
Accurate and Efficient Human
Activity Recognition

Weihao Cheng

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

June 2018

School of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

Copyright c© 2018 Weihao Cheng

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author
except as permitted by law.

Abstract

Human Activity Recognition (HAR) is a promising technology which enables artificial
intelligence systems to identify user’s physical activities such as walking, running, and
cycling. Recently, the demand for HAR is continuously increasing in pace with the rapid
development of ubiquitous computing techniques. Major applications of HAR including
fitness tracking, safety monitoring, and contextual recommendation have been widely
applied in people’s daily lives. For example, a music App on smartphones can use HAR
to detect the current activity of the user and recommend activity-related songs.

State-of-the-art HAR methods are based on the machine learning technique, where a
classification model is trained on a dataset to infer a number of predefined activities. The
data for HAR is usually in the form of time series, which can be collected by sensors such
as accelerometers, microphones, and cameras. In this thesis, we mainly focus on HAR
using the data from inertial sensors, such as accelerations from accelerometers.

A large number of existing studies on HAR aim to obtain high recognition accuracy.
However, efficiency is also an important aspect of HAR. In this thesis, we attempt to im-
prove HAR methods for both accuracy and efficiency. Toward this goal, we first devise
accurate HAR methods, and then improve the efficiency of HAR while maintaining the
accuracy. More specifically, we tackle three problems. The first problem is to accurately
recognize the current activity during activity transitions. Existing HAR methods train
classification models based on tailored time series containing single activity. However,
in practical scenarios, a piece of time series data could capture multiple interleaving ac-
tivities causing activity transitions. Thus, recognition of the current activity, i.e., the most
recent one, is a critical problem to investigate. The second problem is to accurately pre-
dict complex activities from ongoing observations. Many time-critical applications, such
as safety monitoring, require early recognition of complex activities which are performed
over a long period of time. However, without being fully observed, complex activities are
hard to be recognized due to their complicated patterns. Therefore, predicting complex
activities from ongoing observations is an important task to study. The third problem
is to improve energy-efficiency of HAR on mobile devices while maintaining high ac-
curacy. Many applications of HAR are based on mobile devices. However, due to the
limited battery capacity, real-time HAR requires minimization of energy cost to extend
the operating spans of the devices. Generally, the cost can be cut down by reducing al-
gorithmic computations and sensing frequencies. Yet it is worth to find a maximal cost

iii

reduction while preserving a high recognition accuracy.
In this thesis, we present a set of algorithms to address the proposed problems. The

key contributions of the thesis can be summarized as follows:

1. We propose a method to accurately recognize the current activity in the presence of
multiple activities with transitions. The method partitions a time series matching
the occurring activities, where the maximum classification error of these activities
is minimized.

2. We propose a method to accurately predict complex activities over time from on-
going multivariate time series. The method utilizes an action sequence model and
a complex activity model, which make predictions alternately based on each other
as the observed data increases.

3. We propose a method to minimize the computational cost of HAR while maintain-
ing high recognition accuracy. The method uses a Markov Decision Process (MDP)
to select an optimal subset of feature representations for ensemble classification that
minimizes redundant computations.

4. We propose a method to minimize a combined measurement of sensing cost and
classification error of HAR. The method uses MDP to select appropriate sensing
rate to sample the incoming data points, where the sparsity of the outcome time
series is ensured to preserve the recognition accuracy.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Weihao Cheng, 2 June 2018

v

Preface

The research of this thesis has been carried out in School of Computing and Information

Systems, The University of Melbourne. The main contributions of the thesis are discussed

in Chapters 3, 4, 5, 6, which are based on the following publications:

• Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao, “Accurate

Recognition of the Current Activity in the Presence of Multiple Activities”, Pro-

ceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD),

Jeju, South Korea, 2017.

• Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao, “Predicting

Complex Activities from Ongoing Multivariate Time Series”, Proceedings of Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 2018.

• Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao, “Markov Dy-

namic Subsequence Ensemble for Energy-Efficient Activity Recognition”, Proceed-

ings of International Conference on Mobile and Ubiquitous Systems: Computing, Network-

ing and Services (MobiQuitous), Melbourne, Australia, 2017.

• Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao, “Learning

Datum-Wise Sampling Frequency for Energy-Efficient Activity Recognition”, Pro-

ceedings of AAAI Conference on Artificial Intelligence (AAAI), New Orleans, USA, 2018.

I declare that I am the primary author and have contributed > 50% in the above papers.

vii

Acknowledgements

I cherish the opportunity of pursuing my doctoral study under the supervision of Profes-
sor Kotagiri Ramamohanarao, Professor Rui Zhang, and Dr. Sara Erfani. I would like to
express my sincere gratitude to them for continuous mentoring, monitoring, guidance,
and technical advices during my PhD study.

I would like to thank the members of PhD committee: Professor Lars Kulik, for his
constructive comments and suggestions on my work. I am also thankful to my colleagues
in the department: Dr. Fang Meng, Yuan Li, Yitong Li, Zeyi Wen, Sun Yu, and Xiaojie
Wang for their insightful discussion and guidance on the technical side.

I’m grateful for the scholarships from the University of Melbourne, which support
me to pursue my doctoral degree.

My deepest gratitude goes to my parents who deserve the credit for whatever success
that I have attained in my life. I thank them for their continuous support and dedication.

Weihao Cheng
Melbourne, Australia
June 2018

ix

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Thesis Structure . 5

2 Background 7
2.1 Human Activity Recognition . 7

2.1.1 Preliminary . 8
2.1.2 Review of Representative Work on Human Activity Recognition . 9

2.2 Accurate Recognition of the Current Activity during Activity Transitions . 12
2.2.1 Overview . 12
2.2.2 Time Series Segmentation . 13

2.3 Accurate Predicting of Complex Activities from Ongoing Observations . . 15
2.3.1 Overview . 15
2.3.2 Early Classification on Time Series 16
2.3.3 Deep Learning for Human Activity Recognition 17

2.4 Energy-Efficient Human Activity Recognition 20
2.4.1 Overview . 20
2.4.2 Ensemble Learning . 23
2.4.3 Markov Decision Process . 25

2.5 Human Activity Recognition Datasets . 26
2.6 Conclusion . 28

3 Accurate Recognition of the Current Activity during Activity Transitions 29
3.1 Introduction . 29
3.2 Methodology . 31

3.2.1 Problem Statement . 32
3.2.2 Min-Max Activity Recognition Model (MARM) 32
3.2.3 Weighted Min-Max Activity Recognition Model (WMARM) 35
3.2.4 Efficient Implementation of WMARM 37

3.3 Empirical Evaluation . 38
3.3.1 Measuring the Accuracy of Current Activity Recognition 40
3.3.2 Evaluating the Impact of µ on Accuracy 41
3.3.3 Measuring the Accuracy on Actual Transitions 41
3.3.4 Evaluating the Execution Time on Smartphone 43

3.4 Conclusion . 43

xi

4 Accurate Predicting of Complex Activities from Ongoing Observations 45
4.1 Introduction . 45
4.2 Methodology . 47

4.2.1 Problem Statement . 48
4.2.2 Simultaneous Complex Activities Recognition and Action Sequence

Discovering (SimRAD) . 48
4.3 Experiments . 54

4.3.1 Prediction of Complex Activities . 57
4.3.2 Recognition of Action Sequence . 59

4.4 Conclusion . 60

5 Efficient Human Activity Recognition by Reducing Computational Cost 61
5.1 Introduction . 61
5.2 Proposed Method . 63

5.2.1 Markov Dynamic Subsequence Ensemble (MDSE) 65
5.2.2 Theoretical Analysis of the Accuracy Constraints in MDSE 68
5.2.3 Computational Efficiency of MDSE 73

5.3 Empirical Evaluations . 75
5.3.1 Performances of Different Subsequences 77
5.3.2 Markov Dynamic Subsequence Ensemble 78
5.3.3 The Accuracy Constraints . 81
5.3.4 The Computational Efficiency of MDSE 82
5.3.5 Evaluation on Smartphone . 82

5.4 Conclusion & Discussion . 83

6 Efficient Human Activity Recognition by Reducing Sensing Cost 85
6.1 Introduction . 85
6.2 Methodology . 87

6.2.1 Problem Statement . 87
6.2.2 Datum-Wise Frequency Selection (DWFS) 89

6.3 Empirical Evaluation . 96
6.3.1 Recognition Accuracy versus Energy Cost 98
6.3.2 Evaluating the Performance of DWFS 99
6.3.3 Insight Study of DWFS . 99

6.4 Conclusion & Discussion . 101

7 Conclusion & Future Research 105
7.1 Summary of Contributions . 105
7.2 Future Research . 107

xii

List of Figures

1.1 The figure shows a general work-flow of Human Activity Recognition
(HAR), which is using sensor time series data to recognize an individual’s
daily activities, such as walking, running, and cycling. In step 1, sensors
on portable devices are used to collect a piece of time series data (The red-
blue-green signal curves are the 3-axis accelerations). In step 2, the time
series data is processed and fed to a classification model. In step 3, the
classification model infers the activity represented by the data. In step 4,
the inferred activity can be used in various applications, such as fitness
tracking. 2

2.1 The time series shown in the curves are 3-axis acceleration signals. There
are 3 activities captured in the time series with transition points τ0, τ1, τ2,
τ3, where τ0 and τ3 are two end points. Sitting and standing are the previ-
ous activities, walking is the current activity that we expect to recognize.

. 13
2.2 A general Deep Neural Network structure. 17
2.3 The time series shown in red, green and blue curves are 3-axis accelera-

tion data. W1, ...,Wn are n overlapping windows, which observes differ-
ent ranges of the time series from timestamp τ1 to τ2. W1,W2, ...,Wi share
one size with 50% overlaps. Similarly,Wi+1, ...,Wj share another size, and
there are several different sizes of windows. 22

3.1 The time series shown in the curves are 3-axis acceleration signals. There
are 3 activities captured in the time series with transition points τ0, τ1, τ2,
τ3, where τ0 and τ3 are two end points. Sitting and standing are the previ-
ous activities, walking is the current activity that we expect to recognize.

. 31
3.2 Accuracy of WMARM with respect to µ on datasets: HASC, HARSD, ACTR,

and DSA. For K = 0, the accuracy slightly improves on HASC, HARSD,
and DSA, and slightly drops on ACTR. For K = 1, 2, 3, the accuracy reaches
maximum around µ = 0.7(±0.1), and then slightly decreases by less than
1% or becomes stable. 42

4.1 The neural network structure of the feature learner G. The inputs 1, ..., d
are the univariate time series on each channel of X. The output of G is the
learned feature vector. 51

4.2 Prediction accuracies of CAs at different progress levels on OPP-BW dataset 57

xiii

4.3 Prediction accuracies of CAs at different progress levels on OPP-BH dataset 57
4.4 Prediction accuracies of CAs at different progress levels on OPP-BUA dataset 57
4.5 The accuracies of SimRAD with respect to λt 59

5.1 The time series shown in red, green and blue curves are 3-axis accelera-
tion data. W1, ...,Wn are n overlapping windows, which observes differ-
ent ranges of the time series from timestamp τ1 to τ2. W1,W2, ...,Wi share
one size with 50% overlaps. Similarly,Wi+1, ...,Wj share another size, and
there are several different sizes of windows. 63

5.2 Given N = 20 (subsequences), m = 6 (activities) and ε = 0.2, the curves
show the upper bound of Ω as function of β with different η. 75

5.3 Accuracies of Decision Trees (DTs) using the subsequences X1, X2, ..., X17
on different datasets. 77

5.4 Accuracy and Cost (%) of Markov Dynamic Subsequence Ensemble (MDSE)
as functions of β with different η. 78

5.5 ∆Accuracy/∆Cost of MDSE as a function of β with different η. 78
5.6 Comparing accuracy of MDSE with CNN and RNN on different datasets. 78
5.7 The dashed curve shows the upper bound of Ω with respect to β, and the

solid curve shows the empirical Ω. 82

6.1 The dynamics of the MDP. 91
6.2 The 4 relationships on HASC, HARSD, and DSA datasets. (a) Classifica-

tion error with respect to λ. (b) Energy cost with respect to λ. (c) Classifi-
cation error with respect to energy cost. (d) Frequency changing rate with
respect to λ. 103

xiv

List of Tables

3.1 Results of accuracy on datasets: HASC, HARSD, ACTR, and DSA. K is the
number of transitions in the time series. K is not known to the methods. . 41

4.1 The Wilcoxon test to compare the prediction accuracies regarding R+, R−,
and p-values. 58

4.2 Recognition accuracies on action sequences. 59

5.1 Major expressions . 64
5.2 Comparing MDSE with SBC and SWEM using base classifiers: DT, LR and

KNN. 79
5.3 Comparing MDSE with Random K methods (DT as base classifier). Due to

the page limitation, we only show the results of Random K − 2, K − 1, K,
K + 1 and All, where K is set as the smallest integer that greater than the
obtained ensemble size of MDSE. 80

5.4 Performances on a Google Nexus 5X. 83

6.1 Recognition Accuracy versus Energy Cost (Accelerometer). The unit of the
energy cost values is Joule per hour (J/h). 98

6.2 The Error-Cost Index with respect to λ on HASC dataset. 100
6.3 The Error-Cost Index with respect to λ on HARSD dataset. 101
6.4 The Error-Cost Index with respect to λ on DSA dataset. 102
6.5 The Wilcoxon test to compare the Error-Cost Indexes of DWFS, DWFS-

CVL, DWFS-SL, RNN, MDP-DS, and Random regarding R+, R−, and p-
values. 102

xv

Chapter 1

Introduction

Human Activity Recognition (HAR) is a promising technique which is widely deployed on ubiq-

uitous computing systems to identify individual’s activities using contextual data. In this thesis,

we aim to improve the performance of HAR on both accuracy and efficiency. Toward this goal, we

study three problems. The first problem is accurate recognition of the current activity during ac-

tivity transitions. We propose a method which divides a given time series into segments matching

the appearing activities and recognizes the current activity simultaneously. The second problem

is accurate predicting of complex activities from ongoing observations. We devise an algorithm

which predicts a complex activity over time by mining a sequence of multivariate actions from the

observed time series. The third problem is improving energy-efficiency of HAR on portable devices

while maintaining high recognition accuracy. We devise two independent methods to address this

problem. One uses a Markov Decision Process (MDP) to dynamically select ensemble base clas-

sifiers for reducing computational cost, and the other uses MDP to select appropriate sampling

frequency for reducing sensing cost. Our solutions to the three HAR problems have achieved

prominent results, and we hope that they can attract more attention to new paradigms of HAR.

1.1 Introduction

Human Activity Recognition (HAR) is one of the most promising research topics un-

der the rapid development of ubiquitous technologies. The goal of HAR is to identify

user’s activities based on context information collected by sensors, such as accelerome-

ter, gyroscope, and GPS. Generally, the context information is presented as a time series,

where each data point of the time series is a sensor reading, such as a 3-axis accelera-

tion or a GPS coordinate. HAR algorithms extract features from a window of the time

1

2 Introduction

Time Series Data

Classification
Model

Human Activity
(walking, running, etc)

Fitness Tracking

Safety Monitoring

Contextual Recommendation

...

Step 1 Step 2

Step 3

Step 4

Figure 1.1: The figure shows a general work-flow of Human Activity Recognition (HAR),
which is using sensor time series data to recognize an individual’s daily activities, such
as walking, running, and cycling. In step 1, sensors on portable devices are used to collect
a piece of time series data (The red-blue-green signal curves are the 3-axis accelerations).
In step 2, the time series data is processed and fed to a classification model. In step 3,
the classification model infers the activity represented by the data. In step 4, the inferred
activity can be used in various applications, such as fitness tracking.

series and learn a classification model based on the features for inferring the activity.

HAR has been widely applied in many real-world scenarios. For example, virtual assis-

tants on smartphones, such as Siri and Cortana, use HAR to detect a user’s behaviors,

and thus the systems can provide personal assistance regarding an individual’s degree

of functional ability and life style. Figure 1.1 summarizes a general work-flow of HAR.

Although HAR has been studied for a decade, there are many challenging problems left

behind, which attract significant attention to study. The most vital problems in HAR are:

recognition of complex activities [62, 63, 106], energy-efficient HAR on mobile platforms

[16,28,42,46,49,65,73,94,95,98], abnormal activity recognition [68,69,101], optimal sensor

placement [6, 48], ground truth data annotation [31, 90], and so on.

Most of the existing studies focus on the accuracy of HAR, however, efficiency is also

an important aspect. Accurate and efficient recognition can greatly extend the applica-

bility and scalability of HAR in the real world. Accordingly, in this thesis, we aim to

improve HAR on both accuracy and efficiency. Toward this goal, we start by devising

accurate HAR methods, and then we improve the efficiency of HAR while maintaining

1.1 Introduction 3

the accuracy. More specifically, we solve three problems as follows:

• Problem 1 - Accurate recognition of the current activity during activity transitions: Most

existing HAR algorithms are designed to recognize the current activity based on a

window of time series data assuming that only one activity is taking place. How-

ever, during activity transitions, a time series of multiple interleaving activities can

be captured through the window. Simply feeding such time series to the classi-

fication model may cause incorrect recognition of the current activity. Therefore,

finding the current activity in the presence of multiple activities is an important

task for achieving accurate HAR.

• Problem 2 - Accurate predicting complex activities from ongoing observations: Most ex-

isting work focuses on recognizing simple activities, also known as actions, such

as ‘lifting’ and ‘grabbing’, which are performed in a short time period and can

be efficiently captured. Compared with actions, complex activities comprised of

a group of temporally related actions, are usually performed over a much longer

time period. Many time-critical applications require recognition of complex activi-

ties without being fully observed, which incurs an emerging problem of predicting

complex activities from ongoing observations.

• Problem 3 - Improving energy-efficiency of HAR while maintaining accuracy: HAR al-

gorithms have been widely deployed on smartphones and smartwatches due to

their powerful sensing and computing capacity. However, real-time HAR requires

continuous sensing and computing which cause a large amount of power consump-

tion that significantly decreases the battery lifetime. Therefore, improving energy-

efficiency of HAR is especially critical to mobile platforms. A naive way is to reduce

computations of HAR algorithms or sampling frequencies of sensors, but this can

affect the recognition accuracy as a trade-off. Thereafter, it is a challenging task to

reduce energy expenditure of HAR while maintaining accuracy.

The problems proposed above are emergent yet challenging. We draw on advanced ma-

chine learning techniques to develop effective methods for improving HAR’s accuracy

and efficiency. In the following paragraphs, we briefly introduce our solutions regarding

the proposed problems.

4 Introduction

For the first problem: accurate recognition of the current activity during activity tran-

sitions, we propose Weighted Min-max Activity Recognition Model (WMARM), which

recognizes the current activity by optimally partitioning the observed window of time

series matching the activities presented. WMARM considers weights on the partitioned

segments to obtain reliable recognition accuracy. WMARM can also effectively handle the

time series containing an arbitrary number of transitions without any prior knowledge

about the number of transitions. Instead of exhaustively searching the optimal solution

of WMARM in exponential space, we propose an efficient dynamic programming algo-

rithm that computes the model in O(n2) time complexity, where n is the length of the

window. Moreover, we present an efficient implementation of WMARM that the compu-

tation cost can be further reduced. Extensive experiments on 5 real-world HAR datasets

have demonstrated the superior performance of WMARM on handling time series with

one or more activity transitions. The results show about 10%-30% improvement on the

accuracy of current activity recognition compared with state-of-the-art methods. The ex-

periment on smartphones shows the significant computational efficiency of WMARM.

For the second problem: accurate predicting of complex activities from ongoing observa-

tions, we propose Simultaneous Complex Activities Recognition and Action Sequence

Discovering (SimRAD) which predicts a complex activity over time by finding a sequence

of multivariate actions from sensory times series data using a Deep Neural Network.

SimRAD learns two probabilistic models for inferring complex activities and action se-

quences, where the estimations of the two models are conditionally dependent on each

other. SimRAD alternately predicts the complex activity and the action sequence with

the two models, thus the predictions can be mutually updated until the completion of

the complex activity. We evaluate SimRAD on a real-world complex activity dataset of a

rich amount of sensor data. The results demonstrate that SimRAD outperforms state-of-

the-art methods by 7.2% on average prediction accuracy with very high confidence.

For the third problem: improving energy-efficiency of HAR while maintaining accuracy, we

propose two independent methods which reduce energy cost from two different aspects.

The first method focuses on reducing computational cost which is caused by performing

computations on activity inference. This method improves the subsequence ensemble

models which use multiple feature representations based on subsequences of a time se-

1.2 Thesis Structure 5

ries. The subsequence ensemble models deliver excellent performance on recognition

accuracy, but they are very expensive due to a large amount of computation on multiple

subsequences. We formalize a dynamic subsequence selection problem that minimizes

the required computations while persevering a high recognition accuracy. To solve this

problem, we propose Markov Dynamic Subsequence Ensemble (MDSE), an algorithm

for the selection of the subsequences via a Markov Decision Process (MDP), where a pol-

icy is learned for choosing the best subsequence given the state of prediction. Regarding

MDSE, we derive an upper bound of the expected ensemble size, so that the energy con-

sumption caused by the computations of the proposed method is guaranteed. Extensive

experiments are conducted on 6 real-world HAR datasets to evaluate the effectiveness

of MDSE. Compared with the state-of-the-art methods, MDSE reduces 70.8% computa-

tional cost which is 3.42 times more energy efficient, and achieves a comparably high

accuracy. The second method focuses on reducing sensing cost which is caused by sam-

pling data with sensors. This method aims to dynamically select sampling frequencies

by directly exploiting sensor data. We formalize a problem of minimizing an objective

function regarding classification error and sensing cost, by finding an optimal classi-

fication model and dynamically appropriate sampling rates. To address this problem,

we propose Datum-Wise Frequency Selection (DWFS) which utilizes a continuous state

Markov Decision Process (MDP). The MDP learns a policy function that selects the best

frequency for sampling an incoming data entity by utilizing previously sampled data. We

propose an alternate learning scheme, where the parameters of the classification model

and the policy function are mutually enhanced. We evaluate the performance of DWFS

on 3 real-world HAR datasets, and the results show that DWFS statistically outperforms

the state-of-the-art regarding a combined measurement of classification error and energy

cost.

1.2 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2 reviews related work of the thesis. We summarize existing studies on the

three problems that will be addressed in the thesis. We also introduce the related

6 Introduction

techniques used in our proposed methods.

• Chapter 3 studies the problem of accurate recognition of the current activity during

activity transitions. We propose a method to infer the current activity from multiple

interleaving activities. The idea of the method is to partition a given time series

matching the occurred activities, where the maximum recognition error of those

activities is minimized.

• Chapter 4 studies the problem of accurate predicting of complex activities recogni-

tion from ongoing observations. We propose a method to predict complex activities

over time with the incrementing of the observed sensory data. The method utilizes

an action sequence model and a complex model, which are alternately evaluated to

make predictions based on each other.

• Chapter 5 studies the problem of improving HAR energy-efficiency by reducing

computational cost. We propose a method to reduce the amount of HAR’s com-

putation while maintaining high recognition accuracy. The method uses Markov

Decision Process (MDP) to select an optimal subset of feature representations for

ensemble classification that minimizes the unnecessary computations.

• Chapter 6 studies the problem of improving HAR energy-efficiency by reducing

sensing cost. We propose a method to minimize a combined measurement of sens-

ing cost and classification error of HAR. The method uses MDP to select appro-

priate sensing rate to sample the incoming data points, where the sparsity of the

sampled time series is ensured to maintain recognition accuracy.

• Chapter 7 concludes the key findings and highlights main research outcomes in

this thesis. We also include the future directions regarding the study of accurate

and efficient HAR.

Chapter 2

Background

In this chapter, we present the background knowledge of the thesis, where we mainly introduce our

research problems and review the related literature. In section 2.1, we provide a brief introduction

of Human Activity Recognition (HAR), including the preliminary knowledge and a number of

representative work in previous HAR research. In section 2.2, we introduce the problem of accu-

rate recognition of the current activity during activity transitions. For this problem, we mainly

review the studies on time series segmentation, which can be used to precisely find the current

activity in the presence of multiple activities. In section 2.3, we introduce the problem of accurate

predicting of complex activities from ongoing observations. For this problem, we review related

work on early time series classification. We also review the deep learning technique, which is a

powerful tool for delivering accurate predictions of complex activities. In section 2.4, we discuss

the problem of improving energy-efficiency of HAR while maintaining recognition accuracy. For

this problem, we first survey the traditional work on reducing the energy cost of HAR. We then

review Ensemble Learning and Markov Decision Process, which are promising techniques for ob-

taining optimal energy-efficiency. In section 2.5, we introduce the datasets used in the experiments

of this thesis.

2.1 Human Activity Recognition

The task of Human Activity Recognition (HAR) is to recognize human physical activities,

e.g., walking and running, using the data collected from sensors, e.g., accelerometers, mi-

crophones, and cameras. Due to the rapid development of ubiquitous computing tech-

nology in recent years, HAR is widely applied on smart systems, such as smartphones,

to facilitate the understanding of a user’s behaviors and provide assistance to the user.

7

8 Background

The applications of HAR fall across a board range of disciplines [64]. A fitness tracking

system uses HAR to analyze the daily activities performed by a user, and provide fit-

ness recommendation to the user to keep healthy [53]. A safety monitoring system uses

HAR to detect the abnormal behaviors of a user that an alert can be sent out to avert or

minimize the consequences [35]. A context-aware system uses HAR to track the current

activity of a user [26,75,88], and modifies the system’s configuration to improve user ex-

perience, for example, a news App can enlarge font size to enhance reading experience

when the user is walking.

2.1.1 Preliminary

State-of-the-art HAR methods are based on supervised machine learning technique, which

includes a training stage and an inference stage. Let Y = {y1, y2, ..., ym} be a label set of

m human activities to identify. First of all, a set of sensors are used to collect a number

of time series regarding the m activities. Then, these time series are split into several

segments by a sliding time windowW to generate a training dataset D = {(X(i), y(i))},

where X(i) is a time series segment, and y(i) ∈ Y is the annotated activity label of X(i). At

the training stage, we want to learn a probability model p(y |X; θ) to maximize an overall

inference probability on the dataset D as:

max
θ

∑
(X(i),y(i))∈D

p(y = y(i) |X = X(i); θ), (2.1)

where θ is the model’s parameter. The probability model p(y |X; θ) can be derived from

a classification model such as nearest neighbors [2], softmax regression [21], decision

tree [74], support vector machine [89], naive Bayes [23], Hidden Markov Model [12],

Deep Neural Network (DNN) [54], etc. For example, the probabilistic model of softmax

regression is expressed as:

p(y = yk |X; θ = {θ1, ..., θm}) =
e−θT

k φ(X)

∑m
j=1 e−θT

j φ(X)
, for k = 1, ..., m, (2.2)

where θ consists of a set of weight parameters θ1, ..., θm, and φ is a function that returns

a vector of features representing the X. The chosen of the features are essential for the

2.1 Human Activity Recognition 9

learning of classification models. Some of the mostly used features in HAR can be cate-

gorized into: time domain features (e.g., mean, variance, auto-correlation, zero crossing)

and frequency domain features (e.g., Fourier coefficients). Beside using predefined fea-

tures, state-of-the-art classification models such as DNN can directly learn feature repre-

sentations from raw data, which is more promising if there is sufficient training data. At

the inference stage, a stream of data points are continuously sampled by sensors. A slid-

ing time window is then used to collect a number of the most recent data points. These

data points are formed as a testing time series Xt, and the model p(y |X; θ) is then used

to infer the activity label of Xt as:

ŷ = argmax
yk∈Y

p(y = yk |X = Xt; θ), (2.3)

where ŷ is the inferred activity label. In experimental environments, a ground truth label

ytrue is provided along with the testing time series to evaluate the correctness of the infer-

ence. The error of the inference is measured as 1{ytrue 6= ŷ}, where the indicator function

1{condition} returns 1 if the condition holds true and 0 otherwise.

2.1.2 Review of Representative Work on Human Activity Recognition

In the last fifteen years, many HAR approaches have been proposed regarding a variety

of sensors, classification models, application scenarios, etc [4,10,30,33,34,52,53,55,60,76,

77, 86, 104, 108]. We review a number of representative work on general HAR.

Bao et al. [10] conduct a study of HAR using multiple body-worn accelerometers to

recognize twenty daily activities including walking, sitting, running, etc. They examine

four classification models: decision table, nearest neighbor, C4.5 decision tree, and naive

Bayes classifier. They discover that using C4.5 decision tree obtains the best recognition

accuracy which is 84.26%. Krumm et al. [52] study to use WiFi signal for recognizing two

activities: move and still. They use the variance of WiFi signal strength as the feature,

and they learn a Hidden Markov Model (HMM) which takes a sequence of the variances

as observations and outputs the most likely sequence of activities represented by the

hidden states. They report 87% accuracy achieved by their method. Ravi et al. [76] use

a single triaxial accelerometer to recognize eight activities. They test five classifiers and

10 Background

three ensemble schemes of combining the five classifiers. The five classifiers are decision

table, C4.5 decision tree, K-nearest neighbor, support vector machine, and naive Bayes.

The three ensemble schemes are voting, boosting, and bagging. They find that using the

ensemble method of plurality voting obtains the best accuracy which is 99.82%. Lester

et al. [55] propose a HAR method based on a set of sensors including accelerometer,

ambient light, microphone, etc. They extract a number of candidate features from the

data of all the sensors. For each activity, they use Boost Cascade [92] to select useful

features, and they learn a two-stage model to calculate the likelihood of the activity. The

first stage is an ensemble of decision stump classifiers based on the selected features to

estimate the activity probability. The second stage is an HMM which takes a sequence

of the probabilities by the ensemble classifier as observations and returns the activity

likelihood. The final inferred activity is the one with the maximum likelihood. They test

the method to recognize ten activities, and the method achieves an overall accuracy of

95%.

Liao et al. [60] develop a HAR model using location information from GPS. They

construct a hierarchical relational Markov network where activities are simultaneously

estimated with user’s locations from local evidence. They test the method to recognize

ten activities such as ‘Work’, ‘Sleep’, and ‘Pickup’, and the method achieves 85% accu-

racy. Anderson et al. [4] propose to use GSM Cellular of mobile phones to recognize

three simple activities: walking, driving, and stationary. They apply an artificial neu-

ral network for classification using features based on the variance of signal strength and

number of detected cellular towers. They report the results of accuracies for each activ-

ity: 90% for stationary, 79% for walking, and 36% for driving. Zheng et al. [108] study to

use GPS logs to recognize user’s transportation modes: walking, driving, bus, and bike.

They adopt a decision tree for activity inference based on a set of geographical features

such as heading change rate, velocity change rate, and stop rate. Then, they propose

a graph-based post-processing algorithm to further improve the inference performance.

The results show that their method achieves an inference accuracy of 76.2%. Reddy et al.

[77] use accelerometer and GPS in combination to recognize user’s transportation modes.

They find that the information from GPS is the most important to make an accurate infer-

ence. They extract mean, variance, energy, 1-10Hz Fourier coefficients from accelerations

2.1 Human Activity Recognition 11

and GPS speed as features. They propose a two-stage classifier which combines decision

tree with HMM. The experimental results show that their method achieves an overall

accuracy of 93.6%.

Gu et al. [30] propose an Emerging Sequential Patterns based approach to recog-

nize human activities using body sensor networks. For each activity, they select a set of

sequential patterns which are frequently appeared and have large discriminative pow-

ers. Given a segment of testing time series, they calculate the aggregate probability of

one activity by evaluating all the sequential patterns appearing in the time series, and

the inferred activity is the one with highest aggregate probability. They further extend

their method to recognize interleaved and concurrent activities by considering correla-

tion probabilities. The experimental results show that the Emerging Sequential Pattern

method obtains 91.89% accuracy. Kwapisz et al. [53] design a practical HAR system on

Android devices. Their HAR method is trained on 10-second segments of acceleration

data, where they extract mean, standard deviation, average absolute difference, average

resultant acceleration, time between peak, and binned distribution as features. They test

J48 decision tree [32], logistic regression, and multilayer perceptron [83] as classification

models, and they found that multilayer perceptron achieves the best accuracy which is

91.7%. Sankaran et al. [86] propose a novel method which uses a barometer to recognize

three locomotion activities: vehicle, walking, and idle. Since a barometer measures atmo-

spheric pressure which contains vibration information, they calculate ‘jump’, peaks, and

standard deviation from pressures data stream as the features. Then, they use a thresh-

olding based method to detect the activities. The experimental results show that their

method achieves an overall accuracy of 69%.

Zeng et al. [104] use a Convolutional Neural Network (CNN) for recognition of hu-

man activities. They incorporate the partial weight sharing strategy on the convolutional

layer of the CNN, which learns temporal relevant patterns directly from raw time series

data. They test their method on three public datasets: Skoda [103], Opportunity [81],

and Actitracker [53], and the obtained accuracies are 88.19%, 76.83%, and 96.88%, respec-

tively. Hammerla et al. [33] systematically investigate three deep learning models: deep

feed-forward networks, CNN, and Recurrent Neural Network (RNN) for HAR. They

evaluate the performances of the models with randomly sampled hyper-parameters on

12 Background

three public datasets: Opportunity [81], PAMAP2 [79], and Daphnet Gait [7]. They mea-

sure f1-scores for the recognition of each activity. The results show that RNN performs

the best on recognizing activities of short durations with natural ordering, and CNN per-

forms the best on recognizing activities of long duration with repetitive patterns.

2.2 Accurate Recognition of the Current Activity during Activity
Transitions

Most of the existing HAR methods [36, 53, 77] use segmented time series to train classi-

fiers for activity inference, where each segment of time series represents a single activity.

In practice, such HAR systems utilize a window to capture the data stream of sensors in

a fixed time duration, and feed the captured time series data to a trained classifier to infer

the current activity. However, a window of the data stream may contain more than one

activity causing transitions at arbitrary time positions, see Figure 2.1 for example. Sim-

ply using a time series containing multiple activities for classification that expects input

containing single activity can lead to a poor recognition accuracy. A trivial approach is

to use a small window, so that there is a high probability to capture a clean time series of

the current activity with a minimal chance of transition taking place. But the trade-off is

that fewer data points will result in lower recognition performance. Therefore, accurate

recognition of the current activity in the presence of multiple activities is a challenging

task. In this section, we first survey the existing work on handling activity transitions. We

then review the technique of time series segmentation, which can be used to accurately

recognize the current activity from time series containing multiple activities.

2.2.1 Overview

To the best of our knowledge, none of the existing work has touched the problem of rec-

ognizing the current activity during transitions. There are a few related studies which

aim to minimize the effects induced by activity transitions [78], or to recognize the transi-

tions [45,80]. Rednic et al. [78] report that activity transitions can cause rapid fluctuations

in classifier output. They utilize the Exponentially Weighted Voting filter to stabilize the

inference, but the approach is unable to identify the current activity. Some HAR methods

2.2 Accurate Recognition of the Current Activity during Activity Transitions 13

τ
τ3τ2τ1τ0

a WalkingStandingSitting

Figure 2.1: The time series shown in the curves are 3-axis acceleration signals. There are
3 activities captured in the time series with transition points τ0, τ1, τ2, τ3, where τ0 and τ3
are two end points. Sitting and standing are the previous activities, walking is the current
activity that we expect to recognize.

[45, 80] learn a classifier to recognize the activity transitions in time series. As the transi-

tion can provide information of the activities sequence, this approach can be utilized to

infer the current activity. However, it is unsuitable to handle time series containing sev-

eral transitions, such as stand-walk-run, since there will be a factorial number of classes

that should be trained. For example, if there are N different activities, and the system

demands to handle at most m transitions, then the total number of required classes is

∑m+1
r=1 PN

r , where PN
r stands for the number of permutations selecting r ordered objects

from N objects. As a consequence, learning transitions is not an efficient approach for

current activity recognition. We consider to solve this problem by incorporating time

series segmentation, where activities are divided matching the segments for easy recog-

nition.

2.2.2 Time Series Segmentation

Time series segmentation aims to divide a sequence into several homogeneous segments.

The existing methods can be summarized into four categories: Heuristic, LASSO, Cluster-

ing, and Dynamic Programming. Heuristic based methods [44] use top-down, bottom-

up, sliding window, or hybrid ways for dividing time series. The results of heuristic

methods are not stable since the optimal solution cannot be obtained. LASSO based

methods [57] solve the segmentation problem via a least-square regression with a `1-

penalty. However, LASSO based methods require the number of maximum transitions

as input. Clustering based methods [91] divide the subsequences in a time series into

K-clusters by using K-means approaches. However, Clustering based methods require

14 Background

the number of time series patterns as input. Dynamic programming based methods

[14, 37, 41, 82] formulate an optimal substructure of the segmentation problem, and finds

the optimal partition of a time series based on the optimal partitions of its subsequences.

Dynamic programming based methods can be categorized into two types. The first type

is for handling K-segmentation problem [14,37,82], which finds an optimal solution of K

segments on time series, where the number of transitions K is required. The second type

is for unconstrained segmentation problem [41,47] , which finds optimal solution over all

possible partitions on time series, where the number of transitions is not required. The

methods for unconstrained segmentation problem can be summarized as following. Let

X = {x1, x2, ..., xn} be a time series of n data points, and Xi:j = {xi, xi+1, ..., xj−1, xj}

(1 ≤ i ≤ j ≤ n) be a subsequence of X containing data points from xi to xj. Let τs = {τ1,

τ2, ..., τms} be a set of transition points on X1:s, where 0 < τ1 < τ2 < ... < τms < s. For con-

venient discussion, we denote τ0 = 0 and τms+1 = s. Given a cost function C(Xi:j) which

measures the heterogeneity of time series Xi:j, finding the transition points on X ≡ X1:n

is to calculate:

F(X1:n) = min
τn

mn+1

∑
i=1

[C(X(τi−1+1):τi
) + β], (2.4)

where β is a constant value to prevent over fitting. This problem can be solved by dy-

namic programming [41]. For any s ∈ [1, n], we can derive F(X1:s) as:

F(X1:s) = min
τs

ms+1

∑
i=1

[C(Xτi−1+1:τi) + β] (2.5)

= min
0≤t<s

{min
τt

mt+1

∑
i=1

[C(X(τi−1+1):τi
) + β] + C(Xt+1:s) + β} (2.6)

= min
0≤t<s

{F(X1:t) + C(Xt+1:s) + β}, (2.7)

where F(X1:0) is set to −β. This equation formulates a relationship which calculates the

minimal cost F(X1:s) in terms of F(X1:t) for t < s. Thus, the problem of calculating

F(X1:n) can be solved in a recursive manner, and the optimal set of transition points τ∗n

can be found as:

τ∗n = argmin
τn

F(X1:n). (2.8)

2.3 Accurate Predicting of Complex Activities from Ongoing Observations 15

As the result, the unconstrained segmentation problem on time series is resolved via

dynamic programming with a quadratic time complexity O(n2).

2.3 Accurate Predicting of Complex Activities from Ongoing Ob-
servations

Sensor networks, which comprise groups of sensors, have been widely deployed to mon-

itor environments such as shops, offices, and factories. Hence, using sensor multivariate

time series to recognize human activities becomes an emerging problem for artificial in-

telligence systems to understand multiplex human behaviors. Classic learning models

used in activity recognition are based on time series of fully observed activities. How-

ever, complex activities, such as ‘cooking’, generally have much longer durations com-

pared with simple activities, which are also called actions, such as ‘grabbing’ and ‘lifting’.

Therefore, using the classic models for complex activities will result in late recognition.

In the real world, many activity recognition applications are time-critical. For example

in safety monitoring, a system need to predict dangerous complex activities with partial

observations to avert or minimize their consequences. Accordingly, we require a method

that can accurately recognize the complex activity given a multivariate time series of its

early stage. In this section, we first introduce the existing work on complex activity recog-

nition. We then briefly survey the early classification problem regarding time series data.

Finally, we review the deep learning technique, which can deliver reliable performance

in capturing ambiguity actions from multivariate time series for predicting high level

complex activities.

2.3.1 Overview

Over the past decade, a large body of work has studied recognition of simple human

activities [24, 33, 50, 99, 100]. Recently, the rapid development of sensor networks enables

the recognition of complex activities from multivariate time series (MTS). Hierarchical

recognitions with multi-level activity abstraction, which are originally studied in the field

of computer vision [18, 67], have been widely applied for complex activity recognition

[62, 63, 93, 106]. Wang et al. [93] propose a model which first detects actions and then

16 Background

recognizes complex activities via an emerging pattern method. Later, a number of stud-

ies focus on the modeling of complex activities with temporal relations among actions

[62,63,106]. Zhang et al. [106] propose a Bayesian network based approach for modeling

temporal relations among action for complex activity recognition. Liu et al. [63] present

an approach which extracts temporal patterns among actions for complex activity repre-

sentation and uses multi-task learning framework for classification. Liu et al. [62] present

a complex activity recognition model which uses Chinese Restaurant Process to capture

the inherit structural varieties of complex activities. However, due to the demand for

time-critical applications, predicting complex activity at early stages becomes an impor-

tant challenge. Early recognition of human activities is first studied as a computer vision

problem [58, 66, 84]. The proposed methods focus on video streams, where visual fea-

tures/actions are computed from the video images and then used for early prediction.

However, compared with videos, sensor MTS data contains much less information re-

garding each timestamp. For example, an image of a RGB video usually has more than

hundreds of pixels, but a data point of an accelerometer signal has only 3 values (accel-

erations on 3 axises). Therefore, recognition of early human activities based on sensor

MTS data incurs substantial challenges. Li et al. [58] propose to predict complex ac-

tivities by finding the casual relations between actions and predictable characteristic of

the activities. However, their method is designed based on pre-annotated actions, which

need to be obtained from sensor MTS data with an additional step. Therefore, we need a

predicting method which directly uses MTS of sensor data without annotating of actions.

2.3.2 Early Classification on Time Series

The task of time series classification is to build a classifier for inferring the class label

of a given time series which has been fully observed. However, many time-sensitive

applications require a quick decision without waiting until the end of the observation.

Accordingly, early classification of time series becomes an emergent problem, toward

which several models have been proposed [27, 59, 96, 97]. Xing et al. [96] develop a 1-

nearest neighbor classification model for early prediction on univariate time series. Later,

Xing et al. [97] and Ghalwash and Obradovic [27] propose to extract interpretable feature

for early classification, which can provide the interpretation to the classifying results.

2.3 Accurate Predicting of Complex Activities from Ongoing Observations 17

...

...

...
... ...

x1

x2

x3

xn

h1

hp

h1

hq

o1

o2

om

Input
layer

Hidden
layer

Hidden
layer

Ouput
layer

Figure 2.2: A general Deep Neural Network structure.

These methods intend to find one optimal early stage to classify a time series. Li et al.

[59] propose a multivariate marked point-process based method that can classify time

series at arbitrary early stages, where MTS is modeled into events for classifying based

on temporal dynamics and sequential cue.

2.3.3 Deep Learning for Human Activity Recognition

Since the real world is highly complex, unpredictable, and constantly changing, finding

reliable feature representation for identifying human activities from noisy sensor data

remains a challenging problem. Deep learning is one of the most promising approaches

that can automatically discover effective representations of data using a multi-level com-

putation architecture akin to neuron connections in human brains, which is collectively

referred to as Deep Neural Network (DNN) [54]. DNN has been widely applied in the

fields of computer vision [51], speech recognition [38], natural language processing [8],

and has dramatically improved the state-of-the-art. Typically, a DNN is a computational

graph consisting of a number of layers, where each layer is composed of a collection

of nodes. The nodes of one layer are connected with the nodes of its successor layer

and predecessor layer. The raw data (e.g., accelerometer, audio, images) are fed to the

18 Background

first layer, which is also called the input layer. The inference outcomes are presented

by the last layer, which is also called the output layer, where each node of this layer

captures the confidence of a class. Layers in between the input and the output layer are

referred to hidden layers. The influence of nodes between layers varies on a pairwise ba-

sis determined by a weight value. Together with the synaptic connections and inherent

non-linearity, the hidden layers transform raw data presented by the input layer into the

inference probabilities of the classes, which are captured in the output layer. DNN-based

inferencing follows a forward propagation algorithm. The algorithm starts to feed a data

instance x = (x1, x2, ..., xn) to the input layer, and then sequentially updates the node ac-

tivations of one layer based on its predecessor layers. The process finishes at the output

layer, which computes a vector o = (o1, o2, ..., om), when all nodes have been updated.

The final inferred class is identified as the one corresponding to the output vector y with

the greatest softmax activation value. A common DNN structure is illustrated in Figure

2.2. Mathematically, a forward pass of DNN can be written as:

o = f (x) = f (n)(f (n−1)(. . . f (2)(f (1)(x)))), (2.9)

where f (i) is a linear transformation function corresponding to the i-th layer. Suppose

h(i) is the input of f (i), then f (i) is expressed as:

h(i+1) = f (i)(h(i)) = σ(Wh(i)), (2.10)

where W is the transformation matrix of f (i), and σ is an activation function such as

sigmoid and hyperbolic tangent function. Note that W and σ can be different for each

layer. The structure of DNN has many variants for different application scenarios. Con-

volutional neural network (CNN) is one variant that has brought about breakthrough in

processing images, video, speech, and audio. CNN includes convolution layers which

perform discrete convolution operations on the input. Assume that the input h(i) is a

1-dimension sequence, the convolution layer can be expressed as:

h(i+1)(t) = (h(i) ∗ w)(t) =
∞

∑
a=−∞

h(i)(a)w(t− a), (2.11)

2.3 Accurate Predicting of Complex Activities from Ongoing Observations 19

where w is the kernel of the convolution layer. A significant advantage of CNN is that it

can learn location invariant patterns from input. Beside the CNN architecture, recurrent

neural network (RNN) is another variant of DNN which has shone light on sequential

data. RNN uses recurrent computing structures to facilitate inference with history infor-

mation of a sequence. A forward pass of a simple RNN can be written as:

h(t) = σh(Whx(t) + Uhh(t− 1) + bh), (2.12)

o(t) = σo(Woh(t) + bo), (2.13)

where Wh, Uh, Wo are transformation matrix, and bh, bo are bias vectors. For each step

t, RNN encodes all the sighted data points x(1), x(2), ..., x(t) into a hidden vector h(t),

which is then used to produce output o(t). Due to the recurrence, RNN is capable of

learning to use history information. In practice, however, a simple RNN is unable to cap-

ture long-term dependency. Towards this problem, one of the most promising solution

is Long Short-Term Memory (LSTM) network, which maintains a memory cell to store

useful information. A forward pass of LSTM can be written as:

g(t) = σg(Wgx(t) + Ugh(t− 1) + bg), (2.14)

v(t) = σv(Wvx(t) + Uvh(t− 1) + bv), (2.15)

o(t) = σo(Wox(t) + Uoh(t− 1) + bo), (2.16)

c(t) = g(t) ◦ c(t− 1) + v(t) ◦ σc(Wcx(t) + Uch(t− 1) + bc), (2.17)

h(t) = o(t) ◦ σh(c(t)), (2.18)

where Wg, Ug, Wv, Uv, Wo, Uo, Wh, Uh are transformation matrices, and bg, bv, bo, bc are

bias vectors. Eq. 2.14 calculates a forget gate vector determining which to clear out from

the memory cell. Eq. 2.15 calculates an input gate vector determining which to add into

the memory cell. Eq. 2.17 updates the memory cell with the gate vectors. Accordingly,

LSTM solves the long-term dependency problem and brings promising results.

Due to the great success of deep learning in computer vision, speech recognition,

and natural language processing, a number of studies investigate DNN for solving HAR

problems based on sensor time series data. Ploetz et al. [71] propose a feature learning

20 Background

approach for HAR based on a deep belief network as an autoencoder, where the weights

between each subsequent layers are generatively trained by Restricted Boltzmann Ma-

chines. The results of the deep model demonstrate the potential to address contempo-

rary activity recognition tasks. Zeng et al. [104] tackle the HAR problem by adopting

a CNN which captures local dependencies and scale invariants of sensor signals. The

CNN uses the convolution layer which adopts a partial weight sharing strategy [1]. The

results demonstrate that the CNN outperforms existing state-of-the-art methods. Yang

et al. [99] propose a deeper CNN, which includes a number of convolution layers, max-

pooling layers, normalization layers, and full-connected layers. Hammerla et al. [33] con-

duct an unbiased and systematic investigation of the performances of three deep learning

models: deep feed-forward networks, CNN, and LSTM. The performances of the models

are evaluated with randomly sampled hyper parameters. The results show that LSTM

performs the best on recognizing activities of short durations with natural ordering, and

CNN performs the best on recognizing activities of long duration with repetition.

2.4 Energy-Efficient Human Activity Recognition

Recent mobile devices, such as smartphones and smartwatches, are equipped with an in-

creasing range of sensing and computing resources, which enable HAR to emerge across

a wide variety of application areas. However, most HAR applications require continu-

ously monitoring activities in real-time, so that the energy consumption of HAR becomes

an important issue when HAR is performed on portable devices. In this section, we first

review the existing studies of improving energy-efficiency of HAR. We then briefly in-

troduce ensemble learning and markov decision process, which are two promising tech-

niques for obtaining optimal energy-efficiency.

2.4.1 Overview

The problem of improving energy-efficiency of HAR on mobile platforms has been widely

investigated in recent years [16, 28, 42, 46, 49, 65, 73, 94, 95, 98]. A number of HAR sys-

tems are designed to regulate the utilization of sensors to obtain energy-efficiency. Lu

et al. [65] propose ‘Jigsaw’ system which controls the usage of high power GPS based

2.4 Energy-Efficient Human Activity Recognition 21

on an accelerometer. Bhargava et al. [15] propose ‘SenseMe’ system which uses lin-

ear accelerometer and rotation vector sensor as a means to suppress the usage of GPS.

Bloch et al. [17] propose to use a low power cellular network information to detect user

stationary/movement status which avoids battery-exhausting transportation mode de-

tection. Some general sensor management methods have also been proposed. Kang et

al. [42] propose ‘SeeMon’ system which reduces the energy cost by iteratively selecting

cost-efficient sensors in a greedy manner. Wang et al. [95] propose ‘EEMSS’ which uses

a hierarchical sensor management scheme for power control. Gordon et al. [28] choose

the sensors to use based on the estimated future activity and quantified activity-sensor

dependencies. However, those methods are designed based on a specific set of sensors,

which cannot be generalized on universal devices. We need energy-efficient HAR algo-

rithms which can be universally applicable to all kinds of mobile platforms. Towards this

goal, we propose to improve energy-efficiency of HAR by reducing two types of energy

cost: 1) computational cost, and 2) sensing cost. In the following part of this section, we

briefly introduce the two types of cost, and review the related literatures inspired us to

solve the problem.

Computational Cost

Running HAR algorithms in real-time generates computational cost, where the majority

of the cost are from feature extraction and model inference. In the phase of feature ex-

traction, HAR algorithms calculate a set of features from an input time series as a feature

vector for inference. Recall that the commonly used features for HAR are categorized into

two types: time domain features and frequency domain features. Time domain features

require a linear time complexityO(n) to calculate, where n is the length of the input time

series. Frequency domain features require a time complexity of O(n log n) to calculate,

which is more computationally expensive than time domain features. The computational

cost of feature extraction increases with respect to the number of features to calculate and

the time complexity of the features. To improve cost efficiency, a HAR method can use

less number of features and avert using of frequency domain features. But inappropriate

feature selection may bring down the recognition accuracy due to the loss of effective rep-

resentation. In the phase of model inference, the classification model of HAR calculates

22 Background

Timeτ2τ1

Acc.

Wn

...

Wi+1
...

Wj

W1
W2

...
Wi

Figure 2.3: The time series shown in red, green and blue curves are 3-axis acceleration
data. W1, ...,Wn are n overlapping windows, which observes different ranges of the time
series from timestamp τ1 to τ2.W1,W2, ...,Wi share one size with 50% overlaps. Similarly,
Wi+1, ...,Wj share another size, and there are several different sizes of windows.

activity inferences based on the extracted features. The computational cost of the model

inference increases with respect to the complexity of the model. To improve cost effi-

ciency, a HAR method can adopt less complexity classification models, such as decision

tree and logistic regression. However, these models may not provide reliable recognition

accuracy, as their performances highly depend on the selected features. State-of-the-art

HAR algorithms use ensemble models [9,55,76,107], which deliver promised recognition

accuracy. Ensemble models are considered as high complexity models, which make infer-

ences based a group of linear classifiers, where each classifier is based on a unique set of

features. Subwindow Ensemble Model (SWEM) is an ensemble model particularly designed

for HAR. For a given time series, SWEM uses multiple windows to capture subsequences

of different ranges, as shown in Figure 2.3, and extracts features from each subsequence.

SWEM infers the activity with an ensemble of classifiers, where each classifier is based on

one subsequence. Although SWEM achieves high recognition accuracy, SWEM is com-

putationally very expensive, since the use of each subsequence incurs computations on

feature extraction and inference calculation. Therefore, the total cost of SWEM equals to

the sum of all these subsequence costs, which is several times more than conventional

linear models. Due to such an overhead, running of SWEM on portal devices drains the

battery quickly that affects the general daily use. To overcome this weakness, we need an

algorithm which is capable of dynamically choosing an optimal set of subsequences that

minimize the computational cost while maintaining the high recognition accuracy.

2.4 Energy-Efficient Human Activity Recognition 23

Sensing Cost

Sampling data from sensors, such as accelerometer and GPS, generates sensing cost. The

sensing cost increases with respect to the number of times that sampling actions are per-

formed. As real-time HAR requires continuous sampling data, it can cause excessive

power consumption that greatly shortens the battery life of mobile devices. A simple so-

lution to reduce sensing cost is setting a low sampling frequency to sensors, but this may

result in a decreased recognition accuracy [49] due to the loss of data information. To ad-

dress this problem, Khan et al. [46] propose to find a minimal sampling rate that perverse

a certain accuracy, and use this precomputed sampling rate during testing. However, the

methods of using fixed sampling rate are adaptive thus cause low performance of either

accuracy or energy-efficiency. Yan et al. [98] and Qi et al. [73] focus on finding energy-

efficient features and sampling rate for each activity during training, and they propose

to adaptively change sensor sampling rate based on detected activity and predefined

thresholds in testing. However, their methods are heuristic that cannot achieve a dy-

namic optimal. Wang et al. [94] propose a method that obtains Markov-optimal sensing

policy for user state estimation. Yurur et al. [102] extend the work of Wang et al. and con-

sider the trend of user preferences to regulate sensor sampling settings. However, these

methods only utilize predefined user state to determine the next sensing policy, where

the beneficial information from data samples is not exploited. Therefore, we need an

algorithm which directly exploits the information from recently observed data to choose

adaptive sampling frequency that achieves a global minimal regarding both accuracy and

energy-efficiency.

2.4.2 Ensemble Learning

Ensemble learning utilizes multiple learning algorithms to obtain a better inference per-

formance than could be obtained from any of the constituent algorithms alone [109]. An

ensemble model for classification contains a number of classifiers, which are called base

classifiers. A base classifier can be a decision tree, logistic regression, etc. Most of the

ensemble models use base classifiers of the same type, and these models are called homo-

geneous ensembles. The ensemble models which use base classifiers of different types,

24 Background

are called heterogeneous ensembles. The generalization ability of an ensemble model

is often much stronger than a base classifier. Actually, ensemble models are appealing

mainly because they are able to boost weak classifiers whose performances are even just

slightly better than random guess to strong classifiers which can make very accurate in-

ferences. At training phase, ensemble models generate a set of base classifiers from a

dataset. Boosting [25, 87] and Bagging [19] are the two major algorithms for generating

base classifiers. At inference phase, ensemble models combine the outputs of the base

classifiers to make an ensemble inference, where voting is normally used as the combina-

tion method. Suppose we have a set of T base classifiers {h1, h2, ..., hT}. The number T is

called ensemble size. Our task is to infer the class label from a set of l possible class labels

{1, 2, ..., l}. For an instance x, the output of the classifier hi is given as an l-dimensional

voting vector (yi,1, yi,2..., yi,l), where yi,j ∈ {0, 1} takes value one if hi infers j as the class

label and zero otherwise. The voting method takes the class label which receives the

maximum number of votes. Thereby, the output class label of the ensemble is:

argmax
j

T

∑
i=1

yi,j, (2.19)

and ties are broken arbitrarily. Assume that the outputs of the classifiers are independent

and each base classifier is better than random guess that makes a correct classification by

probability p > 1/2. We denote Pcorrect as the probability of the ensemble for making a

correct inference. We can derive that:

Pcorrect ≥
T

∑
k=dT/2+1e

(
T
k

)
pk(1− p)T−k (2.20)

≥ 1− exp{−1
2

T(1− 2p)2}. (2.21)

The Inequality 2.20 is derived by the fact that Pcorrect is greater than or equal to the prob-

ability of obtaining at least bT/2 + 1c correct classifiers out of T. The Inequality 2.21 is

derived by using Hoeffding inequality [39]. It is obvious that 1− exp{− 1
2 T(1− 2p)2}

is monotonically increasing with respect to ensemble size T. Therefore, the accuracy of

ensemble inference can be theoretically improved by combing more base classifiers.

2.4 Energy-Efficient Human Activity Recognition 25

2.4.3 Markov Decision Process

Markov decision processes (MDPs) provide a mathematical framework for modeling

decision making in situations where outcomes are partly random and partly under the

control of a decision maker [13, 72]. MDP has been applied in autonomous flight, robot

legged locomotion, cell-phone network routing, marketing strategy selection, factory

control, and efficient web-page indexing. An MDP is defined by a tuple (S, A, {Psa}, γ, R),

where:

• S is a set of states.

• A is a set of actions.

• Psa are the state transition probabilities. For each state s ∈ S and action a ∈ A, Psa

is a distribution over the state space, which gives probability of the next state s′ by

taking action a at state s.

• γ ∈ [0, 1) is the discount factor.

• R : S→ R is the reward function.

The dynamics of an MDP proceeds as follows: We start from an initial state s0, and choose

an action a0 ∈ A. As a result, the state of the MDP randomly transits to a successor state

s1, drawn according to s1 ∼ Ps0a0 . Then, we choose another action a1, and the state of

MDP transits to s2 ∼ Ps1a1 . Accordingly, we continuously choose actions and visit a

sequence of states s0, s1, s2,, and then the total reward is:

R(s0) + γR(s1) + γ2R(s2) + γ3R(s3) + ... (2.22)

Solving the MDP is to choose actions over time to maximize the expected value of total

reward:

E[R(s0) + γR(s1) + γ2R(s2) + γ3R(s3) + ...] (2.23)

A policy π is a function π : S → A mapping from states to actions. Given a state s, we

obtain the action as a = π(s). For a fixed policy π, a value function Vπ(s) is defined as:

Vπ(s) = R(s) + γ
∫

s′∈S
Psπ(s)(s

′)Vπ(s′), (2.24)

26 Background

which consists of the immediate reward R(s) and the expected sum of future rewards.

Therefore, the value function Vπ(s) returns the total sum of rewards starting from a state

s. We define the optimal value function V∗(s) as:

V∗(s) = max
π

Vπ(s), (2.25)

and the optimal policy π∗ as:

π∗ = argmax
a∈A

∫
s′∈S

Psa(s′)V∗(s′). (2.26)

Then, the solution of an MDP is to find the optimal policy π∗. There are several ap-

proaches to solve MDPs. If the MDP is on a finite state space that |S| < ∞, value iteration

or policy iteration can be used to solve π. If the MDP is on an infinite state space that

|S| = ∞, fitted value iteration can be used to solve π [29].

2.5 Human Activity Recognition Datasets

In Human Activity Recognition (HAR) community, there is a plenty of datasets for method

evaluations. Most commonly used datasets are: Human Activity Sensing Consortium

dataset (HASC) [43], Human Activity Recognition on Smartphones Dataset (HARSD)

[5], Smartphone-Based Recognition of Human Activities and Postural Transitions dataset

(HAPT) [80], Actitracker dataset (ACTR) [53], Daily Sport Activities dataset (DSA) [11],

CHEST dataset[20], and Opportunity dataset (OPP) [81]. A brief description of these

datasets is as follows:

• HASC: The dataset is collected from 7 subjects performing 6 activities: ‘stay’, ‘walk’,

‘jog’, ‘skip’, ‘stair up’, and ‘stair down’. The major devices for data collection are

iPhone and iPod Touch. The data of 3-axis acceleration is captured at 100 readings

per second.

• HARSD: The dataset is collected from 30 subjects performing 6 activities: ‘walking’,

‘walking upstairs’, ‘walking downstairs’, ‘stting’, ‘standing’, and ‘laying’. The de-

vice for data collection is a Samsung Galaxy S II placed at waist. The dataset in-

2.5 Human Activity Recognition Datasets 27

cludes time series of 3-axis linear acceleration and angular velocity, which are cap-

tured at 50 readings per second.

• HAPT: The dataset is extended from HARSD, where the data of 4 activity transi-

tions is added: ‘stand-to-sit’, ‘sit-to-stand’, ‘sit-to-lie’, ‘lie-to-sit’, ‘stand-to-lie’, and

‘lie-to-stand’.

• ACTR: The dataset is collected from 36 subjects performing 6 activities: ‘walking’,

‘jogging’, ‘upstairs’, ‘downstairs’, ‘sitting’, and ‘standing’. The devices for data

collection are Android phones (Nexus One, HTC Hero, Motorola Backflip). The

dataset includes time series of 3-axis acceleration, which are captured at 20 readings

per second.

• DSA: The dataset is collected from 8 subjects performing 19 activities: ‘sitting’,

‘standing’, ‘standing in an elevator still’, ‘walking in a parking lot’, etc. The de-

vices for data collection are body-worn sensors placed on torso, right arm, left arm,

right leg, and left leg. The dataset includes time series of 3-axis acceleration, angu-

lar speed, and magnetic field, which are captured at 25 readings per second.

• CHEST: The dataset is collected from 15 subjects performing 7 activities: ‘working

at computer’, ‘standing up, walking and going updown stairs’, ‘standing’, ‘walk-

ing’, ‘going updown stairs’, ‘walking and talking with someone’, and ‘talking while

standing’. The device for data collection is a wearable accelerometer mounted on

chest. The dataset includes time series of 3-axis acceleration, which are captured at

52 readings per second.

• OPP: The dataset is collected from 4 subjects performing 13 low-level actions, 17

mid-level gestures, and 5 high-level complex activities. The devices for data collec-

tion are body-worn sensors placed on 12 places: arm, wrist, back, etc. The dataset

includes time series of 3-axis acceleration, which are captured at 30 readings per

second.

In this thesis, we conduct experiments mainly on HASC, ACTR, and DSA datasets

due to their simple data structures for setting up comparisons with state-of-the-art meth-

ods. For the problem regarding activity transitions, we additionally use HAPT dataset

28 Background

which includes data of real activity transitions. For the problem regarding complex ac-

tivity predicting, we use OPP dataset since it is the only dataset which includes data of

complex activities and meets the experimental requirements.

2.6 Conclusion

In this chapter, we presented background knowledge of our research problems and re-

viewed related literature. Firstly, we provided a brief introduction of Human Activity

Recognition (HAR), including the preliminary knowledge and a number of represen-

tative work on general HAR research. Then, we proposed our research problems and

reviewed the related literature. In section 2.2, we introduced the problem of accurate

recognition of the current activity during activity transitions. For this problem, we re-

viewed the methods of time series segmentation, which can be used to accurately find

the current activity from time series containing multiple activities. In section 2.3, we in-

troduced the problem of accurate predicting of complex activities from ongoing observa-

tions. For this problem, we reviewed related methods for early time series classification.

We also reviewed the deep learning technique, which is a powerful tool for delivering

accurate complex activity predictions. In section 2.4, we discussed the problem of im-

proving energy-efficiency of HAR while maintaining the recognition accuracy. For this

problem, we first surveyed the traditional methods for reducing the energy cost of HAR.

We then reviewed Ensemble Learning and Markov Decision Process, which are the two

promising techniques for obtaining optimal energy-efficiency with considerations of ac-

curacy. In section 2.5, we introduced the datasets which are used in the experiments of

this thesis.

Chapter 3

Accurate Recognition of the Current
Activity during Activity Transitions

In this chapter, we conduct a study on accurate recognition of the current activity when a given

window of time series data contains multiple interleaving activities causing activity transitions.

Most of the traditional Human Activity Recognition (HAR) methods assume the entire window

corresponds to a single activity, which may cause high error rate in activity recognition. To over-

come this challenge, we propose Weighted Min-max Activity Recognition Model (WMARM),

which reliably recognizes the current activity by finding an optimal partition of the time series

matching the occurred activities. WMARM can handle the time series containing an arbitrary

number of activities, without having any prior knowledge about the number of activities. We

devise an efficient dynamic programming algorithm that solves WMARM in O(n2) time com-

plexity, where n is the length of the window. Extensive experiments conducted on 5 real datasets

demonstrate about 10%-30% improvement on accuracy of WMARM compared with the state-of-

the-art methods.

3.1 Introduction

Most of the existing Human Activity Recognition (HAR) methods [36, 53, 77] use seg-

mented time series to train classifiers for activity inference, where each time series rep-

resents a single activity. In practice, such HAR systems utilize a window to capture the

data stream of sensors in a fixed time duration, and feed the captured time series data to

a trained classifier to infer the current activity. However, a window of the data stream

This chapter is dervied from: Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao, “Ac-
curate Recognition of the Current Activity in the Presence of Multiple Activities”, Proceedings of Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), Jeju, South Korea, 2017.

29

30 Accurate Recognition of the Current Activity during Activity Transitions

may contain more than one activity causing transitions at arbitrary time positions, see

Figure 3.1 for an example. Simply using a time series containing multiple interleaving

activities for classification that expects input containing single activity can lead to a poor

recognition accuracy. A trivial approach is to use a small window, so that there is a high

probability to capture the exact time series of the current activity with a minimal chance

of transition taking place. But the trade-off is that the fewer data points will result in

lower recognition performance. Therefore, accurate recognition of the current activity in

the presence of multiple activities is a challenging task.

There are a few related studies, which aim to minimize the effects induced by activity

transitions [78], or recognize the transitions [45, 80]. Rednic et al. [78] reported that ac-

tivity transitions can cause rapid fluctuations in classifier output. They utilized filters to

stabilize the inference, but the approach is unable to identify the current activity. Some

AR systems [45, 80] learn a classifier to infer the activity transitions in time series. As

the transitions can provide information of the activities sequence, this approach can be

utilized to recognize the current activity. However, it is unsuitable to handle time se-

ries containing several transitions, such as stand-walk-run, since there will be a factorial

number of classes that should be trained. For example, if there are N different activities,

and the system demands to handle at most m transitions, then the total number of re-

quired classes is ∑m+1
r=1 PN

r , where PN
r stands for the number of permutations selecting r

ordered objects from N objects. As a consequence, learning transitions is not an efficient

approach for current activity recognition.

To address this difficult problem, an idea is to divide the observed window of time

series into segments matching activities transitions. Thereby, the clean time series of the

current activity, which is represented by the last segment, can be obtained for recognition.

However, the existing time series segmentation methods [14, 37, 41, 44, 57, 82, 91] have at

least one of the following drawbacks: (1) optimal solution is not guaranteed; (2) requiring

the input of an exact or a maximum number of transitions; (3) only focusing on segmen-

tation without considering activity recognition performance. A detailed discussion is

later provided in the Related Works. To address these drawbacks, we propose Weighted

Min-max Activity Recognition Model (WMARM), which reliably recognizes the current ac-

tivity by finding an optimal partition of the time series matching the occurred activities.

3.2 Methodology 31

τ
τ3τ2τ1τ0

a WalkingStandingSitting

Figure 3.1: The time series shown in the curves are 3-axis acceleration signals. There are
3 activities captured in the time series with transition points τ0, τ1, τ2, τ3, where τ0 and τ3
are two end points. Sitting and standing are the previous activities, walking is the current
activity that we expect to recognize.

WMARM calculates a set of segments that the maximum value of the recognition errors

on those segments is minimized, and the current activity is recognized based on the last

segment. WMARM can handle time series containing an arbitrary number of transitions

without having any prior knowledge about the number of transitions. WMARM can

also be extended by imposing weights on the segments to improve recognition accuracy.

Since the search space size of WMARM is O(2n), we provide an efficient algorithm us-

ing dynamic programming to solve the model in O(n2) time complexity, where n is the

length of the window. Moreover, we propose a computationally efficient implementation

of WMARM that the time series is divided into frames for coarse-grained processing. We

conduct extensive experiments on 5 real datasets. The results demonstrate the superior

performance of WMARM compared with the state-of-the-art methods when handling

time series that contains one or more activity transitions. We also measure the execution

time of WMARM algorithm on a smartphone, and the results indicate that the model can

be effectively used on such resource constrained devices.

3.2 Methodology

In this section, we first introduce the preliminary concepts of the methodology. We then

propose Min-max Activity Recognition Model (MARM), which recognizes the current

activity by optimally partitioning a given window of time series. We further improve

the model by considering weights on the segments, and propose Weighted Min-max Ac-

tivity Recognition Model (WMARM). Both of the models can be solved using dynamic

programing in O(n2) time complexity, where n is the length of the window. Finally, we

32 Accurate Recognition of the Current Activity during Activity Transitions

propose an efficient implementation of WMARM for obtaining high performance on re-

source constraint devices.

3.2.1 Problem Statement

Let X = {x1, x2, ..., xn} be a time series of n data points observed by a window. We define

Xi:j = {xi, xi+1, ..., xj−1, xj} (1 ≤ i ≤ j ≤ n) as a subsequence of X containing data

points from xi to xj. Suppose there is a set of m transition points τ = {τ1, τ2, ..., τm} in

the time series X, which are caused by m + 1 interleaving activities. We define τ0 = 0,

τm+1 = n and 0 = τ0 < τ1 < τ2 < ... < τm < τm+1 = n. The transitions points divide

the time series X into m + 1 segments {X1:τ1 , Xτ1+1:τ2 , ..., Xτm+1:n}, where each segment

Xτi+1:τi+1 represents a single activity that is different from its neighbors. Suppose we

have a probability model p(y | Z), which can estimate the probability of activity y given

an arbitrary time series Z. Our goal is to infer the current activity yc which is presented

by the last segment Xτm+1:n. Traditional methods assume that yc is the only activity taken

place in X. Therefore, they feed the entire X to the model and calculate the inference ŷc

as:

ŷc = argmax
y

p(y |X). (3.1)

However, these methods usually cannot perform well as X contains interfering informa-

tion of the other activities. To reliably infer the current activity, we attempt to locate the

transition points in X, so that the observed time series can be well-divided into clean seg-

ments. As a consequence, the current activity can be exhibited by the last segment and is

accurately inferred as:

ŷc = argmax
y

p(y |Xτm+1:n). (3.2)

3.2.2 Min-Max Activity Recognition Model (MARM)

Let Z be an arbitrary time series. The inference error of Z can be calculated by an error

function E(Z) which is defined as:

E(Z) = 1−max
y

p(y | Z). (3.3)

3.2 Methodology 33

The error function E(Z) returns the probabilistic error of the inference ŷ = argmaxy p(y | Z).

Thus, given a time series segment Xτi+1:τi+1 , we can obtain the probabilistic error E(Xτi+1:τi+1)

of the inferred activity ŷ = argmaxy p(y |Xτi+1:τi+1) on this segment. We propose a seg-

mentation function F(τ) of the transition points τ as follows:

F(τ) = max
τi∈τ

⋃{τ0}
{E(Xτi+1:τi+1)}. (3.4)

The function F(τ) returns the maximum error of the segments corresponding to τ. Then,

we propose Min-Max Activity Recognition Model (MARM) as:

τ∗ = argmin
τ
{F(τ)}, (3.5)

where we aim to find an optimal solution τ∗ = {τ∗1 , τ∗2 , ..., τ∗m} such that the maximum er-

ror of those segments is minimized. After obtaining τ∗, the current activity is considered

to be represented by the last segment Xτ∗m+1:n and is inferred as:

ŷc = argmax
y

p(y |Xτ∗m+1:n). (3.6)

The intuitive explanation of solving MARM is to properly place the transition points by

forcing down the maximum of the recognition errors. Since the space size of valid τ is

O(2n), exhaustive searching the solution is infeasible. However, we can employ dynamic

programming to solve the problem in O(n2) inspired from the work of [41]. We claim

that the problem of optimizing our model exhibits optimal substructure, i.e., optimal

solutions to a problem incorporate optimal solutions to related subproblems. Let Xk be

the simplified notation of the time series X1:k, and X0 = ∅. Let τ∗k be an optimal solution

on Xk, and τ∗0 = ∅. We propose the dynamic programming functional equation (DPFE)

to solve MARM (Eq. 3.5) as follows:

FXl (τ
∗
l) = min

0≤k<l
{max {FXk(τ

∗
k), E(Xk+1:l)}} (0 < l ≤ n), (3.7)

34 Accurate Recognition of the Current Activity during Activity Transitions

where τ∗1 , τ∗2 , ..., τ∗l−1 are the previous optimal solutions that have already been obtained.

Then, τ∗l is calculated as follows:

τ∗l = τ∗p
⋃
{p}, (3.8)

where p is the last transition point in τ∗l obtained by:

p = argmin
0≤k<l

{max {FXk(τ
∗
k), E(Xk+1:l)}}. (3.9)

The DPFE in Eq. 3.7 indicates the optimal substructure that an optimal solution τ∗l to

the problem regarding Xl is derived from the optimal solutions τ∗1 , ..., τ∗l−1 to the sub-

problems regarding X1, ..., Xl−1, which are the prefixes of the time series X. We show the

correctness of the DPFE in Theorem 1.

Theorem 3.1. τ∗l obtained by Equations 3.8 and 3.9 is an optimal solution to FXl (τ).

Proof. We assume τ∗l is not an optimal solution of FXl (τ), and claim that τ+
l is an optimal

solution. Suppose p is the last transition point of τ∗l , then

FXl (τ
∗
l) = max {FXp(τ

∗
p), E(Xp+1:n)}, (3.10)

where τ∗p = τ∗l − {p}. Let q be the last transition point of τ+
l , then

FXl (τ
+
l) = max {FXq(τ

+
q), E(Xq+1:n)}, (3.11)

where τ+
q = τ+

l − {q}. Since τ+
l is an optimal solution and τ∗l is not, hence FXl (τ

+
l) <

FXl (τ
∗
l). But we have:

FXl (τ
+
l) = max {FXq(τ

+
q), E(Xq+1:l)}

≥ max {FXq(τ
∗
q), E(Xq+1:l)}

≥ max {FXp(τ
∗
p), E(Xp+1:l)} = FXl (τ

∗
l), (3.12)

which is a contradiction. Therefore, τ∗l is an optimal solution of FXl (τ) on the time series

Xl .

3.2 Methodology 35

Algorithm 1 MARM Algorithm
Input: (1) A time series X of length n.
Output: (1) A set of transition points τ∗; (2) The inferred current activity ŷc.

1: τ∗0 = ∅
2: ŷc = Unkown
3: FX0(τ

∗
0) = 0

4: while l = 1, 2, ..., n do
5: p = argmin

0≤k<l
{max {FXk(τ

∗
k), E(Xk+1:l)}} . Using Eq. 3.9.

6: τ∗l = τ∗p
⋃ {p} . Using Eq. 3.8.

7: if l == n then
8: ŷc = argmax

y
p(y |Xp+1:l) . Predicting the current activity.

9: end if
10: end while
11: τ∗ = τ∗n
12: return τ∗, ŷc

Based on the proposed DPFE, we can use dynamic programming to obtain an opti-

mal solution τ∗n ≡ τ∗ that minimizes FXn(τ) ≡ F(τ). We present the algorithm of solving

MARM in Algorithm 1. We explain and analyze the algorithm in terms of time complex-

ity: In lines 4-10, we iteratively calculate τ∗l from l = 1 to n, and each τ∗l is calculated in

lines 5-6 with O(n) time complexity. In summary, the final solution τ∗ can be found in

O(n2) time complexity. When calculating τ∗n, the last segment Xp+1:n is exhibited, and

the current activity is inferred as ŷc, which is shown in line 8.

3.2.3 Weighted Min-Max Activity Recognition Model (WMARM)

MARM finds a set of optimal segments on the observed time series X, and obtains the in-

ference of the current activity based on the last segment. To further improve the inference

accuracy for the current activity, we would like to emphasis on reducing the error of the

last segment. We propose a new segmentation function FLA(τ) which imposes weights

on the last segment and the previous segments. Let p ≡ τm be the last transition point in

τ, then FLA(τ) is defined as follows:

FLA(τ) = max {(1− µ) · FXp(τ − {p}), µ · E(Xp+1:n)}, (3.13)

36 Accurate Recognition of the Current Activity during Activity Transitions

in which a weight parameter µ ∈ [0, 1] is multiplied to the error of the last segment

Xp+1:n, and 1− µ is multiplied to the maximum error of the previous m − 1 segments

obtained by FXp(τ − {p}). We propose WMARM based on FLA(τ) as follows:

τ∗ = argmin
τ
{FLA(τ)}. (3.14)

The solution τ∗ of WMARM can be found with the following theorem:

Theorem 3.2. Given τ∗1 , τ∗2 , ..., τ∗n−1, which are the optimal solutions of FX1(τ), FX2(τ), ...,

FXn−1(τ), respectively. An optimal solution τ∗ of FLA(τ) can be calculated as:

τ∗ = τ∗p
⋃
{p}, (3.15)

where p is the last transition point of τ∗ obtained by:

p = argmin
0≤k<n

{max {(1− µ) · FXk(τ
∗
k), µ · E(Xk+1:n)}}. (3.16)

Proof. We assume τ∗ is not an optimal solution, and claim that τ+ is an optimal solution,

then

FLA(τ
∗) = max {(1− µ) · FXp(τ

∗
p), µ · E(Xp+1:n)}, (3.17)

where τ∗p = τ∗ − {p}. Let q be the last transition point of τ+
l , then

FLA(τ
+) = max {(1− µ) · FXq(τ

+
q), µ · E(Xq+1:n)}, (3.18)

where τ+
q = τ+ − {q}. Since τ+ is an optimal solution and τ+ is not, then FLA(τ

+) <

FLA(τ
∗). But we have:

FLA(τ
+) = max {(1− µ) · FXq(τ

+
q), µ · E(Xq+1:n)}

≥ max {(1− µ) · FXq(τ
∗
q), µ · E(Xq+1:n)}

≥ max {(1− µ) · FXp(τ
∗
p), µ · E(Xp+1:n)}

= FLA(τ
∗), (3.19)

which is a contradiction. Therefore, τ∗ is an optimal solution of FLA(τ).

3.2 Methodology 37

Algorithm 2 WMARM Algorithm
Input: (1) A time series X of length n.
Output: (1) A set of transition points τ∗; (2) The inferred current activity ŷc.

1: τ∗0 = ∅
2: ŷc = Unkonwn
3: FX0(τ

∗
0) = 0

4: while l = 1, 2, ..., n− 1 do
5: p = argmin

0≤k<l
{max {FXk(τ

∗
k), E(Xk+1:l)}} . Using Eq. 3.9.

6: τ∗l = τ∗p
⋃ {p} . Using Eq. 3.8.

7: end while
8: p = argmin

0≤k<n
{max {(1− µ) · FXk(τ

∗
k), µ · E(Xk+1:n)}} . Using Eq. 3.16.

9: τ∗ = τ∗p
⋃ {p} . Using Eq. 3.15.

10: ŷc = argmax
y

p(y |Xp+1:n) . Predicting the current activity.

11: return τ∗, ŷc

It is worth noting that, If µ is set to 0.5, the model is equivalent to the original MARM

without weight. To calculate the solution of WMARM, we present a dynamic program-

ming algorithm in Algorithm 2. Similar to Algorithm 1, Algorithm 2 computes τ∗1 , τ∗2 ,

..., τ∗n−1 in O(n2), as shown in lines 4-7. Calculating the last transition point p needs to

iteratively examine the optimal value of FXk(τ
∗
k) from k = 0 to n− 1, as shown in line 8,

which needs O(n) time complexity. Then, the final solution τ∗ is obtained by combining

p into τ∗p, shown in line 9. In summary, the total time complexity of Algorithm 2 isO(n2).

Finally, the last segment Xp+1:n is exhibited when calculating τ∗, and the current activity

is inferred as ŷc, which is shown in line 10.

3.2.4 Efficient Implementation of WMARM

WMARM partitions a time series on data point level, which results in O(n2) time com-

plexity where n is the length of a time series. However, the input time series for activity

recognition usually contains hundreds of data points, which produces a large amount

of computation regarding the quadratic complexity. To improve the time efficiency of

WMARM, we divide the time series into several consecutive frames, and we treat those

frames as atomic elements for computation instead of data points. In practice, we pre-

sume h lengths: L1, L2, ..., Lh, where L1 = n/h, Li = i× L1 and Lh = n. We train a number

of h classifiers C1, C2, ..., Ch, where Ci is trained based on time series subsequences of

38 Accurate Recognition of the Current Activity during Activity Transitions

Algorithm 3 Efficient Implementation of WMARM
Input: (1) A time series X of length n; (2) A frame size h.
Output: (1) A set of transition points τ∗; (2) The inferred current activity ŷc.

1: τ∗0 = ∅
2: ŷc = Unkonwn
3: FX0(τ

∗
0) = 0

4: while l = 1, 2, ..., n/h− 1 do
5: p = argmin

0≤k<l
{max {FXLk

(τ∗k), E(XLk+1:Ll)}}

6: τ∗l = τ∗p
⋃ {p}

7: end while
8: p = argmin

0≤k<n/h
{max {(1− µ) · FXLk

(τ∗k), µ · E(XLk+1:n)}}

9: τ∗ = τ∗p
⋃ {p}

10: ŷc = argmax
y

p(y |XLp+1:n)

11: return τ∗, ŷc

length Li. During activity inference, transition points are only considered at every n/h

data points of a testing time series X for approximation. Therefore, only subsequences of

lengths L1, L2, ..., Lh will be fed to the model p(y | Z), which utilizes the classifier Ci to es-

timate the probabilities of subsequences of Li. Based on this implementation, the number

of candidature transition points is reduced by a factor of h2, which makes WMARM more

efficient at inference phase. The pseudocode of the efficient implementation is presented

in Algorithm 3.

3.3 Empirical Evaluation

In this section, we evaluate the performance of Weighted Min-max Activity Recognition

Model (WMARM) in terms of accuracy on a desktop platform. The experiment scripts

are written in Python 2.7 on 64-bit Ubuntu 14.04 LTS operating system. We also evaluate

the execution time of the proposed WMARM algorithm on an iPhone 6 (iOS 9.0 system).

The source code is written in Objective-C and C++.

Datasets: The experiments are conducted on 5 datasets: (1) Human Activity Sensing Con-

sortium dataset (HASC) [43]; (2) Human Activity Recognition on Smartphones Dataset

(HARSD) [5]; (3) Actitracker dataset (ACTR) [53]; (4) Daily Sport Activities dataset (DSA)

[11]; (5) Smartphone-Based Recognition of Human Activities and Postural Transitions

3.3 Empirical Evaluation 39

dataset (HAPT) [80]. We use the 3-axis acceleration data of those datasets in the experi-

ments.

Experimental Settings: LetD be a dataset containing a number of time series, where each

time series is collected independently from the others. Let Dy be the subset correspond-

ing to activity y, and we haveD =
⋃

yDy. For each subsetDy, we randomly splitDy into 4

approximately equal sized groups: Dy,1, Dy,2, ..., Dy,4, where the size of each group is be-

tween b|Dy|/4c and d|Dy|/4e. We conduct experiments based on 4-fold cross-validation:

e.g., for the first evaluation, the testing set is aggregated as
⋃

yDy,1, and the training set is

aggregated by all the remaining groups as
⋃

y(Dy,2
⋃Dy,3

⋃Dy,4)
1. We perform 5 times of

this 4-fold cross-validation and report their average results. To prepare testing data, we

generate 100 time series instances. Each instance is of 5 seconds and is randomly formed

by K + 1 segments of different activities with K transitions, where the length of each ac-

tivity segment is randomly selected with no less than 0.5s. Since an activity is performed

on average longer than 2 seconds, we assume that there are at most 3 activity transitions

in a 5 seconds period. We thus test K = 0, 1, 2, 3 in the experiments.

Settings of WMARM: In the experiments, we use the efficient implementation of WMARM

where h = 10. We thus train 10 different classifiers regarding time series of lengths from

0.5s to 5.0s (every 0.5s), respectively. The training time series are extracted from the train-

ing set by using sliding windows with 50% overlapping. We set each classifier as a ran-

dom forest with 10 estimators, which uses the 1/3 lowest frequency Fourier coefficients

of an input time series as features. The final inference model p(y | Z) consists of those 10

classifiers.

Settings of Baselines: We use 5 baseline methods in comparison with WMARM:

1 Naive: We simply use the entire time series for inference without segmentation.

2 GIR: We use Global Iterative Replacement (GIR) algorithm [37] to segment the time

series, where the last segment is used for inference.

3 OPM: We use Optimal Partitioning Method (OPM) [41] to segment the time series.

4 RNN: We use Recurrent Neural Network (RNN) [85] with LSTM + Softmax layers

1This cross-validation setting avoids the issue reported in [34] that training and testing data could be
highly similar by traditional data splitting ways.

40 Accurate Recognition of the Current Activity during Activity Transitions

to infer the current activity. We extract the Fourier coefficients on every 0.5s time

series frames as stepwise input to the RNN.

5 MSG: We manually obtain the true segment of the current activity for inference,

and we denote this method as ’ManualSegment’ (MSG).

Note that Naive, GIR, OPM, and MSG methods use the same inference model with

WMARM.

3.3.1 Measuring the Accuracy of Current Activity Recognition

To evaluate the accuracy of WMARM for current activity recognition, we compare WMARM

with the baselines using datasets: HASC, HAR, ACTR, and DSA. In this experiment, we

set the weight µ = 0.7 for WMARM since we experimentally show later that this value of

µ obtains the best accuracy among the cross-validation. According to the results shown

in Table 3.1, WMARM outperforms Naive, GIR, OPM, and RNN in all cases, except for

K = 0 on ACTR dataset, since that WMARM always find the optimal segments for recog-

nizing the current activity. Generally, it should be expected that no algorithm can obtain a

better accuracy than MSG. However, WMARM outperforms MSG when K = 0 on HASC,

HAR, and DSA datasets. This is because that WMARM finds the best fitted segment for

recognition instead of the true segment, thereby a part of noise can be excluded. In real

applications, 0 or 1 transition is mostly happened in a 5-second time period, and it is rare

to see more than 2 transitions. Therefore, WMARM can effectively handle most cases

base on the experimental results.

To statistically compare the performance of WMARM with the baselines, we conduct

the Wilcoxon signed-rank test on their results (80 pairs for each test). The returned p-

values represent the lowest level of significance of a hypothesis that results in rejection.

This value allows one to determine whether two methods have significantly different per-

formance. We set the significance level α = 0.05 for the comparisons. For K = 1, 2, 3, the

returned p-values (7.747e-15 to 1.199e-13), reject the null hypothesis for the comparisons:

WMARM vs. all the baselines except for MSG, which indicates superior performance

of WMARM against those methods. For K = 0, only the p-value of WMARM vs. GIR

(2.477e-06) rejects the null hypothesis, which indicates the similar performances of the

3.3 Empirical Evaluation 41

HASC HARSD

K Naive GIR OPM RNN WMARM MSG Naive GIR OPM RNN WMARM MSG

0 88.00% 85.00% 88.55% 17.05% 89.50% 88.00% 81.30% 81.00% 82.85% 20.95% 83.65% 81.30%

1 35.90% 59.35% 46.25% 37.35% 72.65% 83.45% 32.35% 53.60% 45.25% 46.90% 77.00% 80.60%

2 22.45% 41.65% 28.45% 40.70% 56.00% 73.30% 20.40% 34.10% 29.20% 53.75% 67.40% 79.05%

3 16.05% 28.20% 19.85% 43.50% 46.45% 69.25% 15.90% 23.85% 22.85% 58.95% 62.25% 77.80%

ACTR DSA

K Naive GIR OPM RNN WMARM MSG Naive GIR OPM RNN WMARM MSG

0 75.30% 73.25% 75.50% 18.65% 71.30% 75.30% 82.00% 76.00% 82.15% 7.00% 84.60% 82.00%

1 30.90% 51.60% 46.15% 43.55% 63.70% 72.85% 25.85% 63.75% 32.75% 19.25% 65.25% 77.30%

2 23.65% 37.55% 32.20% 50.15% 61.15% 70.45% 13.15% 47.80% 18.85% 22.30% 52.30% 73.90%

3 16.30% 25.65% 23.10% 50.00% 54.95% 67.90% 7.40% 31.85% 12.80% 28.50% 45.10% 70.05%

Table 3.1: Results of accuracy on datasets: HASC, HARSD, ACTR, and DSA. K is the
number of transitions in the time series. K is not known to the methods.

two methods.

3.3.2 Evaluating the Impact of µ on Accuracy

We conduct experiments to evaluate the performance of WMARM with different settings

of µ. According to the results shown in Figure 3.2, when there is no transition in the

data, i.e., K = 0, the accuracy is slightly affected by the weight µ since the optimal result

should be only one segment. However, when there are transitions in the data, i.e., K > 0,

the accuracy of WMARM significantly improves with respect to the increase of µ when

µ < 0.7, since the model emphasis more on the last segment, i.e., the current activity. The

accuracy normally reaches the maximum around µ = 0.7(±0.1), then slightly decreases

by less than 1%, or becomes stable in a few cases. Since over emphasizing the weight on

the last segment may impair the segmentation results on the previous segments, so that

the inference accuracy on the last segment is affected by the previous segments.

3.3.3 Measuring the Accuracy on Actual Transitions

In the previous experiments, we used splicing testing instances to study the performance

of WMARM. In this experiment, we evaluate WMARM on actual transitions resulting

from user’s changing activities, for example changing naturally from running to walk-

42 Accurate Recognition of the Current Activity during Activity Transitions

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

µ

Accuracy

K=3
K=2
K=1
K=0

(a) HASC

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

µ

Accuracy

K=3
K=2
K=1
K=0

(b) HARSD

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

µ

Accuracy

K=3
K=2
K=1
K=0

(c) ACTR

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

µ

Accuracy

K=3
K=2
K=1
K=0

(d) DSA

Figure 3.2: Accuracy of WMARM with respect to µ on datasets: HASC, HARSD, ACTR,
and DSA. For K = 0, the accuracy slightly improves on HASC, HARSD, and DSA, and
slightly drops on ACTR. For K = 1, 2, 3, the accuracy reaches maximum around µ =
0.7(±0.1), and then slightly decreases by less than 1% or becomes stable.

ing. The instances are extracted from HAPT dataset [80] which provides several long

time series containing a protocol of activities. We randomly select 70% of the data for

training and the rest for testing, and repeat the experiment 10 times. The training in-

stances are extracted during the activities, and the testing instances are extracted between

transitions. WMARM obtains 75.41% accuracy, which outperforms the baselines: Naive

(30.34%), GIR (49.44%), OPM (39.97%), and RNN (55.82%), except for MSG (76.69%).

To explore the statistical significance of the performances of the methods on handling

actual transitions, we conduct the Wilcoxon signed-rank test on their results (10 pairs).

We set the significance level α = 0.05 for the comparison. The p-values of WMARM

vs. Naive/GIR/OPM/RNN (0.003346 for all), reject the null hypothesis for the accuracy

measurements, implying a significant improvement of WMARM over those methods.

3.4 Conclusion 43

3.3.4 Evaluating the Execution Time on Smartphone

To evaluate the execution time of the WMARM algorithm, we develop an iOS App on

iPhone 6 using Objective-C, and implement the WMARM algorithm as an internal func-

tion using C++. The App captures the 3-axis acceleration data with 100 data points per

second, which is supplied to WMARM algorithm for processing. We observe a total exe-

cution time for 500 runs, and calculate the average time. WMARM algorithm only costs

averagely 0.0153 seconds for one execution, which is not expensive for running AR sys-

tems on smartphones. Naive method costs averagely 0.0012 seconds for one execution,

but its accuracy is much lower than WMARM.

3.4 Conclusion

In this chapter, we highlighted a problem normally presented in Human Activity Recog-

nition (HAR) that traditional methods usually fail to recognize the current activity in the

presence of multiple activities. To solve this problem, we devised Weighted Min-max

Activity Recognition Model (WMARM), which recognizes the current activity by opti-

mally partitioning the observed window of time series matching the activities presented.

WMARM considers weights on the partitioned segments to obtain reliable recognition

accuracy. WMARM can also effectively process the time series containing an arbitrary

number of transitions without any prior knowledge about the number of transitions. In-

stead of exhaustively searching the optimal solution of WMARM in exponential space,

we proposed an efficient dynamic programming algorithm that computes the model in

O(n2) time complexity, where n is the length of the window. Moreover, we presented an

efficient implementation of WMARM that the computation cost can be further reduced.

Extensive experiments on 5 real datasets have demonstrated the superior performance

of WMARM on handling time series with one or more activity transitions. The results

show about 10%-30% improvement on the accuracy of current activity recognition com-

pared with state-of-the-art methods. The experiment on iPhone 6 shows the prominent

computational efficiency of WMARM.

Chapter 4

Accurate Predicting of Complex
Activities from Ongoing Observations

In this chapter, we conduct a study on accurate predicting of complex activities (CAs) from ongo-

ing observations. The rapid development of sensor networks enables recognition of complex activi-

ties using multivariate time series. However, CAs are usually performed over long periods of time,

which causes slow recognition by models based on fully observed data. Therefore, predicting CAs

at early stages becomes an important problem. In this chapter, we propose Simultaneous Com-

plex Activities Recognition and Action Sequence Discovering (SimRAD), an algorithm which

predicts a CA over time by mining a sequence of multivariate actions from sensor data using

a Deep Neural Network. SimRAD simultaneously learns two probabilistic models for inferring

CAs and action sequences, where the estimations of the two models are conditionally dependent

on each other. SimRAD continuously predicts the CA and the action sequence, thus the predic-

tions are mutually updated until the end of the CA. We conduct evaluations on a real-world CA

dataset consisting of a rich amount of sensor data, and the results show that SimRAD outperforms

state-of-the-art methods by average 7.2% in prediction accuracy with high confidence.

4.1 Introduction

Due to the rapid development of sensor networks, recognition of complex human ac-

tivities directly from multivariate time series (MTS) are becoming feasible for artificial

intelligence systems to understand multiplex human behaviors. The classic models for

activity recognition are based on time series of fully observed activities. However, com-

This chapter is derived from: Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao, “Pre-
dicting Complex Activities from Ongoing Multivariate Time Series”, Proceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI), Stockholm, Sweden, 2018.

45

46 Accurate Predicting of Complex Activities from Ongoing Observations

plex activities (CAs), such as ‘cooking’, generally have much longer durations compared

with simple activities, a.k.a. actions, such as ‘grabbing’ and ‘lifting’. Therefore, using the

classic models for CAs will result in late recognition. For example in safety monitoring,

a system is required to continuously predict dangerous CAs without full observations to

avert or minimize their consequences. As a result, we need a method that can predict

CAs given sensory MTS data at arbitrary early stages.

Early recognition of human activities is first studied in the computer vision field [58,

66,84]. The proposed methods focus on video streams, where visual features/actions are

computed from the video frames and then used for early prediction. However, compared

with videos, sensor MTS data contains much less information regarding each timestamp.

For example, an image of a RGB video usually has more than hundreds of pixels, but

a data point of an accelerometer signal has only 3 values (accelerations on 3 axises).

Therefore, early recognition of human activities based on sensor MTS data incurs sub-

stantial challenges. There are a few studies for early classification on time series data

[3,22,27,61,96,97]. However, the task of these methods is finding one optimal early stage

to classify a time series, thus they are not suitable for predicting CAs at any early stages.

We consider that a stream of data points are sequentially received from sensors, and

our goal is to devise a method that can continuously predict a CA from an ongoing MTS.

A straightforward way is to build classifiers at several predefined stages of CAs, and use

the corresponding classifier for prediction. However, during the inference procedure, it is

impossible to determinate the exact stage of a CA given the observed MTS, since CAs are

performed with different durations, for example, a ‘cooking’ activity may last from few

minutes to hours. Therefore, it is a challenging task to devise a model that can predict

CAs at arbitrary early stages. We propose Simultaneous Complex Activities Recognition

and Action Sequence Discovering (SimRAD), an algorithm which predicts the CA over

time from an ongoing MTS. As a CA can be characterized by a temporal composition of

actions, SimRAD discovers and utilizes a sequence of multivariate actions from the ob-

served MTS as primitives to infer the CA. SimRAD learns two conditional probabilistic

models: action sequence model (ASM) and complex activity model (CAM). The ASM

uses the MTS and an estimated CA to infer the action sequence. This model is designed

as a Deep Neural Network (DNN) feature learner with category weights for recogniz-

4.2 Methodology 47

ing actions based on different CAs. We jointly learn the DNN and the category weights

by optimizing a novel objective function which augments the robustness of the predic-

tion, thus the ASM can reliably infer the action sequence by means of a CA estimation.

The CAM uses an estimated action sequence to infer the CA, where the feature of tem-

poral patterns is extracted for CA classification. We learn the CAM based on the entire

progressions of action sequences, thus the CA can be inferred at any progress level. Sim-

RAD alternately updates the predictions of the two models based on each other, until the

completion of the CA. More specifically, our main contributions are summarized as:

• We propose SimRAD which predicts a CA over time by discovering an action se-

quence from the observed MTS. SimRAD learns two conditional probabilistic mod-

els to infer action sequences and CAs. SimRAD predicts CAs by alternately using

the two models where their predictions are mutually updated based on each other.

• We propose the action sequence model (ASM) which is constructed by a DNN fea-

ture learner with category weights for recognizing actions based on different CAs.

The feature learner and category weights are jointly learned by optimizing a novel

objective function which can enhance the prediction’s robustness.

• We propose the complex activity model (CAM) which captures temporal patterns

from the estimated action sequence for CA classification. The CAM is learned based

on the entire progressions of action sequences so that the CA can be inferred regard-

less of its progress level.

We conduct experiments on a real-world CA dataset consisting of a rich amount

of sensor data. The evaluation results show that SimRAD outperforms state-of-the-art

methods by average 7.2% in prediction accuracy with high confidence.

4.2 Methodology

In this section, we first formalize our problem. Then, we propose Simultaneous Com-

plex Activities Recognition and Action Sequence Discovering (SimRAD) for predicting

complex activities (CAs) from ongoing multivariate time series (MTS).

48 Accurate Predicting of Complex Activities from Ongoing Observations

4.2.1 Problem Statement

Let X be an MTS collected by a set of sensors. We present X as a sequence such that

X = {x1, x2, ..., xn} where n = |X| is the length of X and xt ∈ Rd is a d dimension data

point at time t ∈ [1, n]. Let Y be a label set of CAs such that Y = {1, 2, ..., |Y|}. Let y ∈ Y

be the category label of the CA represented by X. Let XT be the MTS of a fully observed

CA, where T is the length of XT. Let Xt be a prefix of XT that Xt = {x1, ..., xt} where

1 ≤ t ≤ T. Suppose we have a data distribution D = {(X(i), y(i))}, where X(i) ≡ X(i)
T(i)

is the MTS of a fully observed CA, and y(i) is the CA label. We formalize the problem of

predicting CAs as finding a probability model p(y |X) such that:

max E(X(i),y(i))∼D

T(i)

∑
t=1

log p(y = y(i) |X = X(i)
t). (4.1)

The objective of Eq. 4.1 is to find a model that maximizes the expected probabilities of

correct predictions over D at all time points. However, due to the non-trivial patterns of

CAs, modeling p(y |X) that achieves a promised accuracy is a difficult task in practice. To

address this problem, we consider discovering the actions appearing in X for facilitating

the prediction of y. Let Z be a label set of actions that Z = {1, 2, ..., |Z|}. Each xt of X

can be mapped into an action vector at ∈ {0, 1}|Z|, of which the z-th element at,z = 1

indicates the presence of the action z ∈ Z , and at,z = 0 indicates the absence of z. Note

that multiple actions can appear at time t. We denote A as an action sequence such that

A = {a1, a2, ..., an}, and we denote At as the action sequence corresponding to Xt. With

the notations defined above, we present our method in the following sections.

4.2.2 Simultaneous Complex Activities Recognition and Action Sequence Dis-
covering (SimRAD)

We propose Simultaneous Complex Activities Recognition and Action Sequence Discov-

ering (SimRAD) for predicting CAs. Instead of directly inferring the CA label y from

an MTS X, we estimate an action sequence A corresponding to X, and use A to infer y.

Moreover, we consider that an estimation of y can also assist the estimation of A, since

CAs of the same category have similar compositions of actions. As a result, we design a

method where y and A are mutually updated based on each other during the inference.

4.2 Methodology 49

Towards this goal, we propose two conditional probabilistic models. The first model is

action sequence model (ASM):

p(A | y, X ; θ), (4.2)

which estimates the probability of the action sequence A given y and X parameterized

by θ. The second model is complex activity model (CAM):

p(y | A ; ψ), (4.3)

which estimates the probability of the CA label y given A parameterized by ψ. Suppose

we are at time t. SimRAD first uses ASM to infer At by estimating p(A = At | y =

yt−1, X = Xt; θ) where yt−1 is the label inferred at time t − 1, and uses CAM to infer

yt by estimating p(y = yt | A = At; ψ). Accordingly, SimRAD predicts CAs over time

by utilizing the two models alternately. We provide the details of SimRAD in the rest

of this section. First, we introduce ASM and CAM by describing the model structures

and learning objectives. Then, we give the details of SimRAD in terms of training and

inference algorithms.

Action Sequence Model (ASM)

The ASM p(A | y, X ; θ) is used to infer A given y and X. It is worth noting that y can take

an additional value of 0, which indicates the unknown of an estimated CA. This enables

that the inference of SimRAD can be started at the initial time t = 1, where y is unknown.

Designing the model p(A | y, X ; θ) is non-trivial. First, the model should accurately rec-

ognize the actions from a given X of any progress level. Second, the model should col-

laboratively utilize y and X for inferring A. We rewrite the probability p(A | y, X) as:

p(A | y, X) = p(a1, a2..., an | y, X). (4.4)

As a CA can be performed in many different ways, it is hard to recognize actions by

capturing their temporal dependencies. Therefore, we make the Naive Bayes assumption

on A that the actions a1, ..., an are conditionally independent given y and X. In addition,

applying the Naive Bayes assumption brings two advantages: 1) the resulting model is

50 Accurate Predicting of Complex Activities from Ongoing Observations

able to handle an observed X of arbitrary progress level, and 2) the modeling can be

significantly simplified for incorporating y. We then have:

p(A | y, X) =
n

∏
t=1

p(at | y, X) =
n

∏
t=1

|Z|

∏
z=1

p(at,z | y, X). (4.5)

Therefore, estimating the probability p(A | y, X) of the whole sequence can be decoupled

into estimating point-wise probability p(at,z | y, X). Let a be a general action vector, and

az be the z-th element of a. We estimate p(at,z | y, X) by probability p(az | y, X, t) for any

given t. Due to the fact that:

p(az = 1 | y, X, t) + p(az = 0 | y, X, t) = 1, (4.6)

we only need to formulate the probability p(az = 1 | y, X, t), and p(az = 0 | y, X, t) is

obtained by 1− p(az = 1 | y, X, t). Let p(az | y, X, t ; W, G) be our prospective probability

model parameterized by W and G. We model p(az = 1 | y, X, t ; W, G) as:

p(az = 1 | y, X, t ; W, G) =
1

1 + exp{−WT
y,zG(X, t)} , (4.7)

where W = {Wy,z | 0 ≤ y ≤ |Y|, 1 ≤ z ≤ |Z|} is the category weights, and G(X, t) is

the feature learner to extract features from X at t. The category weights W includes a

set of vectors Wy,z, one for each pair of y and z. The feature learner G(X, t) is a Deep

Neural Network (DNN) which yields an effective representation of MTS data. Recall

that X is a sequence of d-dim data point, so X can be represented by d channels of uni-

variate time series. The first level of G(X, t) is an input layer. This layer captures a

subsequence Xt−w/2:t+w/2 where w is the window size, and decomposes Xt−w/2:t+w/2

into d inputs for each channel. The second level of G(X, t) is a group of Fully Con-

nected (FC) layers, where the κ-th FC layer takes the κ-th input and outputs a vector

for a channel-independent representation. Then, we concatenate the outputs of those FC

layers into one vector using a concatenation layer. Next, we use a Max-Pooling layer

to reduce the dimension of the concatenated vector, and then we use a FC layer to ex-

tract a feature vector from the pooled vector. This feature vector is the final output of

G(X, t). The neural network structure of G(X, t) is illustrated in Figure 4.1. Given a

4.2 Methodology 51

Input 1 Input 2 ... Input d

FC 1 FC 2 ... FC d

...

Concatenation

Max-Pooling

FC

Output

Figure 4.1: The neural network structure of the feature learner G. The inputs 1, ..., d are
the univariate time series on each channel of X. The output of G is the learned feature
vector.

datasetD = {(X(i), y(i), A(i))}, where A(i) = {a(i)
1 , a(i)

2 , ..., a(i)
T(i)} is the ground-truth action

sequence corresponding to X(i), we learn the model p(az | y, X, t ; W, G) in an end-to-end

fashion as follows:

max
W,G

|D|

∑
i=1

T(i)

∑
t=1

|Z|

∑
z=1

[log p(az = a(i)t,z | 0, X(i), t ; W, G) + (4.8)

log p(az = a(i)t,z | y(i), X(i), t ; W, G) +

∑
y′∈Y/{y(i)}

log p(az = 0 | y′, X(i), t ; W, G)],

In the above equation, we jointly maximize three probabilities:

(1) p(az = a(i)t,z | 0, X(i), t ; W, G) is maximized to enhance the weight W0,z regarding the

unknown of y;

(2) p(az = a(i)t,z | y(i), X(i), t ; W, G) is maximized to enhance the weight Wy(i),z regarding

y(i);

(3) p(az = 0 | y′, X(i), t ; W, G) for y′ ∈ Y/{y(i)} are maximized to improve the ro-

bustness of the model, since this will force az = 0 when the given y is mistakenly

estimated by the CAM during inference.

After finding the optimal W∗ and G∗, we obtain the model p(A | y, X ; θ∗) for inferring

A, where θ∗ = (W∗, G∗).

52 Accurate Predicting of Complex Activities from Ongoing Observations

Complex Activity Model (CAM)

The CAM p(y | A ; ψ) is used to infer y given A. Let φ(A) be a function that extracts

features on the sequence A. We specifically extract the feature of Temporal Patterns [40,

63], because this feature can effectively capture the temporal relations among actions

appearing in arbitrary stages of CAs. Moreover, the Temporal Patterns feature can be

represented by a vector of fixed dimension, which enables the training and inference of

CAM using action sequences of varied lengths. We propose p(y | A ; ψ) as follows:

p(y = h | A ; ψ) =
exp{−ψT

h φ(A)}

∑|Y|j=1 exp{−ψT
j φ(A)}

, (4.9)

where ψ = {ψy|1 ≤ y ≤ |Y|} is the weight parameter, and ψ includes a set of vectors ψy

as the weights for each y. In the learning procedure of p(y = h | A ; ψ), we consider that

the penalties for the predictions are monotonically increasing with respect to time. This

is because that a model should be more certain on the correct prediction when CAs are

performed at a later stage [66]. Therefore, the CAM can better capture the progressions of

CAs with the increasing penalties. Given a dataset D = {(A(i), y(i))}, we learn the CAM

p(y | A ; ψ) as follows:

max
ψ

|D|

∑
i=1

T(i)

∑
t=1

λt log p(y = y(i) | A(i)
t ; ψ), (4.10)

where λt is the penalty weight that 0 < λ1 <, ...,< λT(i) ≤ 1. After finding the optimal

ψ∗, we obtain the model p(y | A ; ψ∗) for inferring y.

SimRAD Algorithms

Given the ASM p(A | y, X ; θ) and the CAM p(y | A ; ψ), we introduce the processes of

SimRAD to estimate A and y with the two models. SimRAD considers the prediction

confidences of the CAs, which are presented by a group of probabilities p0, p1, ..., p|Y|

such that ∑|Y|y=0 py = 1. p0 indicates the confidence of that CA is unknown, and py in-

dicates the confidence on y, for 1 ≤ y ≤ |Y|. We initialize p0 = 1, and py = 0 for

1 ≤ y ≤ |Y|. By taking into account the confidences, SimRAD uses the ASM to estimate

4.2 Methodology 53

A by first calculating the probability p(A |X) as:

p(A |X) =
|Y|

∑
y=0

py · p(A | y, X; θ), (4.11)

and then obtain the estimation Â = {â1, ..., ân} as:

Â = argmax
A

p(A |X). (4.12)

We present Â as a sequence of estimated action vectors ât such that Â = {â1, ..., ân},

where ât = {ât,1, ..., ât,|Z|}. Let pt,z = p(az = 1 | y, X, t). It can be derived that an ât,z of ât

is given by ât,z = 1{∑|Y|y=0 py · pt,z > 0.5}. However, if there is a subset S ⊆ Z such that

the actions of S are mutually exclusive and one action must appear, then we obtain Â by

setting ât,z∗ = 1 where z∗ = argmaxz∈S ∑|Y|y=0 py · pt,z, and setting ât,z = 0 for z ∈ S/{z∗}.

With the estimation Â, SimRAD can use the CAM to obtain the estimation ŷ as:

ŷ = argmax
y∈Y

p(y | Â; ψ). (4.13)

We then update p0 = 1/2, and py = 1/2 · p(y | Â; ψ) for 1 ≤ y ≤ |Y|. The p0 is updated

to 1/2 as we presume a half confidence on the predictions of the CA. Next, we provide

the details of the SimRAD algorithms regarding both training and inferring procedures.

SimRAD Training: Given a training dataset D, we first learn the ASM’s parameter

θ = (W, G) using D by Eq. 4.8. Then, we initialize the CAM’s parameter ψ and itera-

tively learn ψ for L rounds. In each round, we use the estimated action sequences instead

of ground truth for learning ψ. This makes ψ adapt to θ and achieves desired perfor-

mance. For an instance (X(i), y(i), A(i)) ∈ D, we calculate the estimated action sequence

Â(i) by Eq. 4.11 and Eq. 4.12. Then, the Â(i)s together with y(i)s form a new set of in-

stances D′, which is used to learn/update ψ. After learning/updating ψ in this round,

we can update the p(i)y s for each instance of D. The p(i)y s will be used in the next round

for estimating Â(i). The pseudocode of SimRAD’s training algorithm is provided in Al-

gorithm 4.

SimRAD Inference: Suppose an ongoing MTS is given by a series of MTS prefixes

X1, X2, ..., XT, we predict A and y for T steps. At time t, we calculate the estimated action

54 Accurate Predicting of Complex Activities from Ongoing Observations

Algorithm 4 SimRAD Training

Input: A dataset D = {(X(i), y(i), A(i))}
Output: The optimal parameters θ∗ and ψ∗

1: Learn θ = (W, G) using D by Eq. 4.8
2: Initialize p(i)0 = 1, p(i)1 = 0, ..., p(i)|Y| = 0 for i ∈ {1, ..., |D|}
3: for l = 1, 2, ..., L do
4: Let D′ = ∅
5: for i = 1, 2, ..., |D| do
6: Estimate Â(i) using p(i)y s by Eq. 4.11 and Eq. 4.12
7: D′ = D′ ⋃{(Â(i), y(i))}
8: end for
9: Update ψ using D′ by Eq. 4.10

10: for i = 1, 2, ..., |D| do
11: Update p(i)0 = 1/2, and p(i)y = 1/2 · p(y | Â(i) ; ψ) for y ∈ Y
12: end for
13: end for
14: return θ∗ = θ, ψ∗ = ψ

Algorithm 5 SimRAD Inference
Input: A series of MTS prefixes X1, X2, ..., XT
Output: A series of CA inference outputs ŷ1, ŷ2, ..., ŷT

1: Initialize p0 = 1, p1 = 0, ..., p|Y| = 0
2: for t = 1, 2, ..., T do
3: Estimate Ât using pys by Eq. 4.11 and Eq. 4.12
4: Update p0 = 1/2, and py = 1/2 · p(y | Ât ; ψ) for y ∈ Y
5: ŷt = argmaxy∈Y py
6: end for
7: return ŷ1, ŷ2, ..., ŷT

sequence Ât by Eq. 4.11 and Eq. 4.12. Then, we update the pys, and obtain the inferred

CA by ŷt = argmaxy∈Y py. The pseudocode of SimRAD’s inference algorithm is provided

in Algorithm 5.

4.3 Experiments

The experiments are conducted on a 64-bit Ubuntu 14.04 LTS operating system. The ex-

perimental scripts are written in Python 2.7 with the use of Scikit-learn [70] and Keras1

packages.

1https://keras.io/

4.3 Experiments 55

Dataset: The experiments are conducted on Opportunity (OPP) dataset [81]. OPP dataset

is collected by 4 subjects with sensors placed on their bodies (back, hands, waists, arms,

etc), where the sensors’ sampling rate is 30 readings per seconds. Each subject is asked to

perform 5 complex activities (CAs): relaxing, early morning, coffee time, sandwich time, and

cleanup. The relaxing has 40 instances. For the other CAs, each category has 20 instances.

The actions appearing in those CAs can be categorized into 3 types: 5 locomotion actions

(LocA), 14 left-hand actions (LHA), and 14 right-hand actions (RHA). Each type includes

an abnormal action which presents some undefined behaviors, and the other are defined

actions, such as ‘grabbing’. The actions of each type are mutually exclusive. At any time

point, there will be presence of 3 concurrent actions one for each type.

Data Preparation: Although we have only one available CA dataset, the dataset contains

a rich amount of data collected by sensors placed on various positions of subjects’ body.

Therefore, based on OPP dataset, we generate 3 sub-datasets: OPP-BH, OPP-BW, and

OPP-BUA for empirical evaluation. Each sub-dataset contains 3 trails of 3-axis accelera-

tions collected by sensors placed on 3 different locations of body. The details of the sensor

placement locations of the 3 sub-datasets are: 1) OPP-BW: Back, Left Waist, Right Waist;

2) OPP-BH: Back, Left Hand, Right Hand; 3) OPP-BUA: Back, Left Upper Arm, Right

Upper Arm. Let D be a sub-dataset, we describe a data instance (X(i), y(i), A(i)) of D as:

X(i) is the multivariate time series (MTS) of the 3 sensors’ acceleration data, thereby, the

dimension d of each data point x(i)t is 9 (9 channels = 3 sensors × 3 axises); y(i) is the CA

label; A(i) is the action sequence, where the dimension of each a(i)
t is 33 (33 = 5 LocA + 14

LHA + 14 RHA).

Experimental Settings: A sub-datasetD contains a number of data instances, where each

instance is collected independently from the other. Let Dy be the set corresponding to y,

and we have D =
⋃

y∈Y Dy. For each Dy, we randomly split Dy into 4 approximately

equal sized groups: Dy,1, Dy,2, ..., Dy,4, where the size of each group is between b|Dy|/4c

and d|Dy|/4e. We conduct experiments based on 4-fold cross-validation: e.g., for the first

evaluation, the training set is aggregated as
⋃

y∈Y Dy,1, and the testing set is aggregated

by all the remaining groups as
⋃

y∈Y (Dy,2
⋃Dy,3

⋃Dy,4)
2. The reason that we use 1/4 for

training and 3/4 for testing is that CAs can be performed various individual ways in the

2This cross-validation setting avoids the issue reported in [34] that training and testing data could be
highly similar by traditional data splitting ways.

56 Accurate Predicting of Complex Activities from Ongoing Observations

real world, so the amount of testing data should be greater than training data. The eval-

uation results are reported as the average results of the 4 folds.

Settings of SimRAD: For the action sequence model (ASM), we describe the detailed

settings of feature learner G from bottom to top as follows: The input layer uses window

size w = 120 for channels of locomotion actions, and uses the half size of w for chan-

nels of left/right-hand actions as hand actions are shorter than locomotion actions; The

FC layers of each channel output 60-dim vectors; The Max-Pooling layer down-samples

the concatenated vector by a scale of 2; The last FC layer outputs a 256-dim vector. We

train the ASM with batch size of 10 and training epoch of 50. For the complex activity

model (CAM), we set the feature φ(A) as Temporal Patterns of 1-pattern [63], and we use

quadratic penalty weight λt = (t/T)2 for 1 ≤ t ≤ T. We train SimRAD with learning

rounds L = 10. The settings of window size w, penalty weight λt, and learning round L

will be studied in subsection 4.3.1.

Settings of Comparison Methods: We test 5 methods in comparison with SimRAD. The

settings of the methods are as following:

1 1NN+DTW: We use 1-nearest neighbor (1NN) method to classify MTS based on

Dynamic Time Wrapping (DTW) distance.

2 1NN+Fea: For each channel of MTS, we extract AR feature (mean, standard de-

viation, average absolute difference, average resultant acceleration, time between

peak, and binned distribution) [53] and Fourier coefficients of 0Hz, 1Hz, and 2Hz.

We combine all these features as a feature vector, and use 1NN to classify the feature

vectors based on Euclidean distance.

3 DT+Fea: We extract the same features used in 1NN+Fea, and use decision tree (DT)

to classify the feature vectors.

4 LSTM: We implement a Recurrent Neural Network (RNN) based method, where

the architecture of the RNN consists of an LSTM layer with 256-dim output, a dense

layer with K-dim output, and a softmax layer.

5 MD-MPP: We implement Multilevel-Discretized Marked Point-Process (MD-MPP)

based method, where the piece and level parameters are both set to 10 [59].

4.3 Experiments 57

0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Progress Level

Accuracy

1NN+DTW 1NN+Fea DT+Fea
MD-MPP LSTM SimRAD

Figure 4.2: Prediction accuracies of CAs at different progress levels on OPP-BW dataset

0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Progress Level

Accuracy

1NN+DTW 1NN+Fea DT+Fea
MD-MPP LSTM SimRAD

Figure 4.3: Prediction accuracies of CAs at different progress levels on OPP-BH dataset

0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Progress Level

Accuracy

1NN+DTW 1NN+Fea DT+Fea
MD-MPP LSTM SimRAD

Figure 4.4: Prediction accuracies of CAs at different progress levels on OPP-BUA dataset

4.3.1 Prediction of Complex Activities

We evaluate the performances of SimRAD and the 5 comparison methods regarding pre-

diction accuracies of CAs at progress levels 0.1, 0.2, ..., 1.0, where the progress level is

58 Accurate Predicting of Complex Activities from Ongoing Observations

SimRAD vs. 1NN+DTW SimRAD vs. 1NN+Fea SimRAD vs. DT+Fea

Dataset R+ R− p-value R+ R− p-value R+ R− p-value

OPP-BW 817.0 3.0 0.0000 720.0 100.0 0.0000 692.0 128.0 0.0002

OPP-BH 820.0 0.0 0.0000 809.0 11.0 0.0000 738.0 82.0 0.0000

OPP-BUA 810.0 10.0 0.0000 800.0 20.0 0.0000 769.0 51.0 0.0000

SimRAD vs. LSTM SimRAD vs. MD-MPP

Dataset R+ R− p-value R+ R− p-value

OPP-BW 820.0 0.0 0.0000 761.0 59.0 0.0000

OPP-BH 820.0 0.0 0.0000 696.0 124.0 0.0001

OPP-BUA 820.0 0.0 0.0000 701.0 119.0 0.0001

Table 4.1: The Wilcoxon test to compare the prediction accuracies regarding R+, R−, and
p-values.

defined as t/T. According to the evaluation results shown in Figure 4.2, 4.3, and 4.4,

SimRAD outperforms all the comparison methods in most of the times, except progress

levels of 0.9 and 1.0 on OPP-BW and OPP-BH datasets. SimRAD uniformly surpasses

the best accuracies of the comparison methods by average 7.2%. We find that the LSTM

based model is not effectively learned in the experiments. This might due to insufficient

number of data instances in the datasets. To statistically compare the performance of

SimRAD with the 5 methods, we conduct the Wilcoxon signed-ranked test on the results

(40 pairs) of the 3 datasets. The returned R+ and R− correspond to the sum of the ranks of

the differences above and below zero, respectively. The returned p-value represents the

lowest level of significance of a hypothesis that results in rejection. This value allows one

to determine whether two methods have significantly different performances. According

to the results shown in Table 4.1, the p-values in comparisons of SimRAD with all the 5

methods, reject the null hypotheses for accuracy with a level of significant α = 0.0005.

Therefore, SimRAD outperforms the 5 comparison methods at all progress levels with

high confidence. We study the prediction accuracies of SimRAD with respect to penalty

weight λt using the OPP-BW dataset. We test 4 different penalty weight functions regard-

ing t : 1) Constant weight λt = 1; 2) Decreasing weight λt = 1− t/T; 3) Linear weight

λt = t/T; 4) Quadratic weight λt = (t/T)2. According to Figure 4.5, all the 4 functions

have not much differences in accuracy when progress level t/T < 0.4, while Linear and

Quadratic surpass Constant and Decreasing when t/T ≥ 0.4.

4.3 Experiments 59

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

Progress Level

A
cc

ur
ac

y

Quadratic
Linear

Constant
Decreased

Figure 4.5: The accuracies of SimRAD with respect to λt

Dataset ASM SR LDA Lasso

OPP-BW 75.06(±12.40) 35.92(±13.96) 54.52(±12.55) 56.86(±13.70)

OPP-BH 73.32(±12.76) 32.08(±16.03) 56.23(±11.51) 59.05(±11.40)

OPP-BUA 74.08(±13.40) 39.12(±19.62) 47.12(±18.85) 57.38(±17.24)

Table 4.2: Recognition accuracies on action sequences.

4.3.2 Recognition of Action Sequence

Recall that SimRAD predicts CAs by discovering action sequences from sensor MTS data.

We explore the detailed performance of SimRAD by studying the recognition accuracy of

the actions. For each time point, we expect to recognize one of 5 LocAs, one of 14 LHAs,

and one of 14 RHAs. Therefore, we evaluate the accuracy regarding one action sequence

A, where the accuracy is calculated as:

1
3n

n

∑
t=1

(1{LocA correct at t}+ 1{LHA correct at t}+ 1{RHA correct at t}). (4.14)

We report the averaged accuracies on all the testing X. We compare our ASM with 3

methods: 1) Softmax Regression (SR) with regularization parameter γ = 0.1; 2) Linear

Discriminant Analysis (LDA); 3) Lasso with γ = 0.1. According to the results shown in

Table 4.2, the proposed ASM significantly outperforms the 3 comparison methods. As a

result, SimRAD accurately finds the actions for predicting CAs.

60 Accurate Predicting of Complex Activities from Ongoing Observations

4.4 Conclusion

In this chapter, we studied the problem of predicting complex activities with ongoing

multivariate time series (MTS). We proposed Simultaneous Complex Activities Recogni-

tion and Action Sequence Discovering (SimRAD) which predicts a complex activity over

time by finding a sequence of multivariate actions from sensor MTS data using a Deep

Neural Network. SimRAD learns two probabilistic models for inferring complex activ-

ities and action sequences, where the estimations of the two models are conditionally

dependent on each other. SimRAD alternately predicts the complex activity and the ac-

tion sequence with the two models, thus the predictions can be mutually updated until

the completion of the complex activity. We evaluated SimRAD on a real-world complex

activity dataset of a rich amount of sensor data. The results demonstrate that SimRAD

outperforms state-of-the-art methods by average 7.2% in prediction accuracy with very

high confidence (p-values < 0.0005).

Chapter 5

Efficient Human Activity Recognition
by Reducing Computational Cost

In this chapter, we conduct a study on improving energy-efficiency of Human Activity Recogni-

tion (HAR) by reducing computational cost. Recently, ensemble models using multiple feature

representations based on time series subsequences have demonstrated excellent performance on

recognition accuracy. However, these models can significantly increase the energy overhead and

shorten battery life of the mobile devices. We formalize a dynamic subsequence selection problem

that minimizes the computational cost while persevering a high recognition accuracy. To solve

the problem, we propose Markov Dynamic Subsequence Ensemble (MDSE), an algorithm for the

selection of the subsequences via a Markov Decision Process (MDP), where a policy is learned

for choosing the best subsequence given the state of prediction. Regarding MDSE, we derive an

upper bound of the expected ensemble size, so that the energy consumption caused by the com-

putations of the proposed method is guaranteed. Extensive experiments are conducted on 6 real

HAR datasets to evaluate the effectiveness of MDSE. Compared with the state-of-the-art methods,

MDSE reduces 70.8% computational cost which is 3.42 times more energy-efficient, and achieves

a comparably high accuracy.

5.1 Introduction

Human Activity Recognition (HAR) models of using multiple feature representations

from time series subsequences have demonstrated excellent performance on accuracy

This chapter is dervied from: Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao,
“Markov Dynamic Subsequence Ensemble for Energy-Efficient Activity Recognition”, Proceedings of Inter-
national Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous), Mel-
bourne, Australia, 2017.

61

62 Efficient Human Activity Recognition by Reducing Computational Cost

[9, 107]. For example, a Subwindow Ensemble Model (SWEM) [107] uses multiple sized

windows to capture the time series for generating diverse feature representations, and

infers activity with an ensemble of the predictions based on those features. Although

SWEM delivers remarkable accuracy in practice, it is computationally expensive when

compared to traditional methods. Both training and inference processes using multiple

time series subsequences impose a high computational cost. For ordinary HAR appli-

cations, the training cost is insignificant as the model can be computed offline, but the

inference cost is crucial as this process is performed on the portable device in real time.

Considering the limited battery life of smartphones and the energy overhead of contin-

uously running HAR applets in the background, the above state-of-the-art HAR models

[9, 107] are unsuitable for resource constrained mobile platforms.

In this chapter, we aim to design a method that can reduce the computational cost

while maintaining a competitive recognition accuracy. A drawback of SWEM is that

it indiscriminately uses a fixed set of subsequences to process every incoming time se-

ries instance. However, the activities of many instances can be accurately inferred with

fewer subsequences, which saves a huge amount of energy. And it is only required to

use more subsequences when processes challenging instances, such as a fast walking in-

stance, which can be confused with running. We formalize a problem of dynamically

finding a set of subsequences that minimizes the computational cost with a desired accu-

racy of the ensemble prediction. We present two constraints for the problem which are

proved to ensure a certain level of accuracy. To solve the minimization problem with the

presented constraints, we propose Markov Dynamic Subsequence Ensemble (MDSE),

an algorithm capable of dynamically choosing an optimal subsequence set for a given

testing time series instance. The selection of the subsequences is modeled as a Markov

Decision Process (MDP), where a policy is learned for choosing the best subsequence

regarding the state of prediction. Due to the dynamic number of used subsequences

(ensemble size), the computational cost can be extensively reduced. We further show

the guaranteed computational efficiency of MDSE by deriving an upper bound of the

expected ensemble size. Specifically, our main contributions are as follows:

• To improve energy-efficiency for accurate HAR, we formalize a problem that min-

imizes the computational cost with a desired accuracy of the ensemble prediction,

5.2 Proposed Method 63

Timeτ2τ1

Acc.

Wn

...

Wi+1
...

Wj

W1
W2

...
Wi

Figure 5.1: The time series shown in red, green and blue curves are 3-axis acceleration
data. W1, ...,Wn are n overlapping windows, which observes different ranges of the time
series from timestamp τ1 to τ2.W1,W2, ...,Wi share one size with 50% overlaps. Similarly,
Wi+1, ...,Wj share another size, and there are several different sizes of windows.

by finding an optimal set of the subsequences.

• We present two constraints for the optimization problem and prove their effective-

ness on ensuring a certain level of generalization accuracy.

• We propose MDSE to solve the constrained minimization problem. The selection

of the subsequences is modeled as an MDP, where a policy is learned to choose the

best subsequence during the dynamic process under the proposed constraints.

• We derive an upper bound of the expected ensemble size of MDSE, which indicates

a guaranteed computational efficiency of MDSE.

We conduct extensive experiments on 6 real human activity datasets. The results

of mathematical estimation show that MDSE can reduce average 74.41% of the original

SWEM’s computations on all datasets, and obtains similarly high accuracies which are

only 1-2% less than SWEM. We also use a Google Nexus 5X to evaluate the energy ex-

penditure of MDSE. The results show about 70.8% energy reduction, which demonstrates

significant improvement in energy-efficiency by our proposed method.

5.2 Proposed Method

In this section, we propose an energy-efficient Human Activity Recognition (HAR) method

with high recognition accuracy. We first formalize a dynamic subsequence selection prob-

64 Efficient Human Activity Recognition by Reducing Computational Cost

lem that minimizes the computational cost with our presented constraints for ensuring

the recognition accuracy. We then propose Markov Dynamic Subsequence Ensemble

(MDSE) which uses a Markov Decision Process (MDP) to solve the problem. Regarding

the presented constraints, we provide theoretical analysis to verify their effectiveness. Fi-

nally, we show that the computational efficiency of MDSE is guaranteed by deriving an

upper bound of the expected ensemble size of MDSE. We summarize the frequently used

symbols in Table 5.1.

Symbol Explanation

X Time series data.

y Activity label of X.

m Total number of activities.

N Number of subsequences regarding X.

Xi The i-th subsequence of X.

H Subsequence set.

C Computational cost.

d Voting vector by a classifier.

v Voting proportion vector.

v̂ The highest voting proportion.

β, η Parameters of the proposed constraints.

S State space of MDP.

s A state s ∈ S .

A Action space of MDP.

a An action a ∈ A.

π Policy of MDP.

R(a) Penalty function regarding action a.

V(s) Value function regarding state s.

Ω Expected ensemble size of MDSE.

Table 5.1: Major expressions used in this chapter

5.2 Proposed Method 65

5.2.1 Markov Dynamic Subsequence Ensemble (MDSE)

Suppose there are m activities which are labeled from 1 to m. The task of HAR is to

recognize the current activity y based on a segment of time series data X collected from

one or more sensors (e.g. accelerometer). Suppose (X, y) is drawn from a distribution

D, i.e. (X, y) ∼ D, where the length of X is L. We define a set of subsequences: HX =

{X1, X2, ..., XN}, where Xi ≡ Xτi,1 :τi,2 is a subsequence of X, ranging from timestamp τi,1

to τi,2, and 1 ≤ τi,1 < τi,2 ≤ L. For each subsequence Xi, we can generate a feature

representation φ(Xi), and then a classifier based on φ(Xi) can output a voting vector

d(Xi) ∈ {0, 1}m:

d(Xi) = (d1, d2, ..., dm), (5.1)

where dj = 1 (1 ≤ j ≤ m) implies that the activity j receives the vote from the classifier,

and we have d1 + d2 + ... + dm = 1. We denote the computational cost of utilizing Xi as

C(Xi). Given a subset H ⊆ HX, the ensemble voting vector of using all the subsequences

in H is defined as:

dH = ∑
Xi∈H

d(Xi), (5.2)

and the ensemble voting proportion vector is defined as:

vH =
1
|H|dH. (5.3)

Thereby, we calculate the inferred activity as follows:

ŷH = argmax{vH}, (5.4)

where ŷH is the activity with the maximum number of votes. The total computational

cost of using H is defined as:

CH = ∑
Xi∈H

C(Xi). (5.5)

To improve computational efficiency for accurate HAR, we define a problem that mini-

mizes the computational cost while maintaining the accuracy at a certain level. Let ρ be

a selection function which can dynamically choose a subset Hρ
X = ρ(HX) of HX based on

a latent policy. Then, our problem can be formalized as minimizing the expected compu-

66 Efficient Human Activity Recognition by Reducing Computational Cost

tational cost with a constraint of generalization accuracy:

min
ρ

E(X,y)∼DCHρ
X

, (5.6)

s.t. P(X,y)∼D(ŷHρ
X
= y) ≥ α, (5.7)

where α ∈ (0.5, 1) is the parameter bounding the generalization accuracy P(X,y)∼D(ŷHρ
X
=

y), i.e., the probability of ŷHρ
X
= y. Since numerically ensuring a generalization accuracy

is non-trivial, we present two alternative constraints to replace (5.7), and formalize an

alternative problem as follows:

min
ρ

E(X,y)∼DCHρ
X

, (5.8)

s.t. max{vHρ
X
} ≥ β, (5.9)

|Hρ
X| ≥ η, (5.10)

for (X, y) ∈ D

where β ∈ (0.5, 1) and η ∈ (0, N] are predefined parameters. Later in section 5.2.2, we

provide theoretical analysis to show that the constraints (5.9) and (5.10) can ensure a

certain level of generalization accuracy regarding β and η.

To solve the above problem, we propose Markov Dynamic Subsequence Ensemble

(MDSE) where the obtaining of Hρ
X is modeled as a Markov Decision Process (MDP):

• S is a set of states. A state s ∈ S is defined as a tuple s = (H, max{dH}).

• A is a set of actions, where A = {1, 2, ..., N, N + 1}. An action a ∈ A implies: (i)

Using the subsequence Xa to make a prediction, if 1 ≤ a ≤ N. (ii) Stopping the

process, if a = N + 1.

• R(a): A 7→ R is the penalty function. It represents a valuable penalty by taking an

action a. We define the penalty function as:

R(a) =

C(Xa) 1 ≤ a ≤ N

0 a = N + 1
. (5.11)

5.2 Proposed Method 67

We design a policy π : S 7→ A, which returns the best action for each state s ∈ S :

π(s) =

N + 1 max{vH} ≥ β ∧ |H| ≥ η

M(s) otherwise
, (5.12)

where M(s) is a hash mapping from S to A. Given a state s = (H, max{dH}), we can

obtain an action a = π(s) for s, then the next state s′ = s′a by taking the action a is

obtained as:

s′a =

(H

⋂{Xa}, max{dH
⋂{Xa}}) 1 ≤ a ≤ N

s a = N + 1 (stop action)
. (5.13)

When the action a = N + 1 is obtained from π, we stop the MDP and return the final

state as the output of the MDP. The subset H of the final state is considered as Hρ
X. Given

the policy π, an initial state s0, and an X, the MDP will visit a series of states s1, ..., sK

by taking actions a0, a1, ..., aK−1, respectively. The total penalty of this process can be

measured by a value function Vπ(s) : S 7→ R as:

Vπ(s) = R(a0) + R(a1) + ... + R(aK−1) | s = s0, (5.14)

which can also be written as Bellman’s equation:

Vπ(s) =

R(π(s)) + Vπ(s′π(s)) 1 ≤ π(s) ≤ N

R(π(s)) π(s) = N + 1
. (5.15)

We can convert our problem into minimizing the value function regarding the policy π:

min
ρ

E(X,y)∼DCHρ
X

, s.t. max{vHρ
X
} ≥ β, |Hρ

X| ≥ η (5.16)

=min
π

E(X,y)∼D[R(a0) + R(a1) + R(a2) + ...] (5.17)

=min
π

E(X,y)∼D[V
π(s0) | s0 = (∅, 0)]. (5.18)

Let V∗X(s) be the minimal value function for an X. Since S is a finite state space, V∗X(s)

68 Efficient Human Activity Recognition by Reducing Computational Cost

Algorithm 6 Markov Dynamic Subsequence Ensemble (MDSE)
1: Input: A time series X
2: Output: Predicted activity ŷ
3: H ← ∅, dH ← 0
4: while |H| < N do
5: s← (H, max{dH})
6: a← π(s)
7: if a = N + 1 then
8: break
9: end if

10: H ← H
⋂{Xa}

11: dH ← dH + dXa

12: end while
13: return ŷ = argmax{dH}

can be represented as follows:

V∗X(s) =

0 max{vH} ≥ β ∧ |H| ≥ η

min
a∈A,Xa /∈H

{R(a) + V∗X(s
′
a)} otherwise

, (5.19)

where the restriction Xa /∈ H is to avoid the re-selection of a used subsequence which

brings no diversity effect to the ensemble performance. Then, we initialize V∗X(s) = +∞

for each s ∈ S , and use the value iteration algorithm [72] to repeatedly calculate V∗X(s)

using (5.19) until convergence. Finally, the optimal policy π∗(s) on the distribution D is

learned as follows:

π∗(s) =

N + 1 max{vH} ≥ β ∧ |H| ≥ η

argmin
a∈A,Xa /∈H

{R(a) + E(X,y)∼DV∗X(s
′
a)} otherwise

. (5.20)

After obtaining the policy π = π∗, MDSE can infer the activity of X by incorporating the

MDP. The pseudocode of MDSE is presented in Algorithm 6.

5.2.2 Theoretical Analysis of the Accuracy Constraints in MDSE

We provide theoretical analysis to explain that the constraints Eq. 5.9 and Eq. 5.10 collab-

oratively ensure the solution of MDSE having a certain level of generalization accuracy

regarding the parameters β and η. For the convenience of discussion, we use simplified

5.2 Proposed Method 69

notations in this section. We denote H = Hρ
X, ŷ = ŷH, and let v̂ ∈ [0, 1] be the highest

voting proportion, which is defined as:

v̂ = max{vH}. (5.21)

Thereby, the two constraints are expressed as: v̂ ≥ β and |H| ≥ η.

Analysis of the 1st Constraint

We theoretically explain the effectiveness of Eq. 5.9 by showing that: given v̂ ≥ β and a

fixed |H|, the generalized recognition accuracy increases monotonically with respect to

β ∈ (0.5, 1). Let n = |H|, then with the ensemble of n subsequences, the generalization

accuracy of the ensemble prediction given v̂ ≥ β is written as the probability P(ŷ =

y | v̂ ≥ β), which can be calculated based on the Bayes’ rule:

P(ŷ = y | v̂ ≥ β) =
P(v̂ ≥ β , ŷ = y)

∑m
j=1 P(v̂ ≥ β , ŷ = j)

(5.22)

=
P(v̂ ≥ β , ŷ = y)

P(v̂ ≥ β , ŷ = y) + ∑j 6=y P(v̂ ≥ β , ŷ = j)
.

Suppose the predictions of the n subsequences are independent with the identical gener-

alization error rate ε. The chance of seeing exact k incorrect votes among the n classifiers

is (n
k)ε

k(1− ε)n−k. Let n̂ be the number of votes that the inferred activity ŷ received, i.e.,

n̂ = nv̂. If ŷ = y, then those n̂ votes are considered to be correct, and the other n − n̂

votes are considered to be incorrect. When v̂ ≥ β, then n̂ ≥ dnβe and correspondingly

n− n̂ ≤ n− dnβe. Since β > 0.5, ŷ is the only activity receives votes more than n/2, thus

the probability P(v̂ ≥ β , ŷ = y) can be expressed as:

P(v̂ ≥ β , ŷ = y) =
n−dnβe

∑
k=0

(
n
k

)
εk(1− ε)n−k. (5.23)

If ŷ = j for j 6= y, then those n̂ votes are considered to be incorrect, and the correctnesses

of the other n − n̂ votes are not able to judge. For simplicity, we assume the error ε is

equally shared on the other m − 1 activities, then the chance of a classifier voting for

70 Efficient Human Activity Recognition by Reducing Computational Cost

activity j (j 6= y) is:

ε̃ =
ε

m− 1
, (5.24)

and the chance of a classifier voting for any activity other than j is 1− ε̃. Similar to Eq.

5.23, the probability P(v̂ ≥ β , ŷ = j) for j 6= y can be expressed as:

P(v̂ ≥ β , ŷ = j) =
n−dnβe

∑
k=0

(
n
k

)
(1− ε̃)k ε̃n−k. (5.25)

We define f (β) ≡ P(ŷ = y | v̂ ≥ β) as a function of β, which can be written as:

f (β) = (5.26)

∑
n−dnβe
k=0 (n

k)ε
k(1− ε)n−k

∑
n−dnβe
k=0 (n

k)ε
k(1− ε)n−k + (m− 1)∑

n−dnβe
k=0 (n

k)(1− ε̃)k ε̃n−k
.

We assume ε < 0.5 that the classifier outperforms random choice. The following theorem

shows that f (β) is a monotonically increasing function.

Theorem 5.1. Given ε ∈ (0, 0.5), f (β) is a monotonically increasing function.

Proof. Let t = n− dnβe, and 0 ≤ t ≤ n. We construct a new function g(t) on t ∈ Z+ as:

g(t) =
∑t

k=0 (
n
k)ε

k(1− ε)n−k

∑t
k=0 (

n
k)ε

k(1− ε)n−k + (m− 1)∑t
k=0 (

n
k)(1− ε̃)k ε̃n−k

. (5.27)

Let γ = dnβe − nβ. Since t = n− dnβe ⇒ β = (n− t− γ)/n, then g(t) = f (n−t−γ
n), and

we have f (n−t−γ′

n) = f (n−t
n) for any γ′ ∈ [0, 1). Consequently, if g(t) is a monotonically

decreasing function, then f (β) is a monotonically increasing function. We rewrite g(t) as:

g(t) =
1

1 + (m− 1)u(t)
, (5.28)

where u(t) is:

u(t) =
∑t

k=0 (
n
k)(1− ε̃)k ε̃n−k

∑t
k=0 (

n
k)ε

k(1− ε)n−k
. (5.29)

Since m− 1 > 0, if u(t) is proved to be a monotonically increasing function, then g(t) is

a monotonically decreasing function. Let θ1(k) = (n
k)(1− ε̃)k ε̃n−k, and θ2(k) = (n

k)ε
k(1−

5.2 Proposed Method 71

ε)n−k, then:
θ1(k)
θ2(k)

= (
ε̃

1− ε
)n(

1− ε̃

ε̃
)k(

1− ε

ε
)k. (5.30)

Since 0 < ε̃ ≤ ε < 0.5, then (1− ε̃)/ε̃ > 1 and (1− ε)/ε > 1, thus we have:

θ1(k)
θ2(k)

>
θ1(k− 1)
θ2(k− 1)

. (5.31)

As a result, we can infer that:

u(t + 1)− u(t) = ∑t
k=0 θ1(k) + θ1(t + 1)

∑t
k=0 θ2(k) + θ2(t + 1)

− ∑t
k=0 θ1(k)

∑t
k=0 θ2(k)

> 0 (5.32)

According to the above derivation, we claim that u(t) is a monotonically increasing func-

tion. Consequently, f (β) is a monotonically increasing function.

We prove the monotonic property of P(ŷ = y | v̂ ≥ β) on β ∈ (0.5, 1). Therefore, we

can increase β ∈ (0.5, 1) to improve the recognition accuracy of MDSE.

Analysis of the 2nd Constraint

We theoretically explain the effectiveness of Eq. 5.10 by showing that: given |H| ≥ η and

a fixed v̂ ∈ (0.5, 1), the generalized recognition accuracy increases monotonically with

respect to η ∈ (0, N]. Let n = |H|, the generalization accuracy of the ensemble prediction

given n ≥ η is written as the probability P(ŷ = y | n ≥ η), which can be calculated based

on the Bayes rule:

P(ŷ = y | n ≥ η) =
P(n ≥ η , ŷ = y)

P(n ≥ η , ŷ = y) + ∑j 6=y P(n ≥ η , ŷ = j)
. (5.33)

Similar to the analysis of the 1st constraint, we define f (η) ≡ P(ŷ = y | n ≥ η) as a

function of η, which can be written as:

f (η) = (5.34)

∑N
n=η (

n
dnv̂e)ε

n−nv̂(1− ε)nv̂

∑N
n=η (

n
dnv̂e)ε

n−nv̂(1− ε)nv̂ + (m− 1)∑N
n=η (

n
dnv̂e)(1− ε̃)n−nv̂ε̃nv̂

.

Theorem 5.2. Given ε ∈ (0, 0.5), f (η) is a monotonically increasing function.

72 Efficient Human Activity Recognition by Reducing Computational Cost

Proof. Similar to the proof of Theorem 5.1, we rewrite f (η) as:

f (η) =
1

1 + (m− 1)u(η)
, (5.35)

where u(η) is:

u(η) =
∑N

n=η (
n
dnv̂e)(1− ε̃)n−nv̂ε̃nv̂

∑N
n=η (

n
dnv̂e)ε

n−nv̂(1− ε)nv̂
(5.36)

If we can prove u(η) is a monotonically decreasing function, then f (η) is a monotonically

increasing function. Let θ1(n) = (n
dnv̂e)(1− ε̃)n−nv̂ε̃nv̂, and θ2(n) = (n

dnv̂e)ε
n−nv̂(1− ε)nv̂,

then:

θ1(n)
θ2(n)

= (
1− ε̃

ε
)n−nv̂(

ε̃

1− ε
)nv̂ (5.37)

= [(
1− ε̃

ε
)1−2v̂(

ε̃(1− ε̃)

ε(1− ε)
)v̂]n (5.38)

Since 0 < ε̃ ≤ ε < 0.5 and v̂ > 0.5, then we have [(1 − ε̃)/ε]1−2v̂ < 1, and [(ε̃(1 −

ε̃))/(ε(1− ε))]v̂ < 1. Therefore:

θ1(n)
θ2(n)

<
θ1(n− 1)
θ2(n− 1)

. (5.39)

As a result, we can infer that:

u(η + 1)− u(η) =
∑N

n=η+1 θ1(n)

∑N
n=η+1 θ2(n)

−
∑N

n=η+1 θ1(n) + θ1(η)

∑N
n=η+1 θ2(n) + θ2(η)

< 0. (5.40)

According to the above derivation, we claim that u(η) is a monotonically decreasing

function. Consequently, f (η) is a monotonically increasing function.

We prove the monotonic property of P(ŷ = y | n ≥ η) on η ∈ (0, N]. Therefore, we

can increase η ∈ (0, N] to improve the recognition accuracy of MDSE. We generally set

1 < η < N for obtaining a reasonable performance of MDSE. If we set η = 1, MDSE will

constantly make prediction based on only one subsequence. This is because that, when

the first prediction is obtained, the algorithm finds |H| = 1 ≥ η as well as v̂ = 1 ≥ β,

and then stops the dynamic process immediately without taking other subsequences into

consideration. If we set η = N, MDSE will constantly take all the subsequences into

5.2 Proposed Method 73

ensemble that degenerate into SWEM, since the constraint |H| ≥ η can only be fulfilled

when |H| = N.

5.2.3 Computational Efficiency of MDSE

A significant advantage of MDSE is that its computational efficiency is guaranteed, to-

ward which we provide theoretical analysis in this section. Let l be an integer, and Pl be

the probability that the ensemble size |H| equals l when MDSE returns. The expected

ensemble size Ω is calculated as:

Ω =
N

∑
l=η

lPl . (5.41)

Let v̂(l) be the highest voting proportion by the first l chosen subsequences, then Pl can

be expressed as:

Pl =

P(v̂(η) ≥ β), if l = η

P(v̂(η) < β, ..., v̂(l−1) < β, v̂(l) ≥ β), if η < l < N

P(v̂(η) < β, ..., v̂(N−2) < β, v̂(N−1) < β), if l = N

(5.42)

Due to the non-triviality of Pl , the expected ensemble size Ω is hard to estimate. However,

it is obvious that ∑N
l=η Pl = 1, then we can derive an upper bound for Ω:

Ω = ηPη +
N

∑
l=η+1

lPl ≤ ηPη + N
N

∑
l=η+1

Pl (5.43)

= ηPη + N(1− Pη) = η + (N − η)(1− Pη)

= η + (N − η)P(v̂(η) < β).

We present the probability P(v̂(η) < β) using the representation of multinomial cumula-

tive distribution function proposed in [56]. Let v(η) = {v(η)1 , v(η)2 , ..., v(η)m } be the voting

proportion vector, and v̂(η) = max {v(η)1 , v(η)2 , ..., v(η)m }. Let ηj = ηv(η)j be the votes of the

activity j. Then, P(v̂(η) < β) can be written as:

P(v̂(η) < β) = P(v(η)1 < β, v(η)2 < β, ..., v(η)m < β) (5.44)

= P(η1 ≤ dηβe − 1, η2 ≤ dηβe − 1, ..., ηm ≤ dηβe − 1).

74 Efficient Human Activity Recognition by Reducing Computational Cost

Suppose each of the classifiers votes to activities 1, 2, ..., m with probabilities p1, p2, ..., pm,

respectively. The multinomial cumulative distribution function can be presented as fol-

lows:

P(η1 ≤ dηβe − 1, η2 ≤ dηβe − 1, ..., ηm ≤ dηβe − 1) (5.45)

=
η!

ηηe−η
{

m

∏
j=1

P(Wj ≤ dηβe − 1)}P(
m

∑
j=1

Zj = η),

where Wj ∼ P(ηpj) = Poisson distribution, and Zj ∼ TP(ηpj) = truncated Poisson

distribution with range 0, 1, 2, ..., dηβe − 1. Without loss of generality, we set p1 as 1− ε

and set p2, ..., pm as ε̃ to obtain those distributions. Since the probability P(∑m
j=1 Zj = η)

is hard to calculate, we approximate it using normal distribution:

P(
m

∑
j=1

Zj = η) =
1√

2π ∑m
j=1 σ2

j

exp {−1
2
(

η −∑m
j=1 µj√

∑m
j=1 σ2

j

)2}, (5.46)

where µj = E(Zj) and σ2
j = Var(Zj). These two moments of Zi can be calculated as:

µj = ηpj(1−
P(Wj = dηβe − 1)
P(Wj ≤ dηβe − 1)

), (5.47)

σ2
j = µj − (dηβe − 1− µj)(ηpj − µj). (5.48)

A more precise estimation for P(∑m
j=1 Zj = η) can be obtained by Edgeworth approxi-

mation [56], which additionally incorporates 2nd to 4th central moments. We omit the

details here due to the page limitation. In summary, the expected ensemble size Ω of

MDSE is bounded by:

Ω ≤ η + (N − η)
η!

ηηe−η
{

m

∏
j=1

P(Wj ≤ dηβe − 1)}P(
m

∑
j=1

Zj = η). (5.49)

We intuitively show the upper bound of Ω in Figure 5.2, where the curves of the upper

bounds are plotted with various settings of β and η. Let Ωub be the bound which equals

to the right part of Eq. 5.49. We can infer that the expected computational cost of MDSE

is bounded by ∑dΩube
i=1 C(Xi) assuming C(X1) ≥ C(X2) ≥ ... ≥ C(XN).

5.3 Empirical Evaluations 75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

4

8

12

16

20

β

Upper bound of Ω

η = 4
η = 5
η = 6
η = 7
η = 8

Figure 5.2: Given N = 20 (subsequences), m = 6 (activities) and ε = 0.2, the curves show
the upper bound of Ω as function of β with different η.

5.3 Empirical Evaluations

In this section, we evaluate the performance of Markov Dynamic Subsequence Ensemble

(MDSE) with respect to accuracy and computational cost, and compare it with 4 baseline

methods. The experiments are conducted on both desktop and mobile platforms. For

the experiments on the desktop platform, we implement the methods with Python 2.7,

and test the methods on a DELL PC with Intel (R) Core (TM) i7-4470 CPU 3.40 GHz, 16G

RAM and 64-bit Ubuntu 14.04 LTS operating system. For the experiments on the mobile

platform, we implement the methods with Java, and test the methods on a Google Nexus

5X with Android 6.0 system.

Datasets: The 3-axis acceleration data of 6 human activity datasets is used to evaluate

the performance of MDSE. (1) Human Activity Sensing Consortium dataset (HASC) [43]:

We use the data of all 6 activities, which is collected by iPhone and iPod Touch. (2) Hu-

man Activity Recognition on Smartphones Dataset (HARSD) [5]: We use the data of all

6 activities, which is collected by a Samsung Galaxy S II. (3) Actitracker dataset (ACTR)

[53]: We use the data of all 6 activities, which is collected by Android phones. (4) Daily

Sport Activities dataset (DSA) [11]: We use the data of all 19 activities, which is collected

by an accelerometer placed on torso. (5) Opportunity dataset (OPP) [81]: We use the data

of selected 5 arm activities (’close’, ’reach’, ’open’, ’release’, ’move’), which is collected by

an accelerometer placed on left arm. (6) CHEST dataset [20]: We use the data of selected 4

activities (’working at computer’, ’standing’, ’working’, ’up/down stairs’), which is col-

76 Efficient Human Activity Recognition by Reducing Computational Cost

lected by an accelerometer placed on chest.

Experiment Settings: Let D be a dataset containing a number of time series data, where

each one is collected independently. Let Dy be the subset corresponding to activity y,

thus we have D =
⋃

yDy. For each subset Dy, we randomly split it into three groups:

Dy,1, Dy,2 and Dy,3, where |Dy,1| = 0.5|Dy|, |Dy,2| = 0.25|Dy| and |Dy,3| = 0.25|Dy|. We

then generate D1 =
⋃

yDy,1, D2 =
⋃

yDy,2, D3 =
⋃

yDy,3, which are aggregated crossing

the activities y. For the time series in each aggregated group, we sequentially extract a

number of 5 seconds segments as our instances, i.e, X. For D1 and D3, we perform the

extraction for every 1.5 seconds. For D2, we perform the extraction for every 0.5 seconds.

We use the instances of D1 to train the classifiers of MDSE and baselines. We use the D2

to learn the Markov Decision Process (MDP) for MDSE. We use the instances of D3 for

testing.

Settings of MDSE: Let τ be the number of readings in one second, and Xk1τ:k2τ be the

subsequence of X containing readings from the k1-th second to k2-th second. We gen-

erate the subsequence set HX as {X0:2τ, X1τ:3τ, X2τ:4τ, X3τ:5τ, X0:2.5τ, X1.25τ:3.75τ, X2.5τ:5τ,

X0:3τ, Xτ:4τ, X2τ:5τ, X0:3.5τ, X1.5τ:5τ, X0:4τ,Xτ:5τ, X0:4.5τ, X0.5τ:5τ, X0:5τ}, where |HX| = 17.

For each Xi ∈ HX, we perform Fast Fourier Transform (FFT) on each axis channel of the

time series, and combine the Fourier coefficients of the 3 channels as the feature φ(Xi)

[71]. The cost C(Xi) of using Xi is set as C(Xi) = Li log Li where Li is the length of Xi.

Since the subsequences can be grouped by 6 different lengths: 2τ, 2.5τ, 3τ, 3.5τ, 4τ, 4.5τ,

and 5τ, we build base classifiers one for each length. The choosing of classification model

for the base classifiers is varied, where the details are described in the latter section.

Settings of Baselines: We test 4 baseline methods in comparison with MDSE: (i) Single

Base Classifier (SBC): We classify X using a single base classifier. (ii) Subwindow Ensem-

ble Model (SWEM): We classify X by combing all the base classifiers which are trained

based on the subsequences of HX in the same manner of MDSE. (iii) Convolutional Neu-

ral Network (CNN): We classify X by a CNN, whose structure is referenced from [104].

The CNN consists of a convolutional layer of 20 feature mappings with 1s length filter

striding 0.5s, a max-pooling layer with 0.5s length filter, a hidden layer with 1024 output

units, a hidden layer with 30 output units, and a softmax layer. We set learning rate to

0.001 and batch size to 10 for training the CNN. (iv) Recurrent Neural Network (RNN):

5.3 Empirical Evaluations 77

X1 X3 X5 X7 X9 X11 X13 X15 X17

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Subsequence

Accuracy

CHEST
OPP
DSA
ACTR
HARSD
HASC

Figure 5.3: Accuracies of Decision Trees (DTs) using the subsequences X1, X2, ..., X17 on
different datasets.

We classify X by a RNN which consists of a LSTM layer and a Softmax layer. We divide

X into a sequence of 0.5 seconds chunks, which are used as input of the RNN. We set

learning rate to 0.001 and batch size to 10 for training the RNN. We examine Decision

Tree (DT), Logistic Regression (LR) and K-Nearest Neighbor (KNN) as the base classifier

for SBC, SWEM and MDSE. The settings of DT, LR and KNN are: (i) DT: We use Classi-

fication and Regression Tree (CART) as the Decision Tree algorithm. (ii) LR: We set the

regularization weight parameter to 1. (iii) KNN: We set the neighbor number to 1.

5.3.1 Performances of Different Subsequences

We conduct experiments to investigate the accuracy regarding each single subsequence

Xi ∈ HX using DT. Figure 5.3 shows the accuracies of using the subsequences from X1 to

X17 on the 6 datasets. As shown in the figure, all the subsequences have different accura-

cies. A smaller subsequence usually result in low accuracy, since only a few data points

are captured which many not be a good representative of the activity. A larger subse-

quences capture more data points which generally deliver a higher accuracy. However,

this is not exactly correct, since a subsequence with more data points may not represents

the activity properly. Therefore, we perform HAR using a number of feature representa-

tions based on multiple time series subsequences.

78 Efficient Human Activity Recognition by Reducing Computational Cost

0.5 0.6 0.7 0.8 0.9 1.0
0.84
0.86
0.88
0.90
0.92
0.94
0.96

β

Accuracy
η = 3 η = 4 η = 5

(a) Accuracy

0.5 0.6 0.7 0.8 0.9 1.0
0.10
0.20
0.30
0.40
0.50
0.60

β

Cost (%)

(b) Percentage of Cost

Figure 5.4: Accuracy and Cost (%) of Markov Dynamic Subsequence Ensemble (MDSE)
as functions of β with different η.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.0
0.1
0.2
0.3
0.4
0.5
0.6

β

∆Accuracy / ∆Cost

η = 3
η = 4
η = 5

Figure 5.5: ∆Accuracy/∆Cost of MDSE as a function of β with different η.

HASC HARSD ACTR DSA OPP CHEST

91.6%
84.6% 86.5%

93.6%

75.3% 72.1%
83.7%

91.2%

76.8%
87.1%

69.9%
62.7%61.5%

85.7%

65.5%

44.9%

74.3% 73.6%

MDSE CNN RNN

Figure 5.6: Comparing accuracy of MDSE with CNN and RNN on different datasets.

5.3.2 Markov Dynamic Subsequence Ensemble

We study the performance of the proposed MDSE regarding accuracy and computational

efficiency. We compare the evaluation results of MDSE to SBC and SWEM, where DT,

LR and KNN are used as base classifier separately. The parameters of MDSE are set as

5.3 Empirical Evaluations 79

HASC HARSD

Method Accuracy #Sub Cost Cost (%) Time Accuracy #Sub Cost Cost (%) Time

SBC + DT 83.18% 1 4482.89 10.02% 0.224 80.60% 1 1991.45 10.11% 0.149

SWEM + DT 93.47% 17 44741.59 100% 2.780 85.86% 17 19695.79 100% 1.996

MDSE + DT 91.59% 5.17 10339.73 23.11% 0.769 84.62% 4.02 3142.80 15.96% 0.428

SBC + LR 90.04% 1 4482.89 10.02% 0.249 83.92% 1 1991.45 10.11% 0.155

SWEM + LR 94.83% 17 44741.59 100% 3.141 85.17% 17 19695.79 100% 2.047

MDSE + LR 93.66% 5.10 10335.02 23.10% 0.890 85.31% 6.30 6208.77 31.52% 0.760

SBC + KNN 88.94% 1 4482.89 10.02% 2.591 83.65% 1 1991.45 10.11% 1.013

SWEM + KNN 91.85% 17 44741.59 100% 34.144 84.55% 17 19695.79 100% 14.768

MDSE + KNN 92.43% 3.89 6872.99 15.36% 6.213 84.13% 3.54 2611.47 13.26% 2.861

ACTR DSA

Method Accuracy #Sub Cost Cost (%) Time Accuracy #Sub Cost Cost (%) Time

SBC + DT 75.66% 1 664.39 10.28% 0.090 73.95% 1 870.72 10.20% 0.104

SWEM + DT 87.35% 17 6463.85 100% 1.346 94.12% 17 8537.68 100% 1.566

MDSE + DT 86.54% 5.32 1550.86 23.99% 0.420 93.60% 5.46 2096.86 24.56% 0.483

SBC + LR 89.38% 1 664.39 10.28% 0.102 85.04% 1 870.72 10.20% 0.109

SWEM + LR 90.93% 17 6463.85 100% 1.485 89.47% 17 8537.68 100% 1.607

MDSE + LR 90.89% 5.82 1804.69 27.92% 0.523 89.47% 8.80 4019.88 47.08% 0.886

SBC + KNN 83.25% 1 664.39 10.28% 2.787 94.34% 1 870.72 10.20% 0.952

SWEM + KNN 85.28% 17 6463.85 100% 35.983 95.88% 17 8537.68 100% 17.549

MDSE + KNN 85.39% 4.21 1087.78 16.83% 7.055 95.66% 3.66 1165.30 13.65% 3.327

OPP CHEST

Method Accuracy #Sub Cost Cost (%) Time Accuracy #Sub Cost Cost (%) Time

SBC + DT 68.49% 1 1084.32 10.20% 0.124 59.90% 1 1991.45 10.11% 0.169

SWEM + DT 76.71% 17 10634.65 100% 1.648 73.31% 17 19695.79 100% 2.165

MDSE + DT 75.34% 6.94 3651.18 34.33% 0.704 72.13% 6.55 6198.73 31.47% 0.791

SBC + LR 76.71% 1 1084.32 10.20% 0.123 69.31% 1 1991.45 10.11% 0.177

SWEM + LR 77.05% 17 10634.65 100% 1.665 71.08% 17 19695.79 100% 2.386

MDSE + LR 77.40% 7.41 4055.15 38.13% 0.768 71.21% 10.68 11719.38 59.50% 1.492

SBC + KNN 72.95% 1 1084.32 10.20% 0.719 64.13% 1 1991.45 10.11% 1.536

SWEM + KNN 78.77% 17 10634.65 100% 11.687 67.15% 17 19695.79 100% 21.378

MDSE + KNN 79.45% 6.05 3000.77 28.22% 4.252 67.32% 5.23 4657.79 23.65% 6.166

Table 5.2: Comparing MDSE with SBC and SWEM using base classifiers: DT, LR and
KNN.

β = 0.7, η = 3. We use 5 indicators for the comparison including: (1) ‘Accuracy’; (2)

‘#Sub’: the number of used subsequences; (3) ‘Cost’: the average cost for one instance; (4)

‘Cost (%)’: the percentage of ‘Cost’, where the ‘Cost (%)’ of SWEM is set to 100%, and the

others are represented as proportional rates to the ‘Cost’ of SWEM; (5) ‘Time’: the aver-

age execution time for one instance (millisecond). The experimental results on 6 datasets

80 Efficient Human Activity Recognition by Reducing Computational Cost

HASC HARSD

Method Accuracy #Sub Cost Cost (%) Accuracy #Sub Cost Cost (%)

Random K− 2 89.20% 4 10424.912 23.30% 83.99% 3 3433.619 17.43%

Random K− 1 90.17% 5 13054.256 29.18% 84.48% 4 4593.724 23.32%

MDSE 91.59% 5.17 10339.734 23.11% 84.62% 4.02 3142.803 15.96%

Random K 90.88% 6 15732.360 35.16% 85.17% 5 5752.307 29.21%

Random K + 1 91.72% 7 18366.606 41.05% 85.03% 6 6928.949 35.18%

Random All (SWEM) 93.47% 17 44741.588 100.00% 85.86% 17 19695.794 100.00%

ACTR DSA

Method Accuracy #Sub Cost Cost (%) Accuracy #Sub Cost Cost (%)

Random K− 2 84.18% 4 1518.817 23.50% 88.16% 4 1994.436 23.36%

Random K− 1 84.37% 5 1896.888 29.35% 89.96% 5 2494.316 29.22%

MDSE 86.54% 5.32 1550.862 23.99% 93.60% 5.46 2096.855 24.56%

Random K 85.42% 6 2277.220 35.23% 90.61% 6 3001.907 35.16%

Random K + 1 85.46% 7 2657.417 41.11% 91.80% 7 3505.834 41.06%

Random All (SWEM) 87.35% 17 6463.855 100.00% 94.12% 17 8537.676 100.00%

OPP CHEST

Method Accuracy #Sub Cost Cost (%) Accuracy #Sub Cost Cost (%)

Random K− 2 71.92% 5 3107.821 29.22% 69.42% 5 5774.697 29.32%

Random K− 1 73.63% 6 3758.417 35.34% 70.12% 6 6937.692 35.22%

MDSE 75.34% 6.94 3651.182 34.33% 72.13% 6.55 6198.734 31.47%

Random K 75.34% 7 4371.330 41.10% 70.38% 7 8102.068 41.14%

Random K + 1 77.05% 8 5000.964 47.03% 71.01% 8 9265.011 47.04%

Random All (SWEM) 76.71% 17 10634.647 100.00% 73.31% 17 19695.794 100.00%

Table 5.3: Comparing MDSE with Random K methods (DT as base classifier). Due to the
page limitation, we only show the results of Random K− 2, K− 1, K, K+ 1 and All, where
K is set as the smallest integer that greater than the obtained ensemble size of MDSE.

are shown in Table 5.2. For accuracy comparison, MDSE performs only approximately

1-2% less than SWEM. However, for computational cost comparison, MDSE reduces av-

erage 74.41% of the SWEM’s computational cost. Specifically, MDSE reduces average

74.32% with DT, 67.41% with LR, and 81.51% with KNN. To explore the statistical sig-

nificance of the performances of MDSE and SWEM, we conduct Wilcoxon signed-rank

test on their results (18 pairs). The returned p-values represent the lowest level of sig-

nificance of a hypothesis that results in rejection. This value allows one to determine

whether two methods have significantly different performance. We set the significance

level α = 0.05 for the following statistical comparisons. For the accuracy comparison

between MDSE and SWEM, the returned p-value = 0.102434 > α fails to reject the null

5.3 Empirical Evaluations 81

hypothesis of the comparison, implying a similar accuracy performance of the two meth-

ods. For the computational cost comparison between MDSE and SWEM, the returned

p-value = 0.000196 < α rejects the null hypothesis, implying a significant cost efficiency

of MDSE against SWEM. We also compare the accuracy of MDSE to the CNN and RNN.

The results on 6 datasets are shown in Figure 5.6. MDSE obtains better performances

than both the CNN and RNN on 4 out of 6 datasets. The CNN only shows a better re-

sult on HARSD dataset, and the RNN only shows better results on HARSD and CHEST

datasets. Designing widely applicable deep neural nets for HAR still need more investi-

gations which can be our future work.

We further evaluate the effectiveness of MDSE by comparing it with a method called

Random K which randomly chooses K subsequences for ensemble prediction. We test

Random K from K = 1 to |HX|. According to the comparison results shown in Table 5.3,

when MDSE uses a similar number of subsequences to the Random K, MDSE achieves a

higher or similar accuracy, and spends less computational cost.

5.3.3 The Accuracy Constraints

The recognition accuracy can be ensured by the presented constraints Eq. 5.9 and Eq.

5.10, since we can prove that the accuracy is monotonically increasing with respect to the

parameters β and η. Therefore, we conduct experiments to study the effects of increasing

β and η to accuracy and computational cost. We test MDSE on HASC dataset with β

varying from 0.55 to 0.95, and η ∈ {3, 4, 5}. The ‘Accuracy’ and ‘Cost (%)’ results are

shown in Figure 5.4a and Figure 5.4b, respectively. The accuracy improves by increasing

β and η, which verifies our analysis. The computational cost is also increased, since that

the more restrictive constraints will cause MDSE take more subsequences into ensemble,

which results in more computations.

A critical problem is how to choose β and η. Given a fixed η, we can use ∆Accuracy/∆Cost

as an indicator to express the ratio of accuracy increment and cost increment by increas-

ing β. We test ∆Accuracy/∆Cost with respect to β and η, where D2 is used as testing

data. The curves of ∆Accuracy/∆Cost are plotted in Figure 5.5. We can observe a signif-

icant peak when β = 0.7 and η = 3. Therefore, using β = 0.7 and η = 3 is an empirically

optimal choice for MDSE.

82 Efficient Human Activity Recognition by Reducing Computational Cost

0.55 0.65 0.75 0.85 0.95
0
2
4
6
8

10
12
14
16

β

Ω

Empricial Ω Upper bound of Ω

(a) η = 3

0.55 0.65 0.75 0.85 0.95
0
2
4
6
8

10
12
14
16

β

Ω

(b) η = 6

Figure 5.7: The dashed curve shows the upper bound of Ω with respect to β, and the
solid curve shows the empirical Ω.

5.3.4 The Computational Efficiency of MDSE

The computational efficiency of MDSE is guaranteed, since we can estimate an upper

bound of the expected ensemble size Ω. We evaluate the correctness of the upper bound

which is presented in Eq. 5.49. We conduct experiments on HASC dataset to obtain

the empirical Ω (average ensemble size) of MDSE. We estimate the upper bound of Ω

using Eq. 5.49, where the generalization error ε is set as the largest empirical error of the

base classifiers. According to the results shown in Figure 5.7, the curve of empirical Ω is

consistently below the curve of the estimated upper bound, which verifies the correctness

of our derived bound for Ω.

5.3.5 Evaluation on Smartphone

We study the performance of MDSE on smartphone regarding accuracy, energy cost and

the size of classification model. We compare the evaluation results of MDSE to SBC and

SWEM, where DT is used as base classifier. The methods are implemented using Java

with Weka Machine Learning Library1, and tested on a Google Nexus 5X. In order to

measure the pure algorithm running cost excluding the impact from sensors, we import

the HASC dataset to the smartphone where the data is prepared following our previous

Data Preparation steps. We run the methods on the data of testing group (939 instances),

1http://www.cs.waikato.ac.nz/ml/weka/

5.4 Conclusion & Discussion 83

and use PowerTutor [105] to measure a total power consumption. We run each method

for 3 times to calculate the average results. According to Table 5.4, MDSE obtains an

accuracy about 1.4% less than the SWEM, but reduces about 70.8% energy of the SWEM.

Moreover, the model size of MDSE is not large, which demonstrates the feasibility of

applying MDSE on mobile devices.

Method Accuracy Energy Cost Model Size

SBC 82.22% 0.95 J 87 KB

SWEM 92.65% 10.03 J 1367 KB

MDSE 91.27% 2.93 J 2958 KB

Table 5.4: Performances on a Google Nexus 5X.

5.4 Conclusion & Discussion

State-of-the-art models using feature representations based on multiple time series sub-

sequences have shown to be effective in Human Activity Recognition (HAR). However,

they consume a large amount of energy on mobile devices. In this chapter, we addressed

this major issue by formalizing a dynamic subsequence selection problem that minimizes

the computational cost with constraints for ensuring the recognition accuracy. We theo-

retically showed that our presented constraints can guarantee the generalization accuracy

at a certain level. To solve the problem, we proposed Markov Dynamic Subsequence En-

semble (MDSE) which learns a policy that chooses the best subsequence given a state of

prediction. We then derived an upper bound of the expected ensemble size of MDSE,

thus the computational efficiency is guaranteed. We conducted experiments on 6 real

human activity datasets to evaluate the performance of MDSE. Comparing to the state-

of-the-arts, MDSE demonstrates 70.8% energy reduction that is 3.42 times more energy-

efficiency, and achieves a similarly high accuracy.

MDSE greatly enhances the practicality of subsequence ensemble models on mobile

devices due to the significant reduction of computational cost with minor recognition ac-

curacy sacrificing. Since MDSE focuses only on reducing model inference computations,

it is capable of working together with many conventional energy saving methods which

84 Efficient Human Activity Recognition by Reducing Computational Cost

focus on reducing sensor usages. Accordingly, a future study regarding joint optimiz-

ing inference computing and sensing scheduling can be conducted to further improve

energy-efficiency of HAR.

Chapter 6

Efficient Human Activity Recognition
by Reducing Sensing Cost

In this chapter, we conduct a study on improving energy-efficiency of Human Activity Recogni-

tion (HAR) by reducing sensing cost. HAR in real-time requires continuous sampling of data

using built-in sensors (e.g., accelerometer), which significantly increases the energy cost and

shortens the operating span. Reducing sampling rate can save energy but causes low recog-

nition accuracy. Therefore, choosing adaptive sampling frequency that balances accuracy and

energy-efficiency becomes a critical problem in HAR. We formalize the problem as minimizing

both classification error and energy cost by choosing dynamically appropriate sampling rates. We

propose Datum-Wise Frequency Selection (DWFS) to solve the problem via a continuous state

Markov Decision Process (MDP). A policy function is learned from the MDP, which selects the

best frequency for sampling an incoming data entity by exploiting a datum related state of the sys-

tem. We propose a method for alternate learning the parameters of an activity classification model

and the MDP that improves both the accuracy and the energy-efficiency. We evaluate DWFS

with three real-world HAR datasets, and the results show that DWFS statistically outperforms

the state-of-the-arts regarding a combined measurement of accuracy and energy-efficiency.

6.1 Introduction

Human Activity Recognition (HAR) in real-time requires continuous sampling data us-

ing built-in sensors (e.g., accelerometer, microphone, and camera), which causes exces-

sive power consumption that greatly shortens the lifespan of the mobile devices [46].

This chapter is derived from: Weihao Cheng, Sarah Erfani, Rui Zhang, Kotagiri Ramamohanarao,
“Learning Datum-Wise Sampling Frequency for Energy-Efficient Activity Recognition”, Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), New Orleans, USA, 2018.

85

86 Efficient Human Activity Recognition by Reducing Sensing Cost

Simply using a low sampling frequency can save energy, but this comes at the cost of

reduced recognition accuracy [49]. Therefore, dynamically selecting proper sampling

frequency to balance accuracy and energy-efficiency becomes an emergent challenge for

HAR on resource constrained mobile devices.

Most of the existing HAR methods use a fixed sampling frequency for data acquisi-

tion. A problem of these methods is that, they can either spend redundant energy for

identifying highly discriminable instances, or obtain unsatisfactory accuracy for confus-

ing instances. Several works have been proposed for seeking dynamic sampling fre-

quency for HAR [94, 98, 102]. An A3R method [98] follows a table of heuristic rules for

frequency selection, and it decides to switch frequency based on a predefined threshold of

inference probability. Some other methods [94,102] solve the problem with a discrete state

Markov Decision Process (MDP), which merely takes one of the predefined user states as

input and returns actions from a limited space (increase/keep/decrease) for changing

the frequency. These methods lack direct information extraction from data instance and

cannot find a desired optimal performance on balancing accuracy and energy-efficiency.

In this chapter, we propose an effective method that dynamically chooses sampling

frequencies for HAR. In contrast to the existing approaches, our method directly exploits

the information from recently observed data instances. Suppose we have a sequence of

data entities, where a data entity represents the full information of an activity in a pe-

riod of time, and it can only be inferred by being sampled into data instance. Our goal

is to dynamically choose frequencies to sample each data entity for inference, so that the

recognition accuracy and the energy-efficiency are balanced in a desired way. We formal-

ize the problem as finding an optimal classification model and dynamically appropriate

sampling frequencies that minimize an objective function regarding overall classification

error and total energy cost. We propose Datum-Wise Frequency Selection (DWFS) to ad-

dress the minimization problem through an MDP, where a policy function is learned for

choosing the best sampling frequency based on a continuous state. We assign the policy

function with the datum-wise property, where the feature representation of sampled data

is utilized to build a connection between MDP states and sampling frequencies. DWFS

models a mutual relationship between the classification model and the MDP, thereby, we

propose to learn their parameters via an alternate optimization approach. More specifi-

6.2 Methodology 87

cally, our main contributions can be summarized as follows:

• We formalize a problem which finds an optimal classification model and dynami-

cally appropriate sampling frequencies to minimize an objective function regarding

a combined measurement of classification error and energy cost.

• We propose DWFS to solve the minimization problem. DWFS utilizes a continu-

ous state MDP, where a datum-wise policy function is proposed to select the best

sampling frequency by directly exploiting the information from recently sampled

data.

• DWFS unifies the parameters of the classification model and the policy function in

one model, thereafter, we propose an alternate optimization approach where the

parameters are mutually enhanced.

We conduct extensive experiments on 3 real-world HAR datasets to evaluate DWFS. The

results demonstrate that DWFS statistically outperforms the state-of-the-arts in terms of

a combined measurement of accuracy and energy-efficiency.

6.2 Methodology

In this section, we first formalize the problem of balancing recognition accuracy and

energy-efficiency as minimizing an objective function regarding recognition error and

energy cost. Then, we propose Datum-Wise Frequency Selection (DWFS) based on a

continuous state MDP, which can sequentially choose the optimal sensor sampling fre-

quencies for incoming data entities.

6.2.1 Problem Statement

Let F = { f1, f2, ..., fK} be a set of K sampling frequencies supported by a sensor, where

f1 < f2 < ... < fK. The energy costs of using these frequencies are c f1 , c f2 , ..., c fK , respec-

tively, and we have c f1 < c f2 < ... < c fK . Suppose we have m activities to recognize. Let

Y be a set of activity labels such that Y = {1, 2, ..., m}. Let y be an activity label such that

y ∈ Y . Suppose x is an data entity which represents the full information of an activity

88 Efficient Human Activity Recognition by Reducing Sensing Cost

in a period of time. As x is in a space of infinite dimension, it is required to be sampled

by a sensor for processing. Let g(x, f) be a sampling function which returns an observed

data instance x̃ = g(x, f) by sampling x with a frequency f ∈ F. It is worth noting that f

is implicitly represented by x̃ for simplicity of notation. Given an x̃, we can use a classi-

fication model p(y | x ; θ) parameterized by θ to make a probabilistic inference, then the

output of the model is a vector of probabilities p ∈ [0, 1]m:

p = (p1, p2, ..., pm), (6.1)

where the y-th element py of p is the probability of the activity y:

py = p(y | x̃ ; θ). (6.2)

Let ŷ be the inferred activity label that ŷ = argmaxy p(y | x̃ ; θ). Let 1{ŷ 6= y} be the error

measurement regarding the inferred activity that 1{ŷ 6= y} equals 1 if ŷ 6= y and 0 other-

wise. Suppose there is a sequence of labeled data entities Q = {(x(1), y(1)), (x(2), y(2)), ...,

(x(N), y(N))}. Our goal is twofold: 1) we want to find an optimal θ for the classification

model, and 2) for each data entity x(t), we want to select a proper frequency f (t) ∈ F to

obtain x̃(t) = g(x(t), f (t)), that a combined measurement of the overall classification error

and the total energy cost is minimized:

min
θ, f (1),..., f (N)

N

∑
t=1

1{ŷ(t) 6= y(t)}+ λ
N

∑
t=1

c f (t) , (6.3)

where λ is a predefined weight parameter between the error and the cost. We denote

this combined measurement as Error-Cost Index. For the convenience of using function

optimization to reduce the proposed Error-Cost Index, we replace the classification error

1{ŷ(t) 6= y(t)} in Eq. 6.3 with cross-entropy loss, and formalize an objective function as:

min
θ, f (1),..., f (N)

N

∑
t=1
− log p(y(t) | x̃(t) ; θ) + λ

N

∑
t=1

c f (t) , (6.4)

where λ is a predefined weight parameter between the cross-entropy loss and the energy

cost. In an experimental environment, one can naively test all the possible sampling fre-

6.2 Methodology 89

quencies for each data entity to obtain the optimum solution. However, this is infeasible

for real-time inference, since a sensor can only sample an incoming entity once. There-

fore, we need to find an effective way to solve the problem.

6.2.2 Datum-Wise Frequency Selection (DWFS)

We propose DWFS to solve the optimization problem of Eq. 6.4. DWFS effectively pre-

dicts the best sampling frequency for an incoming data entity based on recent context.

A significant advantage of DWFS over the existing methods is that, it models a direct

connection from data to sampling frequencies, thus the model is so called Datum-Wise.

DWFS solves the minimization problem of Eq. 6.4 by incorporating a continuous state

MDP, where a policy π is learned to select the next sampling frequency based on the

current state of the MDP. The state of the MDP is defined as a pair of two components:

1) the feature representation of a previously sampled data instance, and 2) the inference

probabilities of this instance. The detailed description of DWFS is provided in the rest of

this section. We first define our continuous state MDP, and transform the original prob-

lem into the MDP problem. We then design the policy of the MDP. Next, we introduce

an alternate learning approach to optimize the parameters of DWFS. Finally, we describe

the algorithm of DWFS to select the sampling frequencies in real-time inference.

The Markov Decision Process of DWFS

Let φ(x̃) ∈ Rd be the feature representation of x̃ = g(x, f), where d is the dimension of

φ(x̃). We introduce the MDP to solve our problem as follows:

• S is an infinite space of states. Each state s ∈ S is defined as a vector s = (φ(x̃), p) ∈

Rd+m, which is concatenated by the feature representation φ(x̃) and the label prob-

abilities p of x̃. Specifically, we define s(t) = (φ(x̃(t)), p(t)), where p(t) is the label

probabilities of x̃(t).

• A is a set of actions that A = {a1, a2, ..., aK}. The action ak ∈ A maps to the fre-

quency fk ∈ F, which indicates the choice of fk. We can consider that ak ≡ fk.

• Psa(s′) is the transition probability function. Given a state s ∈ S and an action

90 Efficient Human Activity Recognition by Reducing Sensing Cost

a ∈ A, Psa(s′) returns the probability of the next state s′ by taking the action a.

• γ is the discount factor. We set γ = 1 as for no discount involved, thereby every

incoming data entity can be considered equally.

• R(s): S 7→ R is the reward function. It represents a valuable rewarded by visiting a

state s = (φ(x̃), p). We define the reward function for our problem as:

R(s) = log p(y | g(x, f) ; θ)− λc f , (6.5)

where f ∈ F is the frequency used to sample x. Particularly, we define R(0) = 0,

where 0 is a zero vector.

The dynamics of the MDP proceeds as follows: We start at an initial state s(0) = 0. We

then choose the first action a(0), and use the corresponding sampling frequency f (1)

to sample the first data entity x(1). As the result of f (1), we step into the next state

s(1) = (φ(x̃(1)), p(1)). We then choose the second action a(1) based on s(1) and obtain

a new state. We repeat this procedure until the last data entity x(N) is sampled. An intu-

itive representation of the MDP dynamics is shown in Figure 6.1, and the total reward of

visiting the state sequence s(0), s(1), ..., s(N) is calculated as:

R(s(0)) + γR(s(1)) + γ2R(s(2)) + ... + γN R(s(N))

=R(s(0)) +
N

∑
t=1

R(s(t)). (6.6)

The essential problem of MDP is to find a policy function π : S 7→ A, which chooses the

best action for a given state to maximize a value function defined as:

V(s, t) =

R(s) +

∫
s′∈S Psa(s′)V(s′, t + 1) t < N

R(s) t = N
. (6.7)

6.2 Methodology 91

s(0) s(1) ... s(N) End

x̃(1) ... x̃(N)

a(0) a(1) a(N−1)

Figure 6.1: The dynamics of the MDP.

The value function V(s, t) returns the total rewards of the MDP starting from s and t. By

incorporating the MDP, we can rewrite the problem of Eq. 6.4 as:

min
θ, f (1),..., f (N)

N

∑
t=1
− log p(y(t) | x̃(t) ; θ) + λ

N

∑
t=1

c f (t)

= min
θ, f (1),..., f (N)

N

∑
t=1
− log p(y(t) | x̃(t) ; θ) + λc f (t)

= max
θ, f (1),..., f (N)

N

∑
t=1

log p(y(t) | x̃(t) ; θ)− λc f (t)

=max
θ,π

R(s(0)) +
N

∑
t=1

R(s(t))

=max
θ,π

V(s(0), 0). (6.8)

Therefore, our goal is to find optimal classification parameter θ∗ and policy π∗ that max-

imize the value function V(s(0), 0).

Modeling the Policy

Suppose we have a fixed θ. Let V∗(s, t) be the optimal value function regarding π∗. For

t = N, we have V∗(s, t) = R(s). For t < N, we can use Bellman’s equation to recursively

calculate V∗(s, t) as:

V∗(s, t) = R(s) + max
a∈A

∫
s′∈S

Psa(s′)V∗(s′, t + 1), (6.9)

where the optimal values of V∗ for each state are obtained in a dynamic programming

manner. Correspond to V∗, the optimal policy function π∗ regarding s is calculated as:

π∗(s) = argmax
a∈A

Et∼T

∫
s′∈S

Psa(s′)V∗(s′, t), (6.10)

92 Efficient Human Activity Recognition by Reducing Sensing Cost

where T is a distribution of t. Since π∗(s) is independent of t, the output of π∗(s) given

s should be maximized on T . As the state s = (φ(x̃), p) is in a continuous space, we are

unable to use the traditional tabular approach to obtain π(s). Instead, we stimulate π(s)

with a probabilistic model p(a | s ; ψ) parameterized by ψ:

π(s) = argmax
a∈A

p(a | s ; ψ). (6.11)

We consider the parameter ψ = ψ(s) as a function of s. The probability p(a | s ; ψ) is then

given through a softmax assignment based on ψ(s):

p(a = ak | s ; ψ) =
eψk(s)

∑K
i=1 eψi(s)

. (6.12)

Therefore, we can learn the parameter ψ to obtain the policy π(s) of the MDP, and our

problem of Eq. 6.8 is then rewritten as:

max
θ,ψ

V(s(0), 0). (6.13)

Learning DWFS

Learning DWFS consists of two tasks: optimizing the parameter θ for the classification

model and optimizing the parameter ψ for the MDP. We consider that θ and ψ are affected

by each other, and can be mutually enhanced. It is clear that ψ can be refined based on

θ, as the MDP reward R(s) is a function of θ. The problem is how to refine θ based on

ψ. We propose to use the results of the MDP to regulate the sample weights for learning

θ. Given a ψ and a training sequence Q, we can use the MDP to predict a sequence

of frequencies { f (1), ..., f (N)}, one for each data entity x(t). We assign a high weight to

g(x(t), f (t)) for learning θ, so that θ can put more emphasis on the instances sampled by

the chosen frequencies, which improves the classification accuracy. Thereafter, θ can be

refined based on ψ. We propose an alternate learning approach to optimize θ and ψ.

Suppose we have a set of training sequences {Q0, Q1, ..., Qn}. At the beginning, we use

6.2 Methodology 93

Q0 to learn an initial θ by:

min
θ

∑
(x,y)∈Q0

∑
f∈F
− log p(y | g(x, f) ; θ), (6.14)

where all the sampled data instances are considered equally. Given a sequence Q itera-

tively picked from {Q1, ..., Qn}, we fix θ, and extract a set of state-action pairs H from

Q based on Eq. 6.10. Each pair (s, a) ∈ H is used as an instance for learning the MDP,

thereby, the parameter ψ is optimized as:

min
ψ

∑
(s,a)∈H

− log p(a | s ; ψ). (6.15)

We then fix ψ, and use the MDP to predict Q, that a sequence of chosen frequencies { f (1),

..., f (N)} is obtained. Let µx, f be the weight of the instance g(x, f), and we optimize θ as:

min
θ

∑
(x,y)∈Q

∑
f∈F
−µx, f log p(y | g(x, f) ; θ), (6.16)

with µx, f = β, if x = x(t) and f = f (t),

µx, f = 1, otherwise,

where β > 1 is a predefined parameter for imposing the weight. Accordingly, we al-

ternately optimize θ and ψ until the training set has been iterated for L rounds. Before

concluding the entire DWFS learning algorithm, we first provide the algorithm for ob-

taining the state-action pairs set H. Based on the general framework of Eq. 6.10, we

iteratively calculate the optimal V∗(s, t) from t = N to 1. Then, for each t from t = 1

to N − 1, we collect K state-action pairs, where one pair is for one action and there are

K actions in total. Let x̃(t)k be the t-th instance x̃(t) sampled by the frequency fk that x̃(t)k

= g(x(t), fk). Let p(t)
k be the probabilities of x̃(t)k , and s(t)k = (φ(x̃(t)k), p(t)

k). We set the

transition probability function Psa(s′) as:

Psa(s′) =

1, s = s(t)k , a = ak′ , s′ = s(t+1)

k′ ,

0, otherwise.
(6.17)

94 Efficient Human Activity Recognition by Reducing Sensing Cost

Algorithm 7 DWFS Generate H

Input: A sequence of training entities Q = {(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))}
Output: A set of state-action pairs H

1: while t = N, N − 1, ..., 1 do
2: for k = 1, 2, ..., K do
3: x̃(t)k = g(x(t), fk)

4: s(t)k = (φ(x̃(t)k), p(t)
k)

5: if t == N then
6: V(s(t)k) = R(s(t)k)
7: else
8: V(s(t)k) = R(s(t)k) + max1≤k′≤K V(s(t+1)

k′)
9: end if

10: end for
11: end while
12: H = ∅
13: while t = 1, 2, ..., N − 1 do
14: for k = 1, 2, ..., K do
15: k′ = argmax1≤k′′≤KV(s(t+1)

k′′)

16: H = H
⋃{(s(t)k , ak′)}

17: end for
18: end while
19: return H

Algorithm 8 DWFS Learning
Input: A set of training sequences {Q0, Q1, ..., Qn}
Output: Parameters θ and ψ

1: Initialize θ, ψ
2: Learn θ by Eq. 6.14 using Q0
3: for l = 1, 2, ..., L do
4: for Q ∈ {Q1, ..., Qn} do
5: Fix θ, update ψ by Eq. 6.15 using Q
6: Fix ψ, update θ by Eq. 6.16 using Q
7: end for
8: end for
9: return θ, ψ

Therefore, the state s(t)k only transits to s(t+1)
k′ by taking the action ak′ , which indicates to

use fk′ for sampling the next entity x(t+1). The pseudocode of H generating algorithm

is provided in Algorithm 7. Up to now, we can conclude the DWFS learning algorithm,

where the pseudocode is provided in Algorithm 8.

6.2 Methodology 95

Algorithm 9 DWFS Inference

Input: A sequence of data entities x(1), x(2), ..., x(N) . N can be an arbitrary number or
infinity.

Output: A sequence of inferred labels ŷ(1), ŷ(2), ..., ŷ(N)

1: s(0) = 0
2: while t = 1, 2, ..., N do
3: a(t−1) = π∗(s(t−1))
4: Choose f (t) corresponding to a(t−1)

5: x̃(t) = g(x(t), f (t))
6: ŷ(t) = argmaxy p(y | x̃(t) ; θ∗)

7: s(t) = (φ(x̃(t)), p(t))
8: end while
9: return ŷ(1), ŷ(2), ..., ŷ(N)

DWFS Inference Algorithm

After learning the parameter θ∗ of the classification model and the parameter ψ∗ of the

policy function π∗(s), we can use the DWFS inference algorithm to select frequencies on

a testing sequence. We start at an initial state s(0) = 0. For an incoming data entity x(t),

we obtain the frequency via the policy as:

f (t) = a(t−1) = π∗(s(t−1)). (6.18)

We then change the sampling frequency of the sensor to f (t), and the sensor will sample

out an observed data instance x̃(t) = g(x(t); f (t)). We use the classification model with θ∗

to infer the activity label ŷ(t) for x̃(t):

ŷ(t) = argmax
y

p(y | x̃(t) ; θ∗). (6.19)

We obtain the current state as s(t) = (φ(x̃(t)), p(t)), which will be used to predict the fre-

quency for the next data entity x(t+1). We provide the pseudocode of the DWFS inference

algorithm in Algorithm 9. It is worth noting that the length N of the testing sequence can

be an arbitrary number or infinity, therefore, DWFS is capable to be applied in real-world

scenarios.

96 Efficient Human Activity Recognition by Reducing Sensing Cost

6.3 Empirical Evaluation

In this section, we evaluate the performance of DWFS in terms of recognition accuracy,

energy cost, and the Error-Cost Index as shown in Eq. 6.3. The experimental scripts are

written in Python 2.7 on a 64-bit Ubuntu 14.04 LTS operating system.

Datasets: We use 3-axis acceleration data of 3 real-world HAR datasets to evaluate the

performance of DWFS. 1) Human Activity Sensing Consortium dataset (HASC) [43]: The

data of 6 activities is collected at a sensing rate of 100Hz using iPhone and iPod Touch. 2)

Human Activity Recognition on Smartphones Dataset (HARSD) [5]: The data of 6 activities is

collected at a sensing rate of 50Hz using a Samsung Galaxy S II. 3) Daily Sport Activities

dataset (DSA) [11]: The data of 19 activities is collected at a sensing rate of 25Hz using

body-worn sensors (we only use the data collected by the sensor placed on a subject’s

torso).

Experiment Settings: Let D be a dataset that contains a number of time series, where

each one is collected independently from the other. Let Dy be the subset corresponding

to activity y, and we have D =
⋃

y∈Y Dy. For each subset Dy, we randomly split Dy into 5

approximately equal sized groups: Dy,1, Dy,2, ..., Dy,5, where the size of each group is be-

tween b|Dy|/5c and d|Dy|/5e. We conduct experiments based on 5-fold cross-validation:

e.g., for the first evaluation, the testing set is aggregated as
⋃

y∈Y Dy,1, and the training

set is aggregated by all the rest groups as
⋃

y∈Y (Dy,2
⋃Dy,3

⋃Dy,4
⋃Dy,5)1. The exper-

imental results are reported as the average results of the 5 folds. For each time series

data in the training set, we divide it into several 5 seconds time series segments without

overlapping, that each segment is considered as a data entity x paired with a label y. We

preserve the order of the segments to generate a sequence Q = {(x(1), y(1)), (x(2), y(2)),

..., (x(N), y(N))}. Accordingly, we obtain a set of training sequences. We randomly con-

catenate all the testing time series into one time series, and transform it into a testing

sequence following the same way of processing training data. For convenient descrip-

tions, we denote N as the length of the testing sequence in the rest of this section.

The frequencies F used for each dataset are set as follows: 1) HASC: 5Hz, 16Hz, 50Hz,

100Hz; 2) HARSD: 2Hz, 5Hz, 16Hz, 50Hz; 3) DSA: 2Hz, 5Hz, 16Hz, 25Hz. The highest

1This cross-validation setting avoids the issue reported in [34] that training and testing data could be
highly similar by traditional data splitting ways.

6.3 Empirical Evaluation 97

frequency in F is the frequency used to collect the dataset. Given F = { f1, f2, ..., fK}, for

each frequency fk ∈ F, the corresponding energy cost is set as c fk = fk/ fK, so that c fk is

normalized in the range of (0, 1]. The normalization of c fk ensures that a misclassification

or a usage of the highest frequency for a data entity incur the same loss when λ = 1.0.

The feature representation φ(x̃) is set as Fourier coefficients extracted from x̃, where the

coefficients are the intensities of the frequencies from 0Hz to 2Hz (step-size of 0.1Hz).

The activity classification model takes φ(x̃) as input. The iteration round L for training is

set to 5.

Settings of DWFS: We use softmax regression as the classification model of DWFS, thus

the parameter θ is an m× (d + 1) matrix including intercepts, and we optimize θ itera-

tively by Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. We model the parameter

ψ as a K× (d + m) matrix, that ψk(s) = ψk · s, and we optimize ψ iteratively via BFGS as

well. We set the parameter β = 1.2, which is used to impose instance weight.

Settings of Baselines: We test 6 baseline methods in comparison with DWFS. The last

two baselines are the variants of DWFS, where we test two different learning approaches

instead of alternate learning. The settings of the baselines are as follows:

1 Constant sampling frequency: We use constant frequency to sample data. For each

frequency fk ∈ F, we train and test a classification model with the data sampled by

fk. Therefore, we report K results for this method.

2 Random: We randomly choose sampling frequencies for this method.

3 MDP-DS: We implement a discrete state MDP which takes the inferred activity label

of the most recent instance as the state of MDP. The actions of the MDP is the next

frequency to choose.

4 RNN: We implement a Recurrent Neural Network (RNN) based method to choose

sampling frequency, where the architecture of the RNN consists of an LSTM layer

with 32-dim output, a dense layer with K-dim output, and a softmax layer.

5 DWFS-SL (Separate Learning): We first learn θ on the entire training data, and learn

ψ based on θ, that there is no dependence of θ on ψ.

6 DWFS-CVL (Cross-Validation Learning): We learn θ on the entire training data,

98 Efficient Human Activity Recognition by Reducing Sensing Cost

HASC
f 100Hz 50Hz 16Hz 5Hz

Accuracy 88.79 (± 1.84) 88.20 (± 2.10) 84.92 (± 2.93) 71.46 (± 2.78)
Energy 327.42 J/h 81.20 J/h 51.16 J/h 10.62 J/h

HARSD
f 50Hz 16Hz 5Hz 2Hz

Accuracy 81.59 (± 2.21) 81.65 (± 2.32) 78.33 (± 2.56) 73.70 (± 2.82)
Energy 81.20 J/h 51.16 J/h 10.62 J/h 3.01 J/h

DSA
f 25Hz 16Hz 5Hz 2Hz

Accuracy 77.33 (± 3.63) 76.18 (± 4.33) 72.49 (± 3.39) 63.57 (± 3.79)
Energy 55.45 J/h 51.16 J/h 10.62 J/h 3.01 J/h

Table 6.1: Recognition Accuracy versus Energy Cost (Accelerometer). The unit of the
energy cost values is Joule per hour (J/h).

and learn ψ via 4-fold cross-validation on the training data, where 3/4 of the data

is used to learn a temporal θ̃, and ψ is iteratively learned based on θ̃ of each fold.

6.3.1 Recognition Accuracy versus Energy Cost

We study the recognition accuracy and the energy cost using different sampling frequen-

cies, where an accelerometer is utilized as the sensor. Given a dataset, we train K clas-

sifiers, one for each frequency in F, where the k-th classifier is trained with the data in-

stances sampled using the k-th frequency. The recognition accuracy of each classifier is

calculated as:
#{correct inference}

N
, (6.20)

where #{correct inference} represents the number of correct inferences. The energy cost

of each frequency is derived from the work [73], where the authors provided a compre-

hensive list of energy consumptions regarding accelerometer sampling rates. According

to the results shown in Table 6.1, one can generally obtain a better recognition accuracy

with a higher sampling frequency, however, this will also bring more energy expendi-

tures. Therefore, learning dynamic sampling frequency that finds a balanced perfor-

mance between accuracy and cost is important for HAR on resource constrained mobile

platforms.

6.3 Empirical Evaluation 99

6.3.2 Evaluating the Performance of DWFS

We compare the performance of DWFS to the 6 baselines regarding the Error-Cost Index

shown in Eq. 6.3. We test the methods with various settings of λ from 0.0 to 1.0. For easy

comparison, the final testing results of the Error-Cost Indexes are multiplied by 100
N . The

results on datasets: HASC, HARSD, and DSA, are shown in Table 6.2, 6.3, and 6.4, respec-

tively. The proposed DWFS outperforms than other methods for most of the settings of λ

from 0.1 to 1.0 (step of 0.1). For λ = 0, DWFS fails to outperform the method of using the

highest frequency. Since the energy cost is not considered when λ = 0, always choosing

the highest frequency will obtain the best expected performance. Due to the empirical

uncertainty, DWFS cannot always choose the best frequency in testing, therefore, it is de-

feated by the constant sampling scheme for the case of λ = 0. To statistically compare the

performance of DWFS with the baselines, we conduct the Wilcoxon signed-ranked test

on the results of the 3 datasets. The returned R+ and R− correspond to the sum of the

ranks of the differences above and below zero, respectively. The returned p-value repre-

sents the lowest level of significance of a hypothesis that results in rejection. This value

allows one to determine whether two methods have significantly different performances.

According to the results shown in Table 6.5, the p-values in comparisons of DWFS with

Random, MDP-DS, RNN, and DWFS-CVL, reject the null hypotheses for the Error-Cost

Index with a level of significance of α = 0.05 on all the datasets. The p-values in compar-

isons of DWFS with DWFS-SL, reject the null hypotheses for the Error-Cost Index with a

level of significance of α = 0.05 on HARSD and DSA datasets.

6.3.3 Insight Study of DWFS

We further investigate DWFS regarding 4 relationships: 1) classification error and λ; 2)

energy cost and λ; 3) classification error and energy cost; 4) frequency changing rate and

λ. The frequency changing rate is defined as:

#{frequency changes}
N

, (6.21)

which can be used to reveal the effectiveness of DWFS. According to the results shown

in Figure 6.2a, 6.2b, and 6.2c, the classification error continuously increases, and the en-

100 Efficient Human Activity Recognition by Reducing Sensing Cost

ergy cost continuously decreases with respect to λ, due to the imposed penalty on the

energy cost causing sampling frequencies are dynamically reduced. According to the re-

sults shown in Figure 6.2d, there is no significant pattern between frequency changing

rate and λ, but we can observe that DWFS maintains an approximately stable changing

rate between 0.1 and 0.3, which demonstrates the robustness of DWFS in terms of λ. In

real-life scenarios, the chosen of λ depends on the requirement of energy-efficiency. In

the case that accuracy is critical but energy reservation is substantial, a lower λ is rec-

ommended. In the case that accuracy is not critical but energy consumption is highly

constrained, then a higher λ is recommended. For different applications, the value of

λ should be determined differently. DWFS mainly provides a general framework of us-

ing λ to balance accuracy and energy-efficiency, while the practical usage of the model

requires further studies.

HASC Dataset

Method λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

100Hz 11.21(±1.84) 21.21(±1.84) 31.21(±1.84) 41.21(±1.84) 51.21(±1.84) 61.21(±1.84)

50Hz 11.80(±2.10) 16.80(±2.10) 21.80(±2.10) 26.80(±2.10) 31.80(±2.10) 36.80(±2.10)

16Hz 15.08(±2.93) 16.68(±2.93) 18.28(±2.93) 19.88(±2.93) 21.48(±2.93) 23.08(±2.93)

5Hz 28.54(±2.78) 29.04(±2.78) 29.54(±2.78) 30.04(±2.78) 30.54(±2.78) 31.04(±2.78)

Random 16.54(±2.15) 21.14(±2.14) 25.74(±2.12) 30.34(±2.11) 34.94(±2.09) 39.54(±2.08)

MDP-DS 13.88(±2.26) 18.85(±3.25) 21.83(±4.07) 23.52(±3.66) 25.14(±3.84) 26.40(±3.49)

RNN 12.01(±2.32) 16.74(±3.42) 18.39(±2.96) 20.01(±2.47) 21.32(±3.07) 23.12(±3.42)

DWFS-CVL 12.22(±1.71) 18.12(±3.04) 19.88(±3.31) 21.16(±3.07) 22.73(±2.87) 23.72(±2.66)

DWFS-SL 11.54(±2.21) 16.30(±2.58) 18.31(±3.03) 19.29(±2.94) 21.08(±3.45) 22.51(±3.63)

DWFS 12.07(±2.91) 16.24(±2.67) 17.83(±3.01) 19.54(±2.67) 20.87(±3.69) 22.27(±3.44)

λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

100Hz 71.21(±1.84) 81.21(±1.84) 91.21(±1.84) 101.21(±1.84) 111.21(±1.84)

50Hz 41.80(±2.10) 46.80(±2.10) 51.80(±2.10) 56.80(±2.10) 61.80(±2.10)

16Hz 24.68(±2.93) 26.28(±2.93) 27.88(±2.93) 29.48(±2.93) 31.08(±2.93)

5Hz 31.54(±2.78) 32.04(±2.78) 32.54(±2.78) 33.04(±2.78) 33.54(±2.78)

Random 44.14(±2.06) 48.74(±2.05) 53.34(±2.04) 57.94(±2.03) 62.54(±2.02)

MDP-DS 27.91(±3.92) 29.39(±3.90) 30.81(±3.92) 32.09(±3.86) 33.23(±3.88)

RNN 24.81(±3.62) 26.38(±3.08) 27.47(±3.35) 28.32(±3.45) 29.87(±2.78)

DWFS-CVL 25.61(±2.34) 27.01(±2.44) 28.33(±1.84) 29.00(±2.20) 30.45(±2.03)

DWFS-SL 23.56(±3.62) 25.56(±3.81) 26.57(±4.06) 27.74(±3.39) 29.01(±3.41)

DWFS 24.17(±3.70) 25.67(±3.10) 26.10(±3.26) 27.38(±3.35) 28.87(±3.12)

Table 6.2: The Error-Cost Index with respect to λ on HASC dataset.

6.4 Conclusion & Discussion 101

HARSD Dataset

Method λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

50Hz 18.41(±2.21) 28.41(±2.21) 38.41(±2.21) 48.41(±2.21) 58.41(±2.21) 68.41(±2.21)

16Hz 18.35(±2.32) 21.55(±2.32) 24.75(±2.32) 27.95(±2.32) 31.15(±2.32) 34.35(±2.32)

5Hz 21.67(±2.56) 22.67(±2.56) 23.67(±2.56) 24.67(±2.56) 25.67(±2.56) 26.67(±2.56)

2Hz 26.30(±2.82) 26.70(±2.82) 27.10(±2.82) 27.50(±2.82) 27.90(±2.82) 28.30(±2.82)

Random 20.16(±2.93) 24.12(±2.93) 28.09(±2.92) 32.05(±2.92) 36.01(±2.92) 39.97(±2.92)

MDP-DS 19.91(±2.16) 22.85(±2.10) 24.45(±2.06) 25.17(±2.18) 26.06(±2.52) 26.87(±2.48)

RNN 18.97(±2.41) 22.77(±2.22) 24.45(±2.51) 25.23(±2.71) 25.48(±3.06) 25.99(±2.94)

DWFS-CVL 18.86(±2.49) 21.50(±1.91) 23.34(±2.09) 25.15(±2.85) 25.66(±3.13) 26.56(±2.99)

DWFS-SL 19.33(±2.47) 22.60(±2.71) 23.44(±2.40) 24.99(±2.66) 25.86(±2.58) 26.44(±2.49)

DWFS 18.52(±1.76) 22.19(±2.45) 23.29(±1.93) 23.41(±2.10) 24.33(±2.95) 25.37(±2.26)

λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

50Hz 78.41(±2.21) 88.41(±2.21) 98.41(±2.21) 108.41(±2.21) 118.41(±2.21)

16Hz 37.55(±2.32) 40.75(±2.32) 43.95(±2.32) 47.15(±2.32) 50.35(±2.32)

5Hz 27.67(±2.56) 28.67(±2.56) 29.67(±2.56) 30.67(±2.56) 31.67(±2.56)

2Hz 28.70(±2.82) 29.10(±2.82) 29.50(±2.82) 29.90(±2.82) 30.30(±2.82)

Random 43.93(±2.92) 47.90(±2.92) 51.86(±2.92) 55.82(±2.92) 59.78(±2.92)

MDP-DS 27.57(±2.60) 28.44(±2.78) 29.27(±2.86) 30.07(±2.87) 31.19(±2.80)

RNN 26.70(±2.76) 27.68(±2.59) 28.73(±3.37) 29.58(±2.61) 30.57(±2.75)

DWFS-CVL 27.71(±3.09) 28.43(±3.07) 28.67(±2.75) 29.15(±3.05) 30.57(±3.01)

DWFS-SL 27.01(±2.66) 27.85(±2.61) 28.64(±2.49) 29.05(±2.31) 30.00(±3.03)

DWFS 26.67(±3.11) 27.20(±2.94) 27.19(±2.37) 27.95(±2.58) 29.53(±2.49)

Table 6.3: The Error-Cost Index with respect to λ on HARSD dataset.

6.4 Conclusion & Discussion

In this chapter, we addressed an emergent problem of Human Activity Recognition (HAR)

on mobile/wearable platforms, which is adaptively determining sampling frequencies to

balance recognition accuracy and energy-efficiency. We formalized the problem as min-

imizing an objective function regarding classification error and energy cost, by finding

an optimal classification model and dynamically appropriate sampling rates. We pro-

posed Datum-Wise Frequency Selection (DWFS) to solve the problem via a continuous

state Markov Decision Process (MDP). The MDP learns a policy function that selects the

best frequency for sampling an incoming data entity by exploiting the information of

previously sampled instances. We proposed an alternate learning method, where the pa-

rameters of the classification model and the policy function are mutually enhanced. We

102 Efficient Human Activity Recognition by Reducing Sensing Cost

DSA Dataset

Method λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

25Hz 22.67(±3.63) 32.67(±3.63) 42.67(±3.63) 52.67(±3.63) 62.67(±3.63) 72.67(±3.63)

10Hz 23.82(±4.33) 27.82(±4.33) 31.82(±4.33) 35.82(±4.33) 39.82(±4.33) 43.82(±4.33)

5Hz 27.51(±3.39) 29.51(±3.39) 31.51(±3.39) 33.51(±3.39) 35.51(±3.39) 37.51(±3.39)

2Hz 36.43(±3.79) 37.23(±3.79) 38.03(±3.79) 38.83(±3.79) 39.63(±3.79) 40.43(±3.79)

Random 30.26(±3.46) 34.55(±3.46) 38.85(±3.46) 43.14(±3.46) 47.43(±3.46) 51.72(±3.46)

MDP-DS 24.78(±3.85) 29.19(±3.86) 31.72(±3.94) 33.97(±3.72) 35.98(±3.62) 37.91(±3.56)

RNN 23.26(±3.60) 29.04(±3.81) 31.15(±3.61) 32.53(±3.97) 33.93(±3.63) 35.29(±3.89)

DWFS-CVL 26.04(±3.84) 29.94(±3.21) 32.16(±2.97) 34.05(±3.06) 35.89(±3.15) 37.35(±3.42)

DWFS-SL 23.53(±3.88) 27.66(±3.69) 29.78(±3.63) 31.74(±3.38) 33.45(±3.52) 34.89(±3.39)

DWFS 23.50(±3.77) 27.30(±3.25) 29.58(±3.06) 31.15(±3.29) 33.29(±2.78) 34.87(±2.90)

λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

25Hz 82.67(±3.63) 92.67(±3.63) 102.67(±3.63) 112.67(±3.63) 122.67(±3.63)

10Hz 47.82(±4.33) 51.82(±4.33) 55.82(±4.33) 59.82(±4.33) 63.82(±4.33)

5Hz 39.51(±3.39) 41.51(±3.39) 43.51(±3.39) 45.51(±3.39) 47.51(±3.39)

2Hz 41.23(±3.79) 42.03(±3.79) 42.83(±3.79) 43.63(±3.79) 44.43(±3.79)

Random 56.01(±3.46) 60.30(±3.46) 64.60(±3.46) 68.89(±3.46) 73.18(±3.46)

MDP-DS 39.79(±3.56) 41.46(±3.51) 43.00(±3.51) 44.54(±3.45) 45.86(±3.48)

RNN 36.58(±3.45) 38.27(±3.99) 39.40(±3.40) 40.53(±3.37) 42.19(±4.00)

DWFS-CVL 38.79(±3.29) 40.25(±3.50) 41.82(±3.37) 42.70(±3.29) 44.21(±3.49)

DWFS-SL 36.54(±3.42) 37.84(±3.59) 39.04(±3.46) 40.18(±3.50) 41.64(±3.45)

DWFS 36.14(±3.23) 37.40(±3.28) 38.96(±3.26) 39.92(±3.44) 41.41(±3.30)

Table 6.4: The Error-Cost Index with respect to λ on DSA dataset.

DWFS vs. Random DWFS vs. MDP-DS DWFS vs. RNN
Dataset R+ R− p-value R+ R− p-value R+ R− p-value
HASC 0.0 1540.0 0.000000 2.0 1538.0 0.000000 288.0 1252.0 0.000054

HARSD 9.0 1531.0 0.000000 110.0 1430.0 0.000000 398.0 1142.0 0.001828
DSA 0.0 1540.0 0.000000 1.0 1539.0 0.000000 166.0 1374.0 0.000000

DWFS vs. MDP-CVL DWFS vs. DWFS-SL
Dataset R+ R− p-value R+ R− p-value
HASC 112.0 1428.0 0.000000 744.5 740.5 0.986261

HARSD 323.0 1162.0 0.000304 212.0 1273.0 0.000005
DSA 0.0 1540.0 0.000000 437.0 1103.0 0.005270

Table 6.5: The Wilcoxon test to compare the Error-Cost Indexes of DWFS, DWFS-CVL,
DWFS-SL, RNN, MDP-DS, and Random regarding R+, R−, and p-values.

evaluated the performance of DWFS on 3 real-world HAR datasets, and the results show

that DWFS statistically outperforms the state-of-the-arts regarding a combined measure-

6.4 Conclusion & Discussion 103

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

λ

Classification Error

DSAHARSDHASC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

λ

Energy Cost
DSAHARSDHASC

(b)

0.0 0.2 0.4 0.6 0.8
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Energy Cost

Classification Error

DSAHARSDHASC

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

λ

Frequency Changing Rate
DSAHARSDHASC

(d)

Figure 6.2: The 4 relationships on HASC, HARSD, and DSA datasets. (a) Classification
error with respect to λ. (b) Energy cost with respect to λ. (c) Classification error with
respect to energy cost. (d) Frequency changing rate with respect to λ.

ment of classification error and energy cost.

Compared with practical methods which use heuristically designed strategies for sav-

ing energy, DWFS learns the strategies from data. Before deployment on real devices, the

model of DWFS should be trained with proper settings of two important parameters.

The first parameter is the energy costs c f regarding frequencies, which are dependent on

devices. Given a device, real costs should be examined with respect to the supported

frequencies. Then, c f can be configured based on these real costs. The second parameter

is λ, i.e., the weight balancing classification error and cost. λ should be predefined based

on efficiency requirements. Tunning λ is a tedious task, since it need repeated training

104 Efficient Human Activity Recognition by Reducing Sensing Cost

and testing until the desired trade-off performance is achieved. Accordingly, a future

study of automatic parameter determining can be conducted to enhance the practicality

of DWFS on real devices.

Chapter 7

Conclusion & Future Research

In this chapter, we conclude our key findings and highlight our main research outcomes. We

also include the future directions regarding the topic of accurate and efficient Human Activity

Recognition.

7.1 Summary of Contributions

In this thesis, we focused on improving the performance of Human Activity Recognition

(HAR) on both accuracy and efficiency. We first devised accurate HAR methods, then

we improved the energy-efficiency of HAR while preserving high recognition accuracy.

In particular, we studied 3 problems: 1) improving the accuracy of recognizing the cur-

rent activity during activity transitions; 2) improving the accuracy of predicting complex

activities from ongoing observations; 3) improving energy-efficiency of HAR while pre-

serving prominent accuracy.

Chapter 3 studies the problem of accurately recognizing the current activity dur-

ing activity transitions. We proposed Weighted Min-max Activity Recognition Model

(WMARM), which identifies the current activity by optimally partitioning an observed

window of time series matching the activities taking place. WMARM considers weights

on the partitioned segments to obtain reliable recognition accuracy. WMARM can also

effectively handle the time series containing an arbitrary number of transitions without

any prior knowledge about the number of transitions. Instead of exhaustively searching

the optimal solution of WMARM in exponential space, we proposed an efficient dynamic

programming algorithm that computes the model in O(n2) time complexity, where n is

the length of the time series. Moreover, we presented an efficient implementation of

105

106 Conclusion & Future Research

WMARM that the computational cost can be further reduced. Extensive experiments on

5 real HAR datasets have demonstrated the superior performance of WMARM on han-

dling time series with one or more activity transitions. The results show about 10%-30%

improvement on the accuracy of current activity recognition compared with state-of-the-

art methods. The experiment on smartphones shows the prominent computational effi-

ciency of WMARM.

Chapter 4 studies the problem of accurately predicting complex activities from on-

going multivariate time series (MTS). We proposed Simultaneous Complex Activities

Recognition and Action Sequence Discovering (SimRAD) which predicts the complex ac-

tivity over time by finding a sequence of multivariate actions from sensor MTS data using

a Deep Neural Network. SimRAD learns two probabilistic models for inferring complex

activities and action sequences, where the estimations of the two models are condition-

ally dependent on each other. SimRAD alternately predicts the complex activity and the

action sequence with the two models, thus the predictions can be mutually updated until

the completion of the complex activity. We evaluated SimRAD on a real-world complex

activity dataset of a rich amount of sensor data. The results demonstrate that SimRAD

outperforms state-of-the-art methods by average 7.2% in prediction accuracy with very

high confidence.

Chapter 5 studies the problem of improving energy-efficiency of HAR by reducing

computational cost on activity inference. We attempted to improve the subsequence en-

semble models which use multiple feature representations based on subsequences of time

series that cause heavy computations. We formalized a dynamic subsequence selection

problem that minimizes the expected computations while persevering a high recognition

accuracy. To solve this problem, we proposed Markov Dynamic Subsequence Ensem-

ble (MDSE), an algorithm for the selection of the subsequences with a Markov Decision

Process (MDP). The MDP learns a policy for choosing the best subsequence given the

state of prediction. Regarding the expected ensemble size of MDSE, we derived an up-

per bound so that the energy consumption caused by the computations of the proposed

method is guaranteed. We conducted extensive experiments on 6 real HAR datasets to

evaluate the effectiveness of MDSE. Compared with the state-of-the-art methods, MDSE

reduces 70.8% computational cost which is 3.42 times more energy efficient, and achieves

7.2 Future Research 107

a comparably high accuracy.

Chapter 6 studies the problem of improving energy-efficiency of HAR by reducing

sensing cost on sampling incoming data points. We attempted to dynamically select sam-

pling frequencies by directly exploiting sensor data. We formalized a problem of mini-

mizing an objective function regarding classification error and sensing cost, by finding

an optimal classification model and dynamically appropriate sampling rates. To address

this problem, we proposed Datum-Wise Frequency Selection (DWFS) which utilizes a

continuous state MDP. The MDP learns a policy function that selects the best frequency

for sampling an incoming data entity by utilizing previously sampled data. We proposed

an alternate learning scheme, where the parameters of the classification model and the

policy function are mutually enhanced. We evaluated the performance of DWFS on 3

real-world HAR datasets, and the results show that DWFS statistically outperforms the

state-of-the-art methods regarding a combined measurement of classification error and

energy cost.

7.2 Future Research

There are many future research directions that can be carried out regarding the topic of

accurate and efficient HAR. We briefly discuss three attractive directions as follows:

• The new generation of smartphones is equipped with a variety of advanced sen-

sors, such as accelerometer, gyroscope, barometer, etc. Existing studies have shown

that many sensors can be used for HAR, and each of the sensors is advanced on rec-

ognizing a number of activities with a level of energy consumption. For example,

an accelerometer can be used to accurately recognize running, walking, stationary

with medium energy consumption, a barometer can be used to accurately recog-

nize ‘up climbing’ and ‘down climbing’ with low energy consumption, and a GPS

can be used to accurately recognize driving, running, and stationary with high en-

ergy consumption. Suppose there is a set of activities to recognize, a future study

is to find a model that can manage the usage of the available sensors to maximize

the accuracy on all the activities and minimize the total energy consumption, or to

maximize the accuracy given a certain energy budget.

108 Conclusion & Future Research

• Deep Neural Network (DNN) has delivered prominent performance in recogni-

tion of natural images, natural speech, natural language corpora, etc, and also has

demonstrated great potential in HAR. However, the complex structure of DNN lim-

its its applications in real life. As one forward computing of DNN involves several

matrix multiplications regarding its depth, the inference computations of DNN can

be a lot greater than the linear models. Real-time HAR requires computational-

efficient models which can perform fast inference, and also save energy cost on

portable devices. Therefore, a future problem is to improve the computational-

efficiency of DNN. This problem can be potentially addressed by reducing the

depth and seeking sparsity of DNN layers. However, a further investigation is

required for maximizing the DNN accuracy while minimizing the number of com-

putations.

• Note that state-of-the-art HAR methods are based on supervised learning, thus data

annotation is an essential step for preparing a training dataset. However, data an-

notation requires significant human effort, especially for the data of inertial sensor

where the time series patterns are hard to be manually located and distinguished.

Therefore, a future problem is to improve training efficiency of HAR methods by

reducing the annotation effort. This problem can be potentially addressed by semi-

supervised or weakly supervised learning schemes, where the training data is par-

tially annotated. However, a further investigation is required for maximizing the

model accuracy while minimizing the required number of annotated data.

Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn.

Applying convolutional neural networks concepts to hybrid nn-hmm model for

speech recognition. In Proceedings of International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 4277–4280, 2012.

[2] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3):175–185, 1992.

[3] Hyrum S Anderson, Nathan Parrish, Kristi Tsukida, and Maya R Gupta. Reliable

early classification of time series. In Proceedings of International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 2073–2076, 2012.

[4] Ian Anderson, Julie Maitland, Scott Sherwood, Louise Barkhuus, Matthew

Chalmers, Malcolm Hall, Barry Brown, and Henk Muller. Shakra: tracking and

sharing daily activity levels with unaugmented mobile phones. Mobile Networks

and Applications, 12(2-3):185–199, 2007.

[5] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-

Ortiz. A public domain dataset for human activity recognition using smartphones.

In Proceedings of European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning (ESANN), 2013.

[6] Louis Atallah, Benny Lo, Rachel King, and Guang-Zhong Yang. Sensor position-

ing for activity recognition using wearable accelerometers. IEEE Transactions on

Biomedical Circuits and Systems, 5(4):320–329, 2011.

[7] Marc Bachlin, Daniel Roggen, Gerhard Troster, Meir Plotnik, Noit Inbar, Inbal Mei-

dan, Talia Herman, Marina Brozgol, Eliya Shaviv, Nir Giladi, et al. Potentials of en-

109

110 BIBLIOGRAPHY

hanced context awareness in wearable assistants for parkinson’s disease patients

with the freezing of gait syndrome. In Proceedings of International Symposium on

Wearable Computers (ISWC), pages 123–130, 2009.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-

tion by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[9] Oresti Banos, Juan-Manuel Galvez, Miguel Damas, Alberto Guillen, Luis-Javier

Herrera, Hector Pomares, Ignacio Rojas, Claudia Villalonga, Choong Seon Hong,

and Sungyoung Lee. Multiwindow Fusion for Wearable Activity Recognition, pages

290–297. Springer, 2015.

[10] Ling Bao and Stephen S. Intille. Activity recognition from user-annotated accelera-

tion data. In Proceedings of International Conference on Pervasive Computing (PerCom),

pages 1–17, 2004.

[11] Billur Barshan and Murat Cihan Yüksek. Recognizing daily and sports activities

in two open source machine learning environments using body-worn sensor units.

The Computer Journal, 28:bxt075, 2014.

[12] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions

of finite state markov chains. The annals of mathematical statistics, 37(6):1554–1563,

1966.

[13] Richard Bellman. A markovian decision process. Journal of Mathematics and Me-

chanics, pages 679–684, 1957.

[14] Richard Bellman. On the approximation of curves by line segments using dynamic

programming. Communications of the ACM, 4(6):284, 1961.

[15] Preeti Bhargava, Nick Gramsky, and Ashok Agrawala. Senseme: a system for con-

tinuous, on-device, and multi-dimensional context and activity recognition. In Pro-

ceedings of International Conference on Mobile and Ubiquitous Systems: Computing, Net-

working and Services (MobiQuitous), pages 40–49, 2014.

BIBLIOGRAPHY 111

[16] Sourav Bhattacharya and Nicholas D. Lane. Sparsification and separation of deep

learning layers for constrained resource inference on wearables. In Proceedings of

Conference on Embedded Networked Sensor Systems (SenSys), pages 176–189, 2016.

[17] Andreas Bloch, Robert Erdin, Sonja Meyer, Thomas Keller, and Alexandre

de Spindler. Battery-efficient transportation mode detection on mobile devices. In

Proceedings of International Conference on Mobile Data Management (MDM), volume 1,

pages 185–190, 2015.

[18] Aaron F Bobick. Movement, activity and action: the role of knowledge in the per-

ception of motion. Philosophical Transactions of the Royal Society of London. Series B:

Biological Sciences, 352(1358):1257–1265, 1997.

[19] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[20] Pierluigi Casale, Oriol Pujol, and Petia Radeva. Personalization and user verifi-

cation in wearable systems using biometric walking patterns. Personal Ubiquitous

Comput., 16(5):563–580, 2012.

[21] M Bishop Christopher. Pattern Recognition and Machine Learning. Springer, 2006.

[22] Asma Dachraoui, Alexis Bondu, and Antoine Cornuéjols. Early classification of

time series as a non myopic sequential decision making problem. In Proceedings

of European Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECML-PKDD), pages 433–447, 2015.

[23] Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian

classifier under zero-one loss. Machine learning, 29(2-3):103–130, 1997.

[24] Xiuyi Fan, Huiguo Zhang, Cyril Leung, and Chunyan Miao. Comparative study of

machine learning algorithms for activity recognition with data sequence in home-

like environment. In Proceedings of International Conference on Multisensor Fusion and

Integration for Intelligent Systems (MFI), pages 168–173, 2016.

[25] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regres-

sion: a statistical view of boosting (with discussion and a rejoinder by the authors).

The Annals of Statistics, 28(2):337–407, 2000.

112 BIBLIOGRAPHY

[26] Hans W Gellersen, Albercht Schmidt, and Michael Beigl. Multi-sensor context-

awareness in mobile devices and smart artifacts. Mobile Networks and Applications,

7(5):341–351, 2002.

[27] Mohamed F Ghalwash and Zoran Obradovic. Early classification of multivariate

temporal observations by extraction of interpretable shapelets. BMC bioinformatics,

13(1):195, 2012.

[28] Dawud Gordon, Jurgen Czerny, Takashi Miyaki, and Michael Beigl. Energy-

efficient activity recognition using prediction. In Proceedings of International Sym-

posium on Wearable Computers (ISWC), pages 29–36, 2012.

[29] Geoffrey J Gordon. Stable function approximation in dynamic programming. In

Machine Learning Proceedings 1995, pages 261–268. Elsevier, 1995.

[30] Tao Gu, Liang Wang, Zhanqing Wu, Xianping Tao, and Jian Lu. A pattern mining

approach to sensor-based human activity recognition. Transactions on Knowledge

and Data Engineering (TKDE), 23(9):1359–1372, 2011.

[31] Xinze Guan, Raviv Raich, and Weng-Keen Wong. Efficient multi-instance learn-

ing for activity recognition from time series data using an auto-regressive hidden

markov model. In Proceedings of International Conference on Machine Learning (ICML),

pages 2330–2339, 2016.

[32] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H Witten. The weka data mining software: an update. SigKDD Explorations

Newsletter, 11(1):10–18, 2009.

[33] Nils Y. Hammerla, Shane Halloran, and Thomas Plötz. Deep, convolutional, and

recurrent models for human activity recognition using wearables. In Proceedings of

International Joint Conference on Aritficial Intelligence (IJCAI), pages 1533–1540, 2016.

[34] Nils Y. Hammerla and Thomas Plötz. Let’s (not) stick together: Pairwise similarity

biases cross-validation in activity recognition. In Proceedings of International Confer-

ence on Ubiquitous Computing (UbiComp), pages 1041–1051, 2015.

BIBLIOGRAPHY 113

[35] Yi He, Ye Li, and Shu-Di Bao. Fall detection by built-in tri-accelerometer of smart-

phone. In Proceedings of International Conference on Biomedical and Health Informatics

(BHI), pages 184–187, 2012.

[36] Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. Accelerometer-based trans-

portation mode detection on smartphones. In Proceedings of Conference on Embedded

Networked Sensor Systems (SenSys), page 13, 2013.

[37] Johan Himberg, Kalle Korpiaho, Heikki Mannila, Johanna Tikanmaki, and

Hannu TT Toivonen. Time series segmentation for context recognition in mobile

devices. In Proceedings of International Conference on Data Mining (ICDM), pages

203–210, 2001.

[38] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. Signal Processing Magazine, 29(6):82–97,

2012.

[39] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301):13–30, 1963.

[40] Frank Höppner. Discovery of temporal patterns. In Proceedings of Principles and

Practice of Knowledge Discovery in Databases (PKDD), pages 192–203, 2001.

[41] Brad Jackson, Jeffrey D Scargle, David Barnes, Sundararajan Arabhi, Alina Alt,

Peter Gioumousis, Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and

Tun Tao Tsai. An algorithm for optimal partitioning of data on an interval. Signal

Processing Letters, 12(2):105–108, 2005.

[42] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Hyonik Lee, Youngki Lee, Souneil

Park, Taiwoo Park, and Junehwa Song. Seemon: Scalable and energy-efficient con-

text monitoring framework for sensor-rich mobile environments. In Proceedings of

International Conference on Mobile Systems, Applications, and Services (MobiSys), pages

267–280, 2008.

114 BIBLIOGRAPHY

[43] Nobuo Kawaguchi, Ying Yang, Tianhui Yang, Nobuhiro Ogawa, Yohei Iwasaki,

Katsuhiko Kaji, Tsutomu Terada, Kazuya Murao, Sozo Inoue, Yoshihiro Kawahara,

Yasuyuki Sumi, and Nobuhiko Nishio. Hasc2011corpus: Towards the common

ground of human activity recognition. In Proceedings of International Conference on

Ubiquitous Computing (UbiComp), pages 571–572, 2011.

[44] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting time

series: A survey and novel approach. Data mining in Time Series Databases, 57:1–22,

2004.

[45] Adil Mehmood Khan, Young-Koo Lee, Sungyoung Y Lee, and Tae-Seong Kim.

A triaxial accelerometer-based physical-activity recognition via augmented-signal

features and a hierarchical recognizer. Transactions on Information Technology in

Biomedicine, 14(5):1166–1172, 2010.

[46] Aftab Khan, Nils Hammerla, Sebastian Mellor, and Thomas Plötz. Optimising sam-

pling rates for accelerometer-based human activity recognition. Pattern Recognition

Letters, 73:33–40, 2016.

[47] Rebecca Killick, Paul Fearnhead, and IA Eckley. Optimal detection of change-

points with a linear computational cost. Journal of the American Statistical Associ-

ation, 107(500):1590–1598, 2012.

[48] Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Kleinberg. Near-

optimal sensor placements: Maximizing information while minimizing communi-

cation cost. In Proceedings of Information Processing in Sensor Networks (IPSN), 2006.

[49] Andreas Krause, Matthias Ihmig, Edward Rankin, Derek Leong, Smriti Gupta,

Daniel Siewiorek, Asim Smailagic, Michael Deisher, and Uttam Sengupta. Trad-

ing off prediction accuracy and power consumption for context-aware wearable

computing. In Proceedings of International Symposium on Wearable Computers (ISWC),

pages 20–26, 2005.

[50] Narayanan C Krishnan and Diane J Cook. Activity recognition on streaming sensor

data. Pervasive and Mobile Computing, 10:138–154, 2014.

BIBLIOGRAPHY 115

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Proceedings of Conference on Advances

in Neural Information Processing Systems (NIPS), pages 1097–1105, 2012.

[52] John Krumm and Eric Horvitz. Locadio: Inferring motion and location from wi-fi

signal strengths. In Proceedings of International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services (MobiQuitous), pages 4–13, 2004.

[53] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity recognition

using cell phone accelerometers. SigKDD Explorations Newsletter, 12(2):74, 2011.

[54] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436, 2015.

[55] Jonathan Lester, Tanzeem Choudhury, Nicky Kern, Gaetano Borriello, and Blake

Hannaford. A hybrid discriminative/generative approach for modeling human

activities. In Proceedings of International Joint Conference on Artificial Intelligence (IJ-

CAI), volume 5, pages 766–772, 2005.

[56] Bruce Levin. A representation for multinomial cumulative distribution functions.

The Annals of Statistics, 9(5):1123–1126, 1981.

[57] Céline Levy-leduc and Zaı̈d Harchaoui. Catching change-points with lasso. In

Proceedings of Conference on Advances in Neural Information Processing Systems (NIPS),

pages 617–624, 2008.

[58] Kang Li and Yu Fu. Prediction of human activity by discovering temporal se-

quence patterns. Transactions on Pattern Analysis and Machine Intelligence (PAMI),

36(8):1644–1657, 2014.

[59] Kang Li, Sheng Li, and Yun Fu. Early classification of ongoing observation. In

Proceedings of International Conference on Data Mining (ICDM), pages 310–319, 2014.

[60] Lin Liao, Dieter Fox, and Henry Kautz. Location-based activity recognition. In

Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Proceedings of Conference on Advances

in Neural Information Processing Systems (NIPS), pages 787–794, 2005.

116 BIBLIOGRAPHY

[61] Yu-Feng Lin, Hsuan-Hsu Chen, Vincent S Tseng, and Jian Pei. Reliable early clas-

sification on multivariate time series with numerical and categorical attributes.

In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD), pages 199–211, 2015.

[62] Li Liu, Li Cheng, Ye Liu, Yongpo Jia, and David S Rosenblum. Recognizing com-

plex activities by a probabilistic interval-based model. In Proceedings of AAAI Con-

ference on Artifical Intelligence (AAAI), volume 30, pages 1266–1272, 2016.

[63] Ye Liu, Liqiang Nie, Lei Han, Luming Zhang, and David S Rosenblum. Ac-

tion2activity: Recognizing complex activities from sensor data. In Proceedings of

International Joint Conference on Artificial Intelligence (IJCAI), pages 1617–1623, 2015.

[64] Jeffrey W Lockhart, Tony Pulickal, and Gary M Weiss. Applications of mobile ac-

tivity recognition. In Proceedings of International Conference on Ubiquitous Computing

(UbiComp), pages 1054–1058, 2012.

[65] Hong Lu, Jun Yang, Zhigang Liu, Nicholas D Lane, Tanzeem Choudhury, and An-

drew T Campbell. The jigsaw continuous sensing engine for mobile phone appli-

cations. In Proceedings of Conference on Embedded Networked Sensor Systems (SenSys),

pages 71–84, 2010.

[66] Shugao Ma, Leonid Sigal, and Stan Sclaroff. Learning activity progression in lstms

for activity detection and early detection. In Proceedings of Computer Vision and

Pattern Recognition (CVPR), pages 1942–1950, 2016.

[67] Thomas B Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances

in vision-based human motion capture and analysis. Computer Vision and Image

Understanding, 104(2-3):90–126, 2006.

[68] Le T. Nguyen, Ming Zeng, Patrick Tague, and Joy Zhang. I did not smoke 100

cigarettes today!: Avoiding false positives in real-world activity recognition. In Pro-

ceedings of International Conference on Ubiquitous Computing (UbiComp), pages 1053–

1063, 2015.

BIBLIOGRAPHY 117

[69] Le T Nguyen, Ming Zeng, Patrick Tague, and Joy Zhang. Recognizing new activi-

ties with limited training data. In Proceedings of International Symposium on Wearable

Computers (ISWC), pages 67–74, 2015.

[70] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, Jake Vanderplas, Passos Alexandre, David Cournapeau, Matthieu

Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[71] Thomas Plotz, Nils Y Hammerla, and Patrick Olivier. Feature learning for activity

recognition in ubiquitous computing. In Proceedings of International Joint Conference

on Artificial Intelligence (IJCAI), volume 2, pages 1729–1734, 2011.

[72] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

[73] Xin Qi, Matthew Keally, Gang Zhou, Yantao Li, and Zhen Ren. Adasense: Adapting

sampling rates for activity recognition in body sensor networks. In Proceedings of

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 163–

172, 2013.

[74] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[75] Cliff Randell and Henk Muller. Context awareness by analysing accelerometer

data. In Proceedings of International Symposium on Wearable Computers (ISWC), pages

175–176, 2000.

[76] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L Littman. Activ-

ity recognition from accelerometer data. In Proceedings of Conference on Innovative

Applications of Artificial Intelligence (IAAI), volume 5, pages 1541–1546, 2005.

[77] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Sri-

vastava. Using mobile phones to determine transportation modes. Transactions on

Sensor Networks (TOSN), 6(2):13, 2010.

118 BIBLIOGRAPHY

[78] Ramona Rednic, Elena Gaura, John Kemp, and James Brusey. Fielded autonomous

posture classification systems: design and realistic evaluation. In Proceedings of

ACIS International Conference on Software Engineering, Artificial Intelligence, Network-

ing and Parallel/Distributed Computing, pages 635–640, 2013.

[79] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for ac-

tivity monitoring. In Proceedings of International Symposium on Wearable Computers

(ISWC), pages 108–109, 2012.

[80] Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita.

Transition-aware human activity recognition using smartphones. Neurocomputing,

171:754–767, 2016.

[81] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster,

Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha,

Jakob Doppler, Clemens Holzmann, Marc Kurz, Gerald Holl, Ricardo Chavarriage,

Hesam Sagha, Hamidreza Bayati, Marco Creatura, and Jose del R. Millan. Collect-

ing complex activity datasets in highly rich networked sensor environments. In

Proceedings of International Conference on Networked Sensing Systems (INSS), pages

233–240, 2010.

[82] Guy Rosman, Mikhail Volkov, Dan Feldman, John W Fisher III, and Daniela Rus.

Coresets for k-segmentation of streaming data. In Proceedings of Conference on Ad-

vances in Neural Information Processing Systems (NIPS), pages 559–567, 2014.

[83] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. Nature, 323(6088):533, 1986.

[84] Michael S Ryoo. Human activity prediction: Early recognition of ongoing activities

from streaming videos. In Proceedings of International Conference on Computer Vision

(ICCV), pages 1036–1043, 2011.

[85] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term memory

recurrent neural network architectures for large scale acoustic modeling. In Pro-

ceedings of Interspeech, pages 338–342, 2014.

BIBLIOGRAPHY 119

[86] Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L Ananda, Mun Choon

Chan, and Li-Shiuan Peh. Using mobile phone barometer for low-power trans-

portation context detection. In Proceedings of Conference on Embedded Networked Sen-

sor Systems (SenSys), pages 191–205, 2014.

[87] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227,

1990.

[88] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. There is more to context

than location. Computers & Graphics, 23(6):893–901, 1999.

[89] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression.

Statistics and computing, 14(3):199–222, 2004.

[90] Maja Stikic, Diane Larlus, Sandra Ebert, and Bernt Schiele. Weakly supervised

recognition of daily life activities with wearable sensors. Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 33(12):2521–2537, 2011.

[91] Vincent S Tseng, Chun-Hao Chen, Pai-Chieh Huang, and Tzung-Pei Hong. Cluster-

based genetic segmentation of time series with dwt. Pattern Recognition Letters,

30(13):1190–1197, 2009.

[92] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of

simple features. In Proceedings of Computer Vision and Pattern Recognition (CVPR),

2001.

[93] Liang Wang, Tao Gu, Xianping Tao, and Jian Lu. A hierarchical approach to real-

time activity recognition in body sensor networks. Pervasive and Mobile Computing,

2012.

[94] Yi Wang, Bhaskar Krishnamachari, Qing Zhao, and Murali Annavaram. Markov-

optimal sensing policy for user state estimation in mobile devices. In Proceedings

of International Conference on Information Processing in Sensor Networks (IPSN), pages

268–278, 2010.

[95] Yi Wang, Jialiu Lin, Murali Annavaram, Quinn A Jacobson, Jason Hong, Bhaskar

Krishnamachari, and Norman Sadeh. A framework of energy efficient mobile sens-

120 BIBLIOGRAPHY

ing for automatic user state recognition. In Proceedings of International Conference on

Mobile Systems, Applications, and Services (MobiSys), pages 179–192, 2009.

[96] Zhengzheng Xing, Jian Pei, and S Yu Philip. Early prediction on time series: A

nearest neighbor approach. In Proceedings of International Joint Conference on Artifi-

cial Intelligence (IJCAI), pages 1297–1302, 2009.

[97] Zhengzheng Xing, Jian Pei, Philip S Yu, and Ke Wang. Extracting interpretable

features for early classification on time series. In Proceedings of SIAM International

Conference on Data Mining (SDM), pages 247–258, 2011.

[98] Zhixian Yan, Vigneshwaran Subbaraju, Dipanjan Chakraborty, Archan Misra, and

Karl Aberer. Energy-efficient continuous activity recognition on mobile phones: An

activity-adaptive approach. In Proceedings of International Symposium on Wearable

Computers (ISWC), pages 17–24, 2012.

[99] Jian Bo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali Krish-

naswamy. Deep convolutional neural networks on multichannel time series for

human activity recognition. In Proceedings of International Joint Conference on Artifi-

cial Intelligence (IJCAI), pages 3995–4001, 2015.

[100] Qiang Yang. Activity recognition: Linking low-level sensors to high-level intelli-

gence. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),

pages 20–25, 2009.

[101] Jie Yin, Qiang Yang, and Jeffrey Junfeng Pan. Sensor-based abnormal human-

activity detection. Transactions on Knowledge and Data Engineering (TKDE), 20(8),

2008.

[102] Özgür Yürür, Chi Harold Liu, Charith Perera, Min Chen, Xue Liu, and Wilfrido

Moreno. Energy-efficient and context-aware smartphone sensor employment.

Transactions on Vehicular Technology, 64(9):4230–4244, 2015.

[103] Piero Zappi, Clemens Lombriser, Thomas Stiefmeier, Elisabetta Farella, Daniel

Roggen, Luca Benini, and Gerhard Tröster. Activity recognition from on-body sen-

sors: accuracy-power trade-off by dynamic sensor selection. In Wireless Sensor Net-

works, pages 17–33. Springer, 2008.

BIBLIOGRAPHY 121

[104] Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang Zhu, Pang Wu, and Juy-

ong Zhang. Convolutional neural networks for human activity recognition using

mobile sensors. In Proceedings of International Conference on Mobile Computing, Ap-

plications and Services (MobiCASE), pages 197–205, 2014.

[105] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Zhuo-

qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic

battery behavior based power model generation for smartphones. In Proceedings

of International Conference on Hardware/Software Codesign and System Synthesis, pages

105–114, 2010.

[106] Yongmian Zhang, Yifan Zhang, Eran Swears, Natalia Larios, Ziheng Wang, and

Qiang Ji. Modeling temporal interactions with interval temporal bayesian net-

works for complex activity recognition. Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 35(10):2468–2483, 2013.

[107] Yonglei Zheng, Weng-Keen Wong, Xinze Guan, and Stewart Trost. Physical activity

recognition from accelerometer data using a multi-scale ensemble method. In Pro-

ceedings of Conference on Innovative Applications of Artificial Intelligence (IAAI), pages

1575–1581, 2013.

[108] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding

mobility based on gps data. In Proceedings of International Conference on Ubiquitous

Computing (UbiComp), pages 312–321, 2008.

[109] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Cheng, Weihao

Title:
Accurate and efficient human activity recognition

Date:
2018

Persistent Link:
http://hdl.handle.net/11343/224027

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the
copyright owner. The work may not be altered without permission from the copyright owner.
Readers may only download, print and save electronic copies of whole works for their own
personal non-commercial use. Any use that exceeds these limits requires permission from
the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

http://hdl.handle.net/11343/224027

	1 Introduction
	1.1 Introduction
	1.2 Thesis Structure

	2 Background
	2.1 Human Activity Recognition
	2.1.1 Preliminary
	2.1.2 Review of Representative Work on Human Activity Recognition

	2.2 Accurate Recognition of the Current Activity during Activity Transitions
	2.2.1 Overview
	2.2.2 Time Series Segmentation

	2.3 Accurate Predicting of Complex Activities from Ongoing Observations
	2.3.1 Overview
	2.3.2 Early Classification on Time Series
	2.3.3 Deep Learning for Human Activity Recognition

	2.4 Energy-Efficient Human Activity Recognition
	2.4.1 Overview
	2.4.2 Ensemble Learning
	2.4.3 Markov Decision Process

	2.5 Human Activity Recognition Datasets
	2.6 Conclusion

	3 Accurate Recognition of the Current Activity during Activity Transitions
	3.1 Introduction
	3.2 Methodology
	3.2.1 Problem Statement
	3.2.2 Min-Max Activity Recognition Model (MARM)
	3.2.3 Weighted Min-Max Activity Recognition Model (WMARM)
	3.2.4 Efficient Implementation of WMARM

	3.3 Empirical Evaluation
	3.3.1 Measuring the Accuracy of Current Activity Recognition
	3.3.2 Evaluating the Impact of on Accuracy
	3.3.3 Measuring the Accuracy on Actual Transitions
	3.3.4 Evaluating the Execution Time on Smartphone

	3.4 Conclusion

	4 Accurate Predicting of Complex Activities from Ongoing Observations
	4.1 Introduction
	4.2 Methodology
	4.2.1 Problem Statement
	4.2.2 Simultaneous Complex Activities Recognition and Action Sequence Discovering (SimRAD)

	4.3 Experiments
	4.3.1 Prediction of Complex Activities
	4.3.2 Recognition of Action Sequence

	4.4 Conclusion

	5 Efficient Human Activity Recognition by Reducing Computational Cost
	5.1 Introduction
	5.2 Proposed Method
	5.2.1 Markov Dynamic Subsequence Ensemble (MDSE)
	5.2.2 Theoretical Analysis of the Accuracy Constraints in MDSE
	5.2.3 Computational Efficiency of MDSE

	5.3 Empirical Evaluations
	5.3.1 Performances of Different Subsequences
	5.3.2 Markov Dynamic Subsequence Ensemble
	5.3.3 The Accuracy Constraints
	5.3.4 The Computational Efficiency of MDSE
	5.3.5 Evaluation on Smartphone

	5.4 Conclusion & Discussion

	6 Efficient Human Activity Recognition by Reducing Sensing Cost
	6.1 Introduction
	6.2 Methodology
	6.2.1 Problem Statement
	6.2.2 Datum-Wise Frequency Selection (DWFS)

	6.3 Empirical Evaluation
	6.3.1 Recognition Accuracy versus Energy Cost
	6.3.2 Evaluating the Performance of DWFS
	6.3.3 Insight Study of DWFS

	6.4 Conclusion & Discussion

	7 Conclusion & Future Research
	7.1 Summary of Contributions
	7.2 Future Research

