>
<td>PC</td>
<td>PMSVH, Melbourne, Australia</td>
<td>12:3</td>
<td>35-48.3 BIRADS</td>
</tr>
<tr>
<td>Walker</td>
<td>2009</td>
<td>XS</td>
<td>MEGF, Britain, 1991-97</td>
<td>342:458</td>
<td>39-41</td>
</tr>
<tr>
<td>McCormack</td>
<td>2009</td>
<td>XS</td>
<td>SC, UK</td>
<td>270: 210</td>
<td>50-65</td>
</tr>
<tr>
<td>Verheus</td>
<td>2009</td>
<td>PC</td>
<td>MEC, USA</td>
<td>159: 120</td>
<td>Mean: 59.8</td>
</tr>
<tr>
<td>Provenzano</td>
<td>2008</td>
<td>PC</td>
<td>BTMSC in mouse mammary tissue</td>
<td>NA</td>
<td>NA NA</td>
</tr>
<tr>
<td>Johansson</td>
<td>2008</td>
<td>XS</td>
<td>CPT, Italy</td>
<td>174: 52</td>
<td>52</td>
</tr>
<tr>
<td>Harvey</td>
<td>2008</td>
<td>CC</td>
<td>SC, USA</td>
<td>28: 299</td>
<td>Mean: 61.7</td>
</tr>
<tr>
<td>Bremnes</td>
<td>2007</td>
<td>Cohort</td>
<td>NBCSP, Norway, 2001-02</td>
<td>722:319</td>
<td>55-71</td>
</tr>
<tr>
<td>Khan</td>
<td>2007</td>
<td>XS</td>
<td>HRKMC, USA</td>
<td>344: NK</td>
<td>20-78</td>
</tr>
<tr>
<td>Maskarine</td>
<td>2007</td>
<td>XS</td>
<td>SCs, USA, Japan and Norway</td>
<td>1,327:</td>
<td>Mean 53.9</td>
</tr>
</tbody>
</table>

Bremmes, 2007 [158] XS. SC, Norway, 2001-02. 977:64 55-71 CAM Plasma IGF-I and IGFBP-3 were positively associated with PD.

Abbreviations: A, age; AAFB, age at first birth; AC, alcohol consumption; AM, age at menarche; AAS, age at screening; ATC, age at the time of blood collection; AAM, age at menopause; A/W, associated with; BC, breast cancer; BMI, body mass index; BIRADS, Breast Imaging Reporting and Data Systems; BTMSC, bi-trangenic tumour model with increased stromal collagen; CPT, clinical prevention trial; CC, case-control; CAM, computer-assisted method; EPIC, European Prospective Investigation into Cancer and Nutrition cohort; Flx, family history of breast cancer; GH, growth hormone; HD, high density; HRT, hormonal replacement therapy; HRKMC, high-risk clinic at the University of Kansas medical centre; LD, low density; LAB, laboratory assay batch; PMSVH, women undergoing prophylactic mastectomy at St Vincent’s Hospital; PC, pre-clinical; P, parity; PD, percent density; PBC, prior breast cancer; MS, menopausal status; MD, mammographic density; MC, the Mayo Clinic; MEGF, the mammography, oestrogen and growth factors study; MV, mammography view; MEC, multi-ethnic cohort; NCC, nested case-control; NHS, Nurses’ Health Study; NK, not known; NA, not applicable; NBCSP, Navarre Breast Cancer Screening Program; IGF, insulin-like growth factor; IGFBP, IGF-binding protein; S, smoking; SC, screening centre; SST, sample storage time; SHBG, sex hormone binding globulin; SC, screening centre; XS, cross-sectional study; YOM, year of mammogram.

Table 9. Published literature on the genetic variations of mammographic density

<table>
<thead>
<tr>
<th>First author, y [ref.]</th>
<th>Study design. Study population characteristics.</th>
<th>No. cases: Age (y)</th>
<th>Mammographic feature</th>
<th>Key Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozhand</td>
<td>Cohort: NPCSP, 1996-2003.</td>
<td>2,755: CAM</td>
<td>50-69</td>
<td>9 tagging SNPs in the IL6 gene had</td>
</tr>
<tr>
<td>Reference</td>
<td>Year</td>
<td>Cohort</td>
<td>Adj</td>
<td>Variants</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Lee, 2013</td>
<td>2005</td>
<td>SBSP, Singapore</td>
<td>A, BMI</td>
<td>161 SNPs</td>
</tr>
<tr>
<td>Lee, 2013</td>
<td>1993-98</td>
<td>SBSP, Singapore</td>
<td>A, BMI</td>
<td>161 SNPs</td>
</tr>
<tr>
<td>De Aguiar, 2012</td>
<td>SC, Brazil</td>
<td>2005-06.</td>
<td>NK</td>
<td>161 SNPs in 15 hormone metabolism pathway gene regions were not A/W MD.</td>
</tr>
<tr>
<td>Stone, 2012</td>
<td>CC. ATR</td>
<td>1995-99.</td>
<td>A, BMI</td>
<td>327</td>
</tr>
<tr>
<td>Stevens, 2012</td>
<td>XS.MC, USA</td>
<td>A, BMI</td>
<td>1,241:272</td>
<td>RS1265507 on 12q24 was A/W PD.</td>
</tr>
<tr>
<td>Vachon, 2012</td>
<td>XS. DENSNP Consortium, USA</td>
<td>A, BMI, MS</td>
<td>5,110:1,785</td>
<td>The C-allele of rs3817198 in LSP1 was positively A/W BC and MD.</td>
</tr>
<tr>
<td>Varghese, 2012</td>
<td>GWAS, UK</td>
<td>A, BMI, PS</td>
<td>3,628:5,190</td>
<td>PD and BC have a shared genetic basis that is mediated through a large number of common variants.</td>
</tr>
<tr>
<td>Greenwood, 2011</td>
<td>ATR</td>
<td>A, P, MS, HRT, BMI</td>
<td>3,253:699</td>
<td>Mean 52.8 PD</td>
</tr>
<tr>
<td>Maskarinec, 2011</td>
<td>mother and daughter pairs, USA</td>
<td>R, BMI, A</td>
<td>101:203</td>
<td>38.7-64.3 (mothers); 10.2-16.9 (daughters) BIRADS</td>
</tr>
<tr>
<td>Giacomazzi, 2011</td>
<td>MSP, Brazil</td>
<td>AAS, AAM, AM, AAFB, P, R, BMI.</td>
<td>NK</td>
<td>BD</td>
</tr>
<tr>
<td>Year</td>
<td>Source</td>
<td>Study Details</td>
<td>Sample Size</td>
<td>Age Range</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2010</td>
<td>Odefrey, Yang</td>
<td>XS. ATSMDS, 2004-09. Adj: A, BMI.</td>
<td>2,288</td>
<td>40-70</td>
</tr>
<tr>
<td>2009</td>
<td>de Moura Ramos</td>
<td>XS. UNIFESP-EPM, 2008. Adj: A, BMI, MS, P, AAM.</td>
<td>120</td>
<td>NK</td>
</tr>
<tr>
<td>2009</td>
<td>Crandal</td>
<td>Cohort: SWAN, USA. Adj: A, R, P, BMI, S.</td>
<td>451:64</td>
<td>42-52</td>
</tr>
<tr>
<td>2009</td>
<td>Kataoka</td>
<td>CC. MSP, UK. 2002-07. Adj: AAS, BMI, S, AC, AAM, AM, MS, P, B, AAFB, HOBD.</td>
<td>746</td>
<td>37-79</td>
</tr>
<tr>
<td>2009</td>
<td>Cabo</td>
<td>XS. UNIFESP-EPM, Brazil. 2006. Adj: A, P, BMI.</td>
<td>123</td>
<td>NK</td>
</tr>
<tr>
<td>2009</td>
<td>Woolcott</td>
<td>NCC. MEC, USA, 1993-96. Match: R, YAG. Adj: A, R, BMI.</td>
<td>361:46</td>
<td>45-75</td>
</tr>
<tr>
<td>2008</td>
<td>Douglas</td>
<td>Cohort: Sister-pairs study, USA, 2005-07. Adj: A, MS, BMI, AM, AAM.</td>
<td>550</td>
<td>40-88</td>
</tr>
<tr>
<td>2008</td>
<td>Tamimi</td>
<td>XS. NHS, USA. 1989-1990. Adj: A, BMI.</td>
<td>1,121</td>
<td>33-55</td>
</tr>
<tr>
<td>2008</td>
<td>Diorio</td>
<td>XS. MSP, Canada, 2001. Adj: AAS, BMI, P, S, HOPB.</td>
<td>741:46</td>
<td>Mean 46.8</td>
</tr>
</tbody>
</table>
Each additional copy of the HSD3B1 Asn(367)Thr variant allele was A/W lower PD.

Cumulus CYP19 variants were not A/W MD.

Two haplotype-tagging SNPs in IGF1, rs1520220 and rs2946834, showed a strong association with MD.

Abbreviations: A, age; AAM, age at menopause; ATR, Australian twin registry; AAS, age at screening; AAFB, age at first birth; AC, alcohol consumption; ATSMDS, the Australian twin and sisters mammographic density study; A/W, associated with; AM, age at menarche; BC, breast cancer; BMI, body mass index; BIRADS, Breast Imaging Reporting and Data Systems; B, history of breastfeeding; CC, case-control; CAM, computer-assisted method; COX, cyclooxygenase; DG, dialect group; EPIC, the European Prospective Investigation into Cancer and Nutrition study; FTB, frozen tissue bank; Fhx, family history of breast cancer; GWAS, genome-wide association studies; GWS, genome-wide scan; GL, geographic location; HRT, hormonal replacement therapy; HD, high density; HTS, the healthy twin study; HOBD, history of benign disease; HOPB, history of previous biopsies; OCP, oral contraceptive; PD, percent density; PWBCS, population-based Polish Women’s breast cancer study; PS, population stratification; P, parity; PC, pre-clinical; LOD, logarithm of odds; MD, mammographic density; MC, the Mayo Clinic; MS, menopausal status; MSP, mammography screening program; MGBCP, multigenerational families ascertained through a breast cancer proband; NBCSP, Navarre Breast Cancer Screening Program; NK, not known; NHS, Nurses’ Health Study; IL, interleukin; IGF, insulin-like growth factor; R, race; SBSP, Singapore breast screening project; SNP, single nucleotide polymorphism; SWAN, the study of Women’s Health across the nation; SC, screening centre; S, smoking; TGFβ1: Transforming Growth Factor Beta 1; UNIFESP-EPM, patients from the Climacterium Sector and the Diagnostic Section of the Department of Gynecology, Federal de São Paulo, Escola Paulista de Medicina; XS, cross-sectional study; YAG, 5-year age group.
<table>
<thead>
<tr>
<th>MD Assessment Method</th>
<th>Classification</th>
</tr>
</thead>
</table>
| BI-RADS | The breast parenchyma is given a score of 1-4:
1= predominantly fat;
2= scattered fibroglandular densities;
3= heterogeneously dense;
4= extremely dense. |
| Wolfe | The breast parenchyma is divided into 4 risk patterns:
N1= predominantly fat;
P1= mainly fat with a few prominent ducts;
P2= prominent duct patterns involving at least one half of the parenchyma;
DY= extremely dense. |
| Tabár | The breast parenchyma is divided into 5 risk patterns based on 4 mammographic building blocks:
nodular, linear, homogeneous and radiolucent tissue respectively
I= [25%,15%,35%,25%]
II= [2%,14%,2%,82%]
III= Similar to II in composition + periductal fibrosis
IV= [49%,19%,15%,17%]
V= [2%,2%,89%,7%] |
| Cumulus | Interactive thresholding software that relies on the user to select the whole breast and dense tissue areas on digitized mammographic images.
It calculates the pixel sizes of selected areas based on a grey scale and convert the results to square centimetres.
Percent dense area = dense area/ whole breast area
Non-dense area = whole breast area – dense area |
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Huo, CW; Chew, GL; Britt, KL; Ingman, WV; Henderson, MA; Hopper, JL; Thompson, EW

Title:
Mammographic density—a review on the current understanding of its association with breast cancer

Date:
2014-04-01

Citation:
Huo, CW; Chew, GL; Britt, KL; Ingman, WV; Henderson, MA; Hopper, JL; Thompson, EW, Mammographic density—a review on the current understanding of its association with breast cancer, BREAST CANCER RESEARCH AND TREATMENT, 2014, 144 (3), pp. 479 - 502

Persistent Link:
http://hdl.handle.net/11343/220388

File Description:
Accepted version