Impact of Rooftop Solar on Distribution Network Planning

Ashish B. Gupta

B.Eng. (Hons.) in Electrical Engineering

ORCID: 0000-0001-9490-0680

Submitted in total fulfilment of the requirements of the degree of

Master of Philosophy

Department of Electrical and Electronic Engineering
Melbourne School of Engineering
THE UNIVERSITY OF MELBOURNE
Victoria 3010, Australia

December 2019
ABSTRACT

Electricity networks have been undergoing significant transformation recently, especially in terms of embedded generation. There has been a lot of focus on demand fluctuations from solar and wind farms that are being connected onto high voltage (HV) grids in energy markets. But the distribution low voltage (LV) grid may prove the most challenging for the network owners and market operators. This is because rooftop solar, whether installed in commercial or residential areas, is leading to high demand fluctuations within the last mile. Customer-installed solar is also causing voltages to rise, but it is the Distribution Network Operator (DNO) on which the responsibility of voltage regulation falls. There is hence greater importance for the DNO to have full visibility of the LV feeder voltages at all times, accurately analysing proposed connections, and meeting the regulators’ and government expectations of enabling solar penetration.

Voltage monitoring and regulating infrastructure at the LV level, though, is expensive to implement and hence scarce due to its huge scale. Utilities hence employ empirical or statistical techniques to calculate voltage drop and voltage rise. Conservative allowances for demand diversity and unbalance can lead to erroneous results and can form the basis of considerable utility capital expenditure programs. Utility expenditure in turn usually leads to an increase in customer bills over time. A small number of utilities in the world have access to voltage data from smart metering infrastructures, such as in Victoria, Australia, but ownership of data is becoming an open question. Data availability also presents a different problem to them, as these meters are leading to an extraordinary amount of near real-time data, which they are failing to fully embrace. They see smart-technology driven initiatives as a form of disruption and are slow or unwilling to adapt to the changing nature of the grid.

This dissertation details the use of data analytics for forecasting future voltages on the network. Standard machine learning techniques are used to create a non-linear regression model fit to train parameters that reflect the operational status of the feeder. These parameters reflect load diversity and unbalance as well as generator diversity and unbalance. The trained model consequently accurately predicts voltages on the feeder with additional connections. A load-flow simulation of a real-world network is carried out. Training and testing are performed on data from different halves of the year. Predicted voltages are compared to simulation results to confirm the high accuracy, even though consumption patterns and solar
irradiation patterns change due to different seasons in the test data. Hence, by leveraging interval metering data, it is shown how standard machine learning methods can be used to develop forecasting capabilities.

The methodology developed in this thesis can used as a planning tool to quickly and accurately evaluate future rate of recurrence of voltage violations; and predict the voltage headroom available on the LV feeder. This is a significant outcome as predictability of LV feeder voltages is a concern for the utilities, consumers as well as regulating bodies. The presented method will enable more loads and PVs onto the network without the need of new assets such as distribution transformers or LV feeders, that may be left underutilised. It will also help resolve certain quality of supply issues such as voltage drop complaints; and help better prioritise and technically analyse constrained areas of the network.

It is clear that high-quality, high-volume data analysis will play a key role in resolving the needs of the electricity industry. This thesis serves as an interface between network planning engineers and data scientists who will solve the emerging energy constraints, play a part in minimising customer energy prices and assist in the transition to decentralised clean energy sources.
DECLARATION

This is to certify that

i. the thesis comprises only my original work towards the MPhil except where indicated in the preface;

ii. due acknowledgement has been made in the text to all other material used; and

iii. the thesis is less than 50,000 words in length, exclusive of tables, maps, bibliographies and appendices.

Ashish Bert Gupta, December 2019
ACKNOWLEDGEMENTS

First and foremost, I would like to thank God “Shri Sai Baba” for his blessings and for helping me achieve my goal of completing this research successfully.

I would like to convey my sincerest and deepest thanks to my Principal Supervisor Prof. Tansu Alpcan and Co-Supervisor Dr. Anthony B. Morton for their incomparable support, guidance and encouragement throughout my MPhil. Prof. Tansu Alpcan has been extremely patient with me, and his knowledge has been invaluable throughout. He has always sought to instil in me different attributes of a successful researcher, which is very much appreciated.

I would like to acknowledge the financial support received through an “Australian Government Research Training Program Scholarship” for covering my tuition fees; and The University of Melbourne for covering my conference registration fees through a travel bursary. I would also like to thank Graduate School of Engineering and the Melbourne Energy Institute for providing presentation opportunities at seminars and symposiums where I was able to receive constructive feedback from an expert audience.

I am grateful to all the staff and colleagues of the Department of Electrical and Electronic Engineering and the Graduate Student Association, who gave me advice in personal and professional matters during my graduate studies; helped me form better writing and editing practices; and ensured my time at University was a pleasurable experience.

Last, but not least, I am very grateful to all my family members, especially my fiancé Mrinalini Oswal, for their continuous support and unconditional love which helped me strive for my goal. I would like to dedicate this thesis to my parents, who have made countless sacrifices through my schooling and University years.
PREFACE

This work was supported by The University of Melbourne and United Energy. United Energy provided anonymised interval-reading data from 54 domestic meters on their distribution network.

Publication included in this thesis – Peer reviewed Conference Paper (1):

The methodology used in this thesis is incorporated in the above paper [1].

A poster by the same authors on the same methodology was also presented at the Melbourne Energy Institute Symposium on 12th December 2018 at The University of Melbourne.

All work beyond the above is original, independent work by the author, Ashish Bert Gupta.

Contributions by others to the thesis

“No contributions by others”

Statement of parts of the thesis submitted to qualify for the award of another degree

“None”
Contents

ABSTRACT .. ii
DECLARATION .. iv
ACKNOWLEDGEMENTS ... v
PREFACE .. vi
LIST OF FIGURES .. x
LIST OF TABLES .. xii
ABBREVIATIONS AND ACRONYMS .. xiii

CHAPTER 1 – INTRODUCTION ... 1
 1.1. Background .. 1
 1.2. Research Motivation ... 4
 1.3. Research Questions .. 8
 1.4. Research Hypothesis and Objectives ... 8
 1.5. Research Contributions .. 9
 1.6. Research Scope and Limitations .. 10
 1.7. Thesis Outline ... 11

CHAPTER 2 – LITERATURE REVIEW .. 12
 2.1. Solar PV Uptake ... 12
 2.2. Advantages of Solar PV System Integrations .. 13
 2.3. Power Quality Issues with PV System Integrations .. 16
 2.4. LV Feeder Voltage Calculation Methods ... 21
 2.4.1. Base Line Formulae .. 22
 2.4.2. Load Diversity ... 24
 2.4.3. Voltage Unbalance .. 26
 2.4.4. Electricity supply industry practice ... 29
 2.4.5. Feeder voltage estimation – Alternative techniques .. 31
 2.5. Research Gap .. 34

CHAPTER 3 – PROBLEM ANALYSIS .. 36
 PART I – BACKGROUND ... 36
 3.1. Victorian Power Networks .. 36
 3.2. MV and LV Lines ... 39
 3.2.1. 400V Construction ... 39
 3.2.2. Modelling of Distribution Networks .. 42
 3.3. Transformer Construction .. 44
3.4. Voltage Regulation Bandwidth ... 48
 3.4.1. MV bus ... 48
 3.4.2. MV feeder to distribution transformer .. 48
 3.4.3. Distribution transformer impedance to LV secondary 49
 3.4.4. Distribution transformer tap offset ... 50
 3.4.5. LV mains feeder and service wire .. 50
 3.5. Consumption Data from Meters .. 51

PART II – MODEL CONSTRUCTION ... 52
 3.6. Software Tools ... 52
 3.7. 22-Bus Unbalanced Distribution Network ... 53
 3.8. Conductor Impedance Characteristics ... 57
 3.9. Model Inputs from Meter Data ... 58
 3.10. Micro Embedded Generator Connection .. 58
 3.11. Data Visualisation .. 59

CHAPTER 4 – PARAMETRIC MODELLING FOR MACHINE LEARNING 63
 4.1. Background ... 64
 4.2. Non-Linear Regression Fit – Implementation .. 66
 4.3. Testing Data and Validating Predictions .. 68
 4.4. Decision Tree .. 70
 4.5. Validation Calculations ... 72

CHAPTER 5 – RESULTS AND DISCUSSION ... 74
 5.1. Case Network 1 ... 74
 5.1.1. Learning and Testing on Training Set A – LM Validation 74
 5.1.2. Learning and Testing on Training Set A – CART Validation 76
 5.1.3. Learning with Training Set A and Testing on Test Set A using LM 77
 5.1.4. Learning with Training Set A and Testing on Test Set A using CART 80
 5.1.5. Learning with Training Set B and Testing on Test Set B using LM 81
 5.1.6. Learning with Training Set B and Testing on Test Set B using CART 84
 5.2. Case Network 2 – High PV Penetration .. 86
 5.2.1. Learning with Training Set C and Testing on Test Set C using LM 87
 5.2.2. Learning with Training Set C and Testing on Test Set C using CART 88
 5.2.3. Learning with Training Set D and Testing on Test Set D using LM 89
 5.2.4. Learning with Training Set D and Testing on Test Set D using CART 92
 5.3. Summary and Discussion ... 94

CHAPTER 6 – CONCLUSIONS .. 96
 6.1. Summary of Thesis ... 96
6.2. Summary of Contributions .. 99
6.3. Future Works.. 101

REFERENCES: .. 103
APPENDIX A: CASE NETWORK 1 CONFIGURATION DATA 112
APPENDIX B: SAMPLE INTERVAL METERING DATA FOR ONE HOUSEHOLD 113
APPENDIX C: OPENDSS AND MATLAB CODE ... 115
LIST OF FIGURES

Figure 1 – Levelised cost of a 7 kW PV unit vs. retail electricity price (data: [6]) 2
Figure 2 – Number of installations for rooftop PV in Australia (data: [7]) 2
Figure 3 – Zone Substation load profile year-on-year duck curve [8] 3
Figure 4 – Segmentation of PV installation 2011-2017 [14] .. 12
Figure 5 – Average system size of rooftop PV in Australia (data: [7]) 13
Figure 6 – Residential energy storage installations in Australia 2015-2017 (data: [19]) 14
Figure 7 – Typical voltage sag (dip) and swell waveform representation [36] 19
Figure 8 – Impact on Australian networks with varying PV Penetration Rates [38] 21
Figure 9 – Single-line representation of a single residential load in a 2-bus load flow 22
Figure 10 – Typical coincidence factor curve for residential consumers in USA [62] 26
Figure 11 – Balanced three-phase LV circuit .. 27
Figure 12 – Balanced three-phase voltage/current waveforms 27
Figure 13 – Unbalanced three-phase LV circuit .. 27
Figure 14 – Typical unbalanced three-phase voltage/current waveforms 27
Figure 15 – Operating areas of the Victorian electricity distributors [87] 36
Figure 16 – Comparison of North American and European Systems [88] 38
Figure 17 – Typical Pole top construction in Australia [91] 40
Figure 18 – LV cross-arm phase separation details [91] .. 40
Figure 19 – Heat-map of number of overvoltages within United Energy’s area 43
Figure 20 – Heat-map of duration of overvoltages within United Energy’s area 43
Figure 21 – Typical pole-mount transformer supplying end user customers 45
Figure 22 – Picture of a pole-mount transformer in suburban Melbourne 46
Figure 23 – Tap setting and nameplate of a 200 kVA pole mounted transformer 46
Figure 24 – Average voltage lowers after tap down operation [96] 47
Figure 25 – MV feeder line-to-neutral voltage profile upstream of Case Network 1 49
Figure 26 – MV feeder current profile upstream of Case Network 1 49
Figure 27 – Picture of an AMI meter installed in a suburban house in Melbourne 51
Figure 28 – Example of an 8 bus LV network [100] .. 53
Figure 29 – Spatial representation of multiple branched radial LV network diagram 54
Figure 30 – GIS snapshot of Case Network 1 .. 55
Figure 31 – Average P and Q for all households .. 56
Figure 32 – Cumulative P and Q load downstream of substation 56
Figure 33 – Cumulative P and Q load in the east circuit 57
Figure 34 – Cumulative P and Q load in the west circuit 57
Figure 35 – Average annual PV generation profile .. 58
Figure 36 – Voltage profile at Bus 22 .. 59
Figure 37 – Demand profile at the Substation ... 60
Figure 38 – Load and voltage profiles for a high demand day 60
Figure 39 – Voltage at load end of each line of Case Network 1 61
Figure 40 – 3-phase average voltage at load end of each line of Case Network 1 62
Figure 41 – Unsupervised Learning and Supervised Learning [102] 65
Figure 42 – Workflow for machine learning and validating predictions (grey box) 69
Figure 43 – Workflow for machine learning and validating predictions (black box)........71
Figure 44 – Learning and Testing on Training Set A using LM.....................................75
Figure 45 – Learning and Testing on Training Set A using LM replotted75
Figure 46 – Learning and Testing on Training Set A using CART.................................76
Figure 47 – Learning and Testing on Training Set A using CART replotted77
Figure 48 – Expected and predicted results of Set A using LM....................................78
Figure 49 – Learning with Training Set A and Testing on Test Set A using LM.............78
Figure 50 – Comparing the voltage drop calculation using new parameters79
Figure 51 – Expected and predicted results of Set A using CART................................80
Figure 52 – Learning with Training Set A and Testing on Test Set A using CART..........81
Figure 53 – Expected and predicted results of Set B using LM....................................82
Figure 54 – Learning with Training Set B and Testing on Test Set B using LM82
Figure 55 – Expected and predicted results of Set B using CART................................85
Figure 56 – Learning with Training Set B and Testing on Test Set B using CART85
Figure 57 – Expected and predicted results of Set C using LM....................................87
Figure 58 – Learning with Training Set C and Testing on Test Set C using LM88
Figure 59 – Expected and predicted results of Set C using CART................................89
Figure 60 – Learning with Training Set C and Testing on Test Set C using CART89
Figure 61 – Expected and predicted results of Set D using LM....................................90
Figure 62 – Learning with Training Set D and Testing on Test Set D using LM90
Figure 63 – Expected and predicted results of Set D using CART................................93
Figure 64 – Learning with Training Set D and Testing on Test Set D using CART94
Figure 65 – Line-to-Neutral voltage for the three circuits at the last time instance116
Figure 66 – Demand profile at the substation...117
LIST OF TABLES

Table 1 – System Voltage Requirements under Australian Standards [32] 17
Table 2 – Voltage and Frequency Inverter Set Points in Australia [16] .. 19
Table 3 – Voltage Harmonic Distortion Limits in Victoria .. 20
Table 4 – Summary of All Variables Used ... 23
Table 5 – Transformer impedances typically used in Australia at 75°C [90] 47
Table 6 – Typical Voltage Bandwidth Contributions in LV Feeder ... 50
Table 7 – Characteristics of the chosen LV network .. 55
Table 8 – Comparison of RMSE (V) – Training and Testing on the Same Data Set 77
Table 9 – Parameter Comparison For Set A .. 79
Table 10 – Comparison of RMSE (V) .. 79
Table 11 – Parameter Comparison For Set B .. 83
Table 12 – Case Network 1 – Parameter Comparison For West Circuit – To Bus 9 83
Table 13 – Case Network 1 – Parameter Comparison For East Circuit – To Bus 16 84
Table 14 – Case Network 1 – Parameter Comparison For East Circuit – To Bus 22 84
Table 15 – Comparison of RMSE Between Black Box and Grey Box Methods (V) 86
Table 16 – Parameter Comparison For Set C .. 88
Table 17 – Parameter Comparison For Set D .. 91
Table 18 – Case Network 2 – Parameter Comparison For West Circuit – To Bus 9 91
Table 19 – Case Network 2 – Parameter Comparison For East Circuit – To Bus 16 92
Table 20 – Case Network 2 – Parameter Comparison For East Circuit – To Bus 22 92
Table 21 – Comparison of RMSE Between Black Box and Grey Box Methods (V) 94
Table 22 – Line Lengths Modelled In OpenDSS ... 94
Table 23 – Metering Data For A Resident In Case Network 1 For One Day 113
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>All Aluminium Conductor</td>
</tr>
<tr>
<td>ADLDD</td>
<td>After Diversity Lowest Daytime Demand</td>
</tr>
<tr>
<td>ADMD</td>
<td>After Diversity Maximum Demand</td>
</tr>
<tr>
<td>AER</td>
<td>Australian Energy Regulator</td>
</tr>
<tr>
<td>ALARP</td>
<td>As Low As Reasonably Practicable</td>
</tr>
<tr>
<td>AMI</td>
<td>Advanced Metering Infrastructure</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>AS</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>AS/NZS</td>
<td>Australian/New Zealand Standard</td>
</tr>
<tr>
<td>CF</td>
<td>Coincidence Factor</td>
</tr>
<tr>
<td>CART</td>
<td>Classification and Regression Trees</td>
</tr>
<tr>
<td>DF</td>
<td>Diversity Factor</td>
</tr>
<tr>
<td>DEBUT</td>
<td>Demand Estimation Based on Units of Time</td>
</tr>
<tr>
<td>DG</td>
<td>Distributed Generation</td>
</tr>
<tr>
<td>DNO</td>
<td>Distribution Network Operator</td>
</tr>
<tr>
<td>EHV</td>
<td>Extra High Voltage</td>
</tr>
<tr>
<td>EPRI</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>FCAS</td>
<td>Frequency Control Ancillary Services</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineering</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>LCF</td>
<td>Load Correction Factor</td>
</tr>
<tr>
<td>LCOE</td>
<td>Levelised Cost of Energy</td>
</tr>
<tr>
<td>LM</td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td>LV</td>
<td>Low Voltage</td>
</tr>
<tr>
<td>MD</td>
<td>Maximum Demand</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
</tr>
<tr>
<td>MV</td>
<td>Medium Voltage</td>
</tr>
<tr>
<td>NMI</td>
<td>National Meter Identifier</td>
</tr>
<tr>
<td>OLTC</td>
<td>On-Load Tap Changer</td>
</tr>
<tr>
<td>PF</td>
<td>Power Factor</td>
</tr>
<tr>
<td>POE</td>
<td>Probability of Exceedance</td>
</tr>
<tr>
<td>PQ</td>
<td>Power Quality</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control And Data Acquisition</td>
</tr>
<tr>
<td>SCF</td>
<td>Solar Correction Factor</td>
</tr>
<tr>
<td>SWER</td>
<td>Single Wire Earth Return</td>
</tr>
<tr>
<td>UF</td>
<td>Unbalance Factor</td>
</tr>
<tr>
<td>VD</td>
<td>Volt-Drop</td>
</tr>
</tbody>
</table>
CHAPTER 1 – INTRODUCTION

1.1. Background

As the world continues to electrify towards universal energy access, the electricity consumption continues to grow strongly. There is expected to be an increase in middle class, their expendable income and their needs for space cooling equipment, electric vehicles (EV) and digitalisation. Recently there has been an increasingly conscious effort to move away from coal and gas-powered power plants to meet these energy needs, as formalised by the 2015 Paris Agreement on Climate Change [2]. Since then, many nations have introduced personal ambitions and climate policies to move towards renewable sources of electricity generation. The proportion of fuels being used for generation is hence moving towards more non-fossil-based resources like wind, nuclear, hydro and solar power plants including rooftop Photovoltaics (PV). Trends [3] say renewable energy generation from wind and solar will account for half of the world’s power by 2050. Coal and gas will play less and less vital roles in the energy generation mix owing to those climate policies and better air quality management. An example of this is China’s drive to “make the skies blue again” [3].

Solar PV is also on track to be the cheapest source of electricity in many countries. The Levelised Cost of Energy (LCOE) is the cost of energy per kWh produced, and describes the cost of the power produced by solar over a period of time. China has the levelised costs of new solar PV set to fall below those of new coal-fired power plants by the late 2020s [4].

Together with the drive to clean energy and the high prices of coal and gas-powered plants, renewable energy sources are growing rapidly. Distributed solar generation (rooftop PV) uptake especially, is being driven by increased consumer awareness and Government
subsidies [5]. Figure 1 shows the LCOE for solar in Australia’s major cities, indicative retail prices and current feed-in tariff rates [6]. The economic motivation to avoid the network charges can be clearly seen.

![Figure 1 – Levelised cost of a 7 kW PV unit vs. retail electricity price (data: [6])](image1)

There are estimated to be over 2 million residential rooftop PV installations in Australia alone [7].

![Figure 2 – Number of installations for rooftop PV in Australia (data: [7])](image2)

Rooftop PV is the only significant energy producer that is connected to the LV grid, not the transmission, sub-transmission or high voltage grid. As such it is presenting some challenges to the distribution authorities which manage localised grids, traditionally built to handle only a one-way power flow. This is especially challenging for countries with a European-style grid with longer LV circuits than the North American model. The LV feeder from the distribution transformer secondary to the customer point of connection, or ‘the last mile’, has traditionally received very little attention from the utilities and researchers. And
it is becoming increasingly hard for engineers to resolve technical issues borne by PV penetration, such as increasing variability in system demand, low daytime demand and increased ramping at morning and evening electricity system peaks.

As rooftop PV penetration grows, a ‘duck curve’ is noticed by DNOs. As seen in Figure 3 for a substation in Australia, it has the following characteristics during a week day (Monday to Friday):

- The lowest demand on the feeder consistently drops year-on-year. This is usually around noon when demand is low and solar back-feed is high; whereas in the past, the lowest demand used to be around 3 am when there was no back-feed but also very low demand. Of late, the lowest demand on the feeder can be zero or negative (reverse power flow due to peak solar back-feed) in areas of low heating requirements.
- The peak demand on the feeder does not reduce during the evening loads. This demand, in fact, increases with population growth.
- Total energy consumption (kWh) or area under curve reduces.
- The growing gap between highest and lowest demand creates voltage regulation issues on MV (Medium Voltage) and LV feeders.

Figure 3 – Zone Substation load profile year-on-year duck curve [8]

There also remain other technical issues such as system capacity to accommodate millions of distributed energy resources, power quality, harmonic distortion, future capital and operating expenditure (stranded assets), After Diversity Maximum Demand (ADMD) assessment, protection in low fault-level locations, and data management processes with regard to device control and new connections. ADMD is the coincident maximum demand,
averaged over a large number of customers. ADMD provides a representation of the maximum demand contribution per customer during peak load, and serves as a theoretical minimum bound when used for voltage drop calculations. Since ADMD does not take into account the diversity of the customers’ load at the LV level, using it as the load for all consumers is not a realistic case. All voltage drop calculations hence take into account an allowance, in some form, for the loss of diversity from the average current. Additionally, allowance should also be made for higher voltage drop in practice caused by the current in the neutral conductor, compared to that caused by balanced loading across the three phases. This research will aim to understand the implications of the integration of residential solar power on the network voltages i.e. voltage rise and the planning implications on the existing steady state voltage management issues such as voltage drop and phase imbalance. Reliable modelling and simulation of real LV networks in suburban Victoria, Australia will be carried out with real network configurations and data. We will be looking to predict voltage variations when new prosumers are added onto the network.

1.2. Research Motivation

In Australia, rooftop PV systems have achieved moderate penetration in the grid and the number of installations is rising. There are already issues arising within the grid that was only designed for a one-way power flow. These issues include:

- Localised voltage rises when excess PV generation is exported into the grid;
- Excessive current flowing in neutral conductors caused by unbalance between load and generation in the three supply phases, creating safety hazards;
- Load unbalance in the three-supply phases causes overloading of assets, impacting supply reliability and asset life; and
- Tripping of solar inverters on over-voltage protection, so PV customers are not getting return on their PV investment.

From an LV planning engineer’s perspective, system stability and robustness of network voltages in newly ‘active’ feeders are of primary importance. With a view on reducing the amount of new infrastructure required, the predictability of LV feeder voltages is emerging to be a significant challenge [9].
When responding to new power supply applications, distribution network engineers are required to calculate voltage drop values downstream of existing distribution transformers at the street level. In case the expected voltage drop from the transformer secondary to the point of supply is too large, even if supply capacity from existing infrastructure is available, augmentation works such as feeder upgrades or new distribution transformers are required. Other utility works such as reducing the number of transformer overloads, fuse overloads, number of customers connected to a single LV feeder or resolving certain quality of supply complaints; all require voltage drop calculations done in order to obtain an economical and technically appropriate solution.

Excessive voltage drop leads to a surge in power quality issues and complaints from residents. Large voltage drop is primarily due to long distances from the distribution transformer and/or voltage imbalance across the LV phases. Over the past few years though, there has also been a sharp increase in voltage rise complaints from residents in rural areas with high penetration of large PV panel installations or in urban high-density areas with large clusters of PV panel installations. Distribution Network Operators (DNOs) employ a few different strategies to remedy voltage non-compliance without rebuilding the distribution substations, as this is a considerable expense and not in line with the ALARP (“as low as reasonably practicable”) approach that many businesses and utilities alike employ. Some of the other strategies include:

- Reducing the sending end voltage by changing the tap or the turns ratio on the distribution transformer. This is not always possible though, as the DNO could create an under-voltage condition during peak load period or could not have any lower tap positions available;
- Upgrading radial single-phase feeders to three-phase;
- Installing thicker LV conductor or cable to avoid congestion and reduce impedance;
- Swapping more customers onto the phase with excess PV generation, but this could create overload condition during peak load period when there is little PV generation;
- Limiting solar exports (not community friendly);
- Installing new LV circuits; or
- Re-arranging network switches.

Some of the strategies can also work against one another. For example, installing a new distribution transformer to off-load peak demand on an existing transformer in the neighbourhood, could exacerbate existing daytime voltage rise complaints (due to large PVs)
in the area. This example presents a daunting prospect as the upgrading of distribution network is an expensive exercise, and in this example has led to a worse-off customer experience. This utility then becomes understandably reluctant to network augmentation in the future. Knowledge of existing and future LV feeder voltages, during times of both peak and low demand, is hence a key decision driver for the aforementioned strategies.

Load flow analysis of the LV network should hence be done when assessing new supply or embedded generation calculations. Utilities can then comprehensively examine impedance levels in feeders, voltage regulation and stability throughout their networks. This is a manual process and the cost of these studies as suggested here is prohibitive for the large volume of applications a utility receives. These studies are normally only done for commercial and industrial rooftop PV installations (say larger than 30 kW three-phase or another size arbitrarily chosen by DNOs as the demarcation between micro embedded generators and embedded generators). Even so, these studies are usually done for a single point in time (worst case), not for an entire year’s worth of data as is ideal.

For residential areas, DNOs have instead relied on various stochastic means to make these voltage assessments, as discussed in Section 2.4. In managing traditional distribution networks with unidirectional flow, there was limited need for monitoring of the LV feeder as it was typically set up so that the range of anticipated voltages did not exceed the allowable voltage limits. This has served industry well due to ease-of-use. However, increased distributed energy resources have created active (instead of the erstwhile passive) distribution networks, and these methods require further evaluation and revision. Utilities are increasingly wary of allowing increased PV penetration as that may lead to dramatic excursions outside the allowed voltage limits with subsequent rooftop solar inverter tripping. On the other hand, declining PV connections, or solar export limits, or large network augmentations to enable solar connections are also not the optimum solutions. Hence significant enhancement of voltage calculation techniques is required to best analyse the connection of distributed energy resources within the safe technical range of the network’s capacity, and to allow for optimising the performance of the integrated network with its connected devices.

A small number of advanced nations do have access to voltage data from smart metering infrastructure. This is leading to an extraordinary amount of near-real time data. Utilities though are failing to gather this data and to use the information thus gathered for identifying feeders that might be compromised in the future. Utilities need to adapt to new technologies and proactively address voltage constraints due to both large loads and
embedded generation, in an attempt to position themselves well for the future. The best way to manage voltage issues and integrate increasing levels of solar into electricity distribution networks, while reducing the need for large-scale investment in the system, should be to develop a smarter and more flexible grid that is optimised for local voltage conditions. This is the most optimal solution not just according to utilities and the regulators, but also according to consumer groups. Community attitudes towards potential solar infrastructure investment show [10] that prosumers are demanding network improvements that can handle greater volumes of solar and avoid more expensive investments that show up in electricity bills.

One of the main motivations of this research is to demonstrate to electricity utilities that **machine learning is an appropriate tool to forecast load voltage and enable higher share of renewable embedded generation in the system**. Exploiting the insights contained within large data sets has become a focus for a multiplicity of enterprises. Utilities are in a position to collect a wealth of data on power usage, courtesy of interval metering, including smart meters. Data analytics technology can be deployed by electricity companies to exploit usage data in order to forecast LV feeder voltages for a range of conditions.

The other main motivation is to come up with a model that utilities can retrofit into existing voltage estimation tools. This will lead to **minimal re-engineering of the existing planning methods** and will also be well-understood and adopted by industry professionals at large. The end-result is a method that helps voltage regulations calculations quickly and accurately i.e. grey box model. Grey box model, as used here, is a model where the engineer has some knowledge over the internal workings of the methodology and doesn’t face a steep learning curve. The methodology is said to be somewhat translucent to the end-user. This has advantages when compared to a black box or closed box model (where internal behaviour is not known or understood by the user); and the white box or clear box model (where the user has full knowledge of the internal workings of the application but faces a time-consuming and exhaustive process). Performing machine learning which presents no trained parameters to the users, just the end result, can be seen as a black box in our context. Performing load-flow simulations is seen as a white box.

The end result is a planning framework or tool that then help the utility avoid costly network upgrades or over-investment. Large utility capital expenditure is often seen as ‘gold-plating’ of the network in the eyes of consumer groups and regulators, and avoiding these is hence in line with the customer’s requirements of low power bills. Furthermore, there is a
large degree of ‘future-proofing’ prospects available through this method since it avoids the need to revisit sites every few years to fix issues that could have been foreseen and prevented in the first instance.

1.3. Research Questions

In the previous section we have identified the challenges being faced by engineers trying to estimate the LV feeder voltages, with or without penetration of PV. In order to clarify the aim and purpose of this research and find the appropriate approach, the following research questions were raised:

a) What impact does PV have on distribution networks? Is this the same all around the world? This has been discussed in Section 2.3. Note that in discussing distribution networks, we have taken a generalist approach and not discussed all the different subtle variations that exist the world over.

b) What are the key components, topologies and parameters of LV distribution networks in Australia? This has been discussed at length in Chapter 3.

c) Given increasing PV penetration, what are all the different methods employed to obtain LV feeder voltages, besides load flow modelling and simulations? This has been discussed in Section 2.4.

d) Has there been any significant enhancement of voltage and headroom calculation methods in the age of interval metering data? Has there been an attempt to forecast feeder voltages? This has been explored in Chapter 2.

e) Is machine learning an appropriate tool for predicting voltage data with new prosumers? Will this be seen as a black box model and hence not find ready adoption in industry? This has been discussed in Chapter 4.

1.4. Research Hypothesis and Objectives

The hypothesis of this research can be summarised as follows: “There exists risk and inaccuracies when not estimating feeder voltages from load flow simulations or deterministic bottom-up modelling respectively. But a standard machine learning technique can be used to train a set of simple parameters representing the load and PV diversity and imbalance. This can act as a readily applicable extension to current voltage calculation approaches and
traditionally developed methodologies, for the purposes of improving the accuracy of LV residential network planning and foreseeing constrained parts of the network.”

The main aims of this research hence are as follows:

- Create a new methodology for feeder voltage estimation with new prosumers. Voltage assessments that are done on a large number of networks should not be too approximate or conversely too data-intensive. There is a need for a balanced approach, where the voltages are calculated not in a purely stochastic manner, but also not purely deterministic so as to require detailed modelling and simulation for every individual network.
- Create a methodology that is easily adaptable to industry practices. Voltage drop estimation in the current Australian electricity industry relies on parameters of load diversity and unbalance. Looking to create a simple method that also generates these parameters can greatly help in comparison, understanding and interpretation amongst industry professionals.

1.5. Research Contributions

In this section, the research contributions are detailed:

- The first contribution of this work is the literature survey done on all the differing methods out there in industry and academia of calculating voltage drop and rise in LV feeders. This should prove useful to other network planners and researchers alike. Insights gained into the Australian and New Zealand markets was that interval metering data was not being used to forecast voltage excursions or foresee constrained LV feeders.
- Secondly, this thesis presents a modern way of estimating feeder voltages, avoiding a worst-case scenario deterministic approach, or a conservative probabilistic one. A data-science approach is taken to determine load and generation correction factors that can be applied to ADMD when performing feeder voltage calculations. The proposed method calculates accurate voltage rise in the LV feeder in-case of bi-directional power flow as well. Parameters of a non-linear regression model fit are trained, a grey box model, useful for comparison and retrofitting to the status quo.
• Machine learning is also used for creating a black box model, useful for finding voltage headroom at each bus. The results from the grey box model and the black box model are then compared.

• This work demonstrates an application where machine learning and data analytics can be used in resolving today’s and future problems associated with the LV grid. Application of this methodology will enhance a distributor’s knowledge of the operational conditions of its LV feeders. This will facilitate more informed technical assessments of prosumers being connected onto the grid, and therefore enable better utilisation of assets.

1.6. Research Scope and Limitations

In this research, power consumption data from half-hour interval-metering i.e. billing information has been used. This may present a limitation since retailers or utilities may not be willing to share private consumer data with third-party electrical contractors or consultants looking to do voltage assessments for their clients.

If wanting to use smart meter data to carry out this methodology, a utility might face potential complications if the metering process is taken away from them becomes contestable. The consumer could then choose from an open competitive market, the installer of the smart meter and the subsequent ownership of data hence becomes an open question. This is slated to happen in 2021 in Victoria [11] for example. We have not used smart meter data for our research.

Where household load data is available, data integrity is paramount. In the data set used in this research, data obtained for all residences unfortunately contain null values for reactive power for 6 days in the year. Hence, a consistent voltage drop for those 6 days is not achieved when the simulation is completed. This is noticeable for all loads on the network. However, this does not have an overbearing impact on results or methodology proposed.

PV data on the case network was not made available by the utility. And household PV data from a different network within the same city is used instead. The assumption is made that PV data used is representative of the PV data of the pertinent case network, were they available.
The work covered in this research covers branched or radial 3-phase, 4-wire LV systems only. Looped networks or other LV networks such as 2-phase 3-wire or single phase will not be covered in this work.

1.7. Thesis Outline

The next chapter investigates the research questions posed in Section 1.3 through an extensive literature review. An example network model is presented and discussed in Section 3.7. Chapter 3 also details the methodology used. This includes extending the state-of-the-art to allow for voltage rise calculations. In Chapter 4, we propose machine learning models to calculate parameters for coincidence and unbalance of both load and generation to predict voltage regulation along LV feeders with new connections. We fit a predefined multivariate function to a set of points. Chapter 5 details the results and findings. Chapter 6 concludes the work done for this research and highlights the main findings regarding the potential for, and limitations of proposed voltage prediction methodologies of distribution feeders with rooftop PVs. The possible future directions of further research are also presented in this chapter. Appendices contain other relevant information concerning the dissertation, useful in further understanding.

One publication has been borne out of this research work. The methodology used herein is presented in our conference paper: "Predicting Voltage Variations in Low Voltage Networks with Prosumers" [1].
CHAPTER 2 – LITERATURE REVIEW

2.1. Solar PV Uptake

The world has an abundance of sunlight and wind to fuel solar and wind power plants; and enough geographical space to house such industries on a massive scale. Solar is the fastest growing power generation source. More solar PV capacities were installed globally than any other power generation technology. In 2017 alone, almost as much solar was installed in one year, as total worldwide capacity till 2012 [12]. In particular, distributed generation (rooftop PV) systems, had an estimated grid connection of 37 GW in 2017, nearly twice that of 20 GW in 2016. This was the first real growth in years, primarily due to policies implemented in China. The Chinese market continues to grow excessively also on the back of production capacity expansion. According to recent announcement by the Chinese government, PV systems will have more room for growth [13].

![Figure 4 – Segmentation of PV installation 2011-2017 [14]](image-url)
In Australia, the average PV system size is now over 6 kW as seen in Figure 5, although some of that is a reflection of larger commercial rooftop systems being installed with residential rooftop systems sitting around 5 kW. The Australian market remains bullish for rooftop PV with more than one in five homes having solar PV with the highest per capita penetration in the world. The first half of 2018 saw record new PV connections seen since the early days of premium feed-in-tariffs in 2011-12. PV rooftop systems can compete on retail price with grid power at most places in the world; yet only few countries, like Australia, have been truly adopting the solar solution.

![Figure 5 – Average system size of rooftop PV in Australia (data: [7])](image)

2.2. Advantages of Solar PV System Integrations

There are certainly some positive aspects of this growing rooftop PV market. Small solar systems can be the backbone of a digitalized, decarbonized, distributed and democratized energy system, which empowers consumers and territories (e.g. households, hospitals, public buildings, hotels, etc.) with cleaner, cheaper and local electricity [12]. They can bring about a reduction in power bills and social benefits such as job creation. Other benefits can include: -

Sustainable Energy: In today’s rapidly changing energy market, it is critical for DNO’s to understand and respond to their customers’ needs. Any draft plans for the future should deliver in accordance with the needs of the community. There exists a very large demand of generating green power at the household, business or precinct level alike. Rooftop PV furthers the aspirations of the community to consume energy produced from only sustainable resources. DNO’s that allow for the integration of customer installed PV systems, will empower and educate consumers and allow themselves to be better positioned for a future with lower CO₂ emissions and cleaner air.
Resilience and System Reliability: Since there is no in-built contingency at the residential or street level, a fault or fuse event can force many customers off supply till the time the issue can be located and supply restored. In theory, back-feed from PV can be used as back-up supply during black-outs or when there has been an upstream fuse event. This is especially useful in emergencies such as disaster events or for customers on life-support apparatus.

Others: PVs have been shown to extend the life of a transformer by extending the cyclic rating of transformers. PVs reduce the daytime peak demand, so they can hence reduce transformer loss of life [15]. PV inverters with VAR control improve voltage regulation (countering the issues that PVs themselves create) if there is sufficient upstream reactance. Since $\Delta V \approx \Delta P \times R + \Delta Q \times X$, VAR absorption by inverters can mitigate voltage rise. Indeed, this is one of the three ways the Australian standards for PV grid-connected inverters [16] specify how inverters should respond to high or low grid voltages (and high or low grid frequency). PV inverters can also act as active filters to reduce system harmonics and negative sequence unbalance [17].

Many of the advantages of PV penetration, though, are dependent solely on whether the rooftop PV has been combined with battery storage systems, which are being increasingly installed in households as shown in Figure 6 using Australia as an example. In Germany too, around 50% of all residential solar installations in 2016-2017 were coupled with embedded storage [18].

![Figure 6 – Residential energy storage installations in Australia 2015-2017 (data: [19])](image-url)
Peak Shaving: The EG-battery combination can be used to absorb the surplus generation during the day time and then consumed or fed back into the grid during the evening peak. Storage adds flexibility and allows increasing system integration of solar PV. Furthermore, the solar supply curve can be variable due to intermittent cloud cover. And embedded storage can smooth out the PV’s output so that it does not increase or decrease too quickly i.e. storage can stabilise the short-term PV output variations.

Ancillary Services: A key element of the ‘smart grid’ is the transition of DNO’s to DSO’s (Distribution System Operators). This involves the transition of DNO’s as providers of electricity to one where they also act as smart platforms that absorb electricity (e.g. using front-of-the-meter or accessing behind-the-meter storage) and actively manage electricity use. A DNO cannot control the off-the-shelf embedded storage solutions installed by the customers. Hence those batteries provide no benefit to the network [20]. A DSO has different control capabilities over customer installed batteries. The EG-battery combination can act as flexible distributed energy sources that provide ancillary services to the DSOs for frequency control. FCAS (Frequency Control Ancillary Services) can allow the energy system to cope with variability in frequency fluctuations up to one hour. Greater dispatchability from PV and storage can provide faster and more accurate response than other flexibility sources. A fleet of distributed small-scale batteries would allow networks to buy grid support from customers instead of building their own infrastructure.

Reduction in Network Costs: Planning engineers are often forced to curtail PV export into the localised grid if the voltage rise on the network during the day is at risk of exceeding the voltage rise limitation (as discussed in Section 2.3). This is not a great outcome for customers as it limits their ability to obtain feed-in tariffs and hence, return on investment on their PV panels. Planning engineers may hence look at different CAPEX (capital expenditure) options to limit voltage rise including upgrading the LV feeder conductor size, replacing the distribution transformer with greater tap range, an On-Load Tap Changer (OLTC) or installing voltage regulators, etc. There are surprisingly few cost-effective options available on the market which are designed for overhead networks (e.g. up a pole). Most options are indoor industrial LV products. Thus, any large CAPEX spent by the DNO for enabling solar connections in passed onto consumers over time in the form of higher bills. Embedded storage penetration can mitigate these issues and help avoid network upgrades by limiting PV export during the day to say, 40% of maximum PV output. The remaining 60%
of power can be stored and either be consumed or exported during times of peak demand, when voltage drop rather than voltage rise is the main concern for the DNO. Distributed dispatchable energy sources during evening peaks can hence have a huge consequence on the industry and can help avoid investment in generators and transmission or distribution infrastructure.

Stable Energy Prices: Batteries can be used to store energy when the prices of electricity are low (due to overproduction) and export to the grid when prices are high. This is known as arbitrage and can lead to a reduction in pricing fluctuations. At the street level, to put forward a viable business case on arbitrage alone will require policy developments relating to tariffs. In an open market, prosumers will be able to decide between time-of-use tariffs or tariffs based on intraday movements in the market.

Virtual Power Plant: A modular system where many batteries can supply a large amount of power when required. This is particularly valuable when demand spikes and high gains can be made on the spot market or in contract with retailers. If a community member generates electricity that he or she does not consume, this electricity is stored across thousands of battery units or fed into a virtual electricity pool, where it can be used by people who need energy at that moment. By combining thousands of distributed systems into a largescale virtual pool, members of the community in theory can contribute to the market. This continues the theme of greater customer empowerment through the use of data analytics and digitalisation by putting greater control in the hands of prosumers.

2.3. Power Quality Issues with PV System Integrations

There are has been significant research done [15], [21], [22], [23], [24] detailing the effect embedded PV’s have on the distribution grid. In Victoria, the local Electricity Distribution Code [25] specifies that “Utilities must monitor quality of supply in accordance with the principles applicable to good asset management.” But a few technical issues with increasing PV penetration in the grid are propping up, as discussed below.
Voltage Regulation: Voltage regulation has always been known to be affected by voltage control at Zone substation, MV feeder impedance, the size, tap setting and short-circuit resistance [26] of distribution transformer, length and impedance of LV mains feeder and service wire. Nowadays though, voltage regulation is also being affected by the size, location and phase allocation of PV installations [27]. PVs are leading to voltage rise, most concerning in residential areas in one of two scenarios:

- Rural residents with large PV panel installations typically 10 kW at the end of long, high impedance LV feeders [28]; or
- Urban high density areas where large clusters of typically 2-5 kW [29] PV panel installations are found close to each other [30].

Voltage rise may be thought of as ‘reverse’ voltage drop and one of the most prevalent issues of PV is increase in duration of overall transgression of voltage regulation limits. Although not mandated to do so, utilities are obliged to maintain set voltages at the customer’s point of supply. Overvoltages (above 253V in Victoria) result in reduced life of appliances and increased power bills as appliances use the extra energy [31]. Additionally, due to the directly proportional relationship of voltage and real power, higher voltages in the system will mean the utility will need to make more overall capacity available. Some of the overvoltages in the grid are attributed to high transformer tap settings, asset condition (loose customer connections) or voltage rise in the upstream MV network. LV Steady state voltages in Australia are traditionally set high to allow for voltage drop along feeders. But utilities usually are able to target and resolve these issues as a way of continuously improving their networks. PV penetration though continues to cause overvoltages in the network from reverse power flow and hence make it increasingly difficult for the utility to abide by existing standards. The PV inverters effectively push up the voltage at the point of connection to force the current back upstream. But since the voltages at the transformer have already been set high to start with, the voltages at the end of circuits with a lot of exporting PV often exceed the upper limits. It can also make it more difficult yet to allow connections of more PV installations of the network as there is little headroom available. Headroom is the additional voltage deviation that can be experienced in an LV network before voltage limits are violated.

<table>
<thead>
<tr>
<th>Nominal Voltage</th>
<th>Voltage Range Preferred</th>
<th>Voltage Range Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>230V (Phase-to-Neutral)</td>
<td>+6% (243.8V) / -2% (225.4V)</td>
<td>+10% (253V) / -6% (216.2V)</td>
</tr>
<tr>
<td>400V (Phase-to-Phase)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – System Voltage Requirements under Australian Standards [32]
The limits specified in [25] and Australian Standard AS/NZS 61000.3.10 [32] for LV system steady-state voltage variations are summarised in Table 1. A preferred operating range is defined to represent the 50-percentile value of voltage, whereas the upper and lower limits are the 99 and 1 percentile values, termed “V99” and “V1” limits respectively.

Power factor deterioration: Till date, Australian utilities haven’t forced residential prosumers to provide power factor (PF) or reactive power support. Since the PV inverter is not supplying VARs, the PF will deteriorate. This is detrimental because the lower the PF, the less efficient the distribution system becomes as the power transferred becomes less useful for consumption. The utility hence has to provide PF correction through expensive infrastructure such as line capacitors, predominantly on the MV line, though found on LV as well.

Voltage Fluctuations and Flicker: Fast changes in voltage can result in lamp flicker, leading to headaches, irritation and eye discomfort. Occasional voltage changes that cause changes in light output should not be confused with flicker. In general, any load connected to the electricity network which generates significant voltage fluctuations can be the origin for flicker. Such voltage fluctuations are a result of substantial cyclic variations, especially in the reactive component. DNO’s consider the cause of emerging voltage fluctuations could be from micro-generation such as PV systems (or micro-wind generation schemes) where individual network assessments may not have been carried out. Measurements in simulations indicate that for a single solar panel power production can change by 50\% of rated power in 5 –10 s. This is a cause of flicker on short time scale, due to passing clouds as they affect solar irradiance on a PV panel.

Unbalance: PV’s can greatly exacerbate the unbalance present within an LV grid [33]. This is due to the fact that single phase households with PV connections can be connected unevenly across the 3 phases, as they are usually connected arbitrarily. Single-phase PVs are most likely to be domestic or small commercial customers. Large single-phase PVs or many small single-phase PVs will lead to current and voltage unbalance. An increase in the voltage unbalance also results in increased positive, negative and zero-sequence currents [34] and increased current in the neutral conductor [21]. An increase in the voltage unbalance can result in equipment overheating such as induction-motor type loads [35]. According to the
Code [25], “A distributor must compensate any person whose property is damaged due to voltage variations outside the limits prescribed”. Unbalance is hence undesirable for customers as well as utilities. Unbalance is inversely proportional to the three-phase short circuit levels at point of connection. Hence, unbalance can be of greater significance in rural networks where 3-phase short circuit levels may be a tenth of those found in urban networks. Additionally, to save cost, utilities sometimes run only two LV phase wires down a rural street if the number of customers is small. If these customers have rooftop PV, these LV networks experience even greater voltage unbalance.

Interruptions: In Australia, inverters are mandated to be programmed to trip when network voltages and frequency appear above certain set points as shown in Table 2. Voltage rise on the network often leads to customer inverter tripping - islanding mode - which stops the customer from exporting power to the grid. This is often a source of frustration for the customer as it limits their ability to monetise feed-in-tariffs. Frequent disconnections may also damage contactors, particularly if they only have an electrical life of set number of operations. Utilities have seen a rising number of customer complaints in the last few years as the voltage rise from PV grows.

Table 2 – Voltage and Frequency Inverter Set Points in Australia [16]

<table>
<thead>
<tr>
<th>Typical PV System Size Limit Set by DNO</th>
<th>Voltage and Frequency Set Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f(min)</td>
</tr>
<tr>
<td>10 kW per phase</td>
<td>47 Hz</td>
</tr>
</tbody>
</table>

Voltage Sag/ Swell: Voltage sags, caused mainly by network faults that depress voltage levels across the network, are one of the major concerns that customers have regarding power quality. Voltage swell works in the opposite way, where the voltage sinusoidal waveform sees an increase in RMS voltage. Voltage sag and swells take place when PV systems are disconnected from the grid under fault conditions [21].

![Voltage sag and swell waveform](image)

Figure 7 – Typical voltage sag (dip) and swell waveform representation [36]
Harmonic Emission Issues from PV Systems and their Impacts: The Code [25] imposes certain harmonic distortion limits on local DNO’s for LV feeder voltages, as shown below.

<table>
<thead>
<tr>
<th>Total Harmonic Distortion</th>
<th>Individual Voltage Harmonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>2%</td>
</tr>
</tbody>
</table>

But power electronics in inverters generate harmonic current emissions and hence hinder in the DNO’s ability to abide by the regulations. Harmonics may appear as a major problem with large penetration levels, but are generally well managed for small inverters. There is some evidence that inverters can cause high frequency emissions in the range of 9-150 kHz, sometimes termed supraharmonics. These have been noticed with power line carriers in Europe [34], although no issues have been reported in Australia. There is also some evidence that inverter front end filters can interact with ripple injection signalling, although the impact in the field is yet to be determined [34].

Power System Stability: The duck curve can lead to a number of challenges as well. At very high penetration levels, PV may create weaker transmission due to less requirement for conventional generation. Furthermore, the national electricity market operator or DNOs cannot control PV inverters owned by the customer. For example, in South Australia, a state that has the highest PV penetration in the world, it has been noticed that a fault upstream in the network can lead to sudden spike in demand after the fault due to all the rooftop PVs disconnecting. This is despite the fact that Australian Standards [16] have mandated certain fault ride-through requirements from PV inverters to avoid undesirable disconnections. Power system stability is hence an emerging serious cause for concern, especially once you consider that PV will be able to completely supply daytime load in some parts of the world, such as in South Australia by 2027-2028 [37].

Other Issues: High PV penetration also leads to undesirable protection trip from back-feeding. In a fault scenario, utilities can fall in the trap of only considering utility source fault levels on the MV line and distribution transformer, for example. But PVs on the same LV feeder can provide an extra infusion of current should a fault occur. The LV feeder fuse, by design, will only see the fault current from the source and not be able to detect continuing back-feeds from the downstream PVs. Secondly, inverse time relays, under high impedance
fault condition, might not operate in sufficient time to prevent high step potentials in case of earth faults. This is because downstream PVs lead to higher impedance to the fault, either making the relays blind to the fault or more likely, operate with extended delay times. Thirdly, a fault at the distribution transformer secondary terminal will cause reverse current to flow, preventing a directional power flow relay from detecting the fault and operating. In areas with high PV penetration, utilities need to look out for reliability problems because of unexpected changes in fuse operation, and should reconsider interrupting capability of their protection equipment.

![Figure 8 – Impact on Australian networks with varying PV Penetration Rates](image)

There is hence a large potential of negative impact of increasing PV penetration on the grid, as summarised in Figure 8.

2.4. LV Feeder Voltage Calculation Methods

Voltage drop is caused by an intrinsic property of the conductor or cable - impedance - and dictates that the voltage measured at the start of a circuit (distribution transformer secondary) will not be maintained through the circuit due to progressive losses along the circuit route. This has major implications for network planning and design as voltage drop calculations constrain how far utilities can run feeders. It is for this reason that utilities usually prefer to keep voltages high at the distribution transformer secondaries, so the voltage drop during peak demand days does not push the feeder voltage below range. Due to the lack of household load data, and monitoring and research investment in the last mile, there has been limited visibility around LV feeder currents and voltages. When assessing individual household load data, a generic ADMD per household is used by utilities in Australia, New Zealand, South Africa and UK. The reason behind this is to do with lack of coincidental load when assessing over a large enough customer set. This is explored further in Section 2.4.2.
The methodologies currently used to calculate voltage drop using ADMD can be traced all the way back to mathematical curve-fitting methods used on empirical observations in the 1940’s by Bary [39]. Other methods to estimate voltage drop include probabilistic techniques [40], empirical [41], [42], “bottom up modelling” [43], or statistical modelling [44], [45], [46]. But traditional feeder voltage estimation techniques lack the capability to analyse bi-directional power flow and only provide a voltage drop estimate at a singular point in time. Therefore, the distribution system is often designed in an approximate manner, making use of excessive simplifications and assumptions.

In order to analyse voltage rise, past techniques have again been probabilistic [40], [47], [48], [49], [50], empirical [27], statistical [51], “bottom-up” [52] or deterministically analysed [53]. In [53], the authors treat node voltage as a quartic characteristic and calculate it by deducing one feasible solution from four possibilities. This is a similar concept to the ‘DistFlow’ Equation [54], [55], a term that is commonly cited in research papers on distribution networks. This equation, though, fails to consider voltage unbalance between the individual phases. Some researchers have had voltage loggers physically installed on the LV feeders that they are analysing [30]. Given the volume of loggers that will be required to replicate this on a large scale, this is deemed outside the scope of our work. Even so, there is a limit to granularity since loggers were installed at 1 or 2 points on a feeder in those studies, not at every node (or pole) as is ideal for the modern-day grid.

2.4.1. Base Line Formulae

![Figure 9 – Single-line representation of a single residential load in a 2-bus load flow](image)

Voltage drop for a 2-bus AC circuit is given by the following relationship between voltage magnitude and distance along a feeder [56]:

\[
V_S - V_L = ILZ = IL(R + jX)
\]
\[(1)\]
Not all networks experience the same level of voltage drop as small variations in loads or generation can have a greater or lesser effect on the overall voltage profile, especially where the distribution network is old and via bare overhead wires; as they exhibit greater circuit impedances. Feeder current is usually an unknown quantity, especially with new consumers being added. Hence a relationship between V_L, V_S and ADMD is instead formed.

Table 4 – Summary of All Variables Used

<table>
<thead>
<tr>
<th>Variable</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_S</td>
<td>voltage at the source end (V)</td>
</tr>
<tr>
<td>V_L</td>
<td>voltage at the load node (V)</td>
</tr>
<tr>
<td>I</td>
<td>feeder current (A)</td>
</tr>
<tr>
<td>L</td>
<td>length of feeder section (m)</td>
</tr>
<tr>
<td>R</td>
<td>AC resistance of feeder (Ω/m) at 65°C</td>
</tr>
<tr>
<td>X</td>
<td>reactance of feeder (Ω/m) at 65°C</td>
</tr>
<tr>
<td>Z</td>
<td>impedance of feeder (Ω/m) at 65°C</td>
</tr>
<tr>
<td>Θ</td>
<td>‘power factor angle’ (angle between I and V_L)</td>
</tr>
<tr>
<td>P_L</td>
<td>real component of power consumed by load (kW)</td>
</tr>
<tr>
<td>Q_L</td>
<td>reactive component of power consumed by load (kVAR)</td>
</tr>
<tr>
<td>P_{PV}</td>
<td>power output of micro embedded generator at load end</td>
</tr>
<tr>
<td>n</td>
<td>number of consumers downstream of transmission node</td>
</tr>
<tr>
<td>N</td>
<td>number of consumers downstream of distribution node</td>
</tr>
<tr>
<td>N_{PV}</td>
<td>number of prosumers downstream of distribution node</td>
</tr>
<tr>
<td>A</td>
<td>After diversity maximum demand</td>
</tr>
<tr>
<td>S</td>
<td>apparent power consumed at the node (VA)</td>
</tr>
<tr>
<td>P</td>
<td>net real power consumed at the node (W)</td>
</tr>
<tr>
<td>Q</td>
<td>reactive power consumed at the node (VAR)</td>
</tr>
</tbody>
</table>

\[
S = P + jQ = V_L I^*
\]

(2)

\[
S^* = P - jQ = V_L^* I
\]

(3)
Assuming V_L to be real ($V_L^* \approx V_L$) and $XP \approx RQ$, V_L can be solved as one of two solutions from a quadratic equation:

\[V_L^2 - V_S V_L + (RP + XQ) L = 0 \]

\[V_L = \frac{V_S \pm \sqrt{V_S^2 - 4(RP + XQ)L}}{2} \]

\[= \frac{V_S \pm \sqrt{V_S^2 - 4(R\cos\theta + X\sin\theta)ALN}}{2} \]

A linear equation is instead derived from Equation (4) by assuming $V_L^* \approx V_S$ (approximation for small voltage drops) and $XP \approx RQ$:

\[V_L = V_S - \left(\frac{RP + XQ}{V_S}\right) L \]

\[= V_S - \left(\frac{R\cos\theta + X\sin\theta}{V_S}\right) ALN \]

Since this is essentially recursive in nature, it can be used easily along successive sections of a linear radial or branched line to obtain voltage drop at each feeder extremity. Then, V_S will be the intermediate branch point instead. For a treed network, it can be used for every branch in the wider radial network, with the current flows split at the points of divergence.

2.4.2. Load Diversity

ADMD has been used as a basis for voltage drop calculations because it is a widely-understood notion that not all customers on an LV feeder will be using their maximum connected load at the same time; i.e. the individual peak Maximum Demands (MD) are
unlikely to be co-incidental. By understanding diversity, planners are able to reduce CAPEX. Boggis [41] conceptualised this formula:

\[
A = \frac{Total \ Maximum \ Demand \ (MD)}{Number \ of \ Consumer \ Premises \ (n)} \tag{8}
\]

The above holds true when \(n \) is very large, usually derived from the recorded maximum yearly nodal demand on the transmission network divided by the number of customers serviced [57]. But when \(n \) is small (specified as \(N \) here for distribution transformer studies), the ADMD \(A \) should be multiplied by a correction factor to prevent selection of an ADMD that is too low. This correction factor, called Diversity Factor (DF), leads to a more credible coincidental peak load. It may be referred to as coincident peak demand [48] or effective demand [58]. The total MD is then:

\[
MD = A \times N \times DF \tag{9}
\]

Bary [39] defined DF as a ratio of the sum of the maximum power demands of a part of the system to the maximum demand of the whole system measured at the point of supply. He also demonstrated a relationship between the number of consumers and the group Coincidence Factor (CF), defined as a ratio of the maximum coincident total demand of a group of consumers to the sum of the maximum power demands of the individual consumers comprising the group.

\[
Coincidence \ Factor = \frac{Total \ Maximum \ Demand}{Sum \ of \ Individual \ Maximum \ Demands} \tag{10}
\]

CF is a measure of the simultaneity of peak demands of a group of \(N \) customers and is in the range of 0 and 1, accounting for a lack of diversity. A smaller group of consumers leads to a higher CF and a lower DF. DF is hence larger than or equal to 1 and is the inverse of CF. Bary [39] likened the CF to follow a rectangular hyperbolic equation shown as:

\[
E_N = E_{n,\infty} + (1 - E_{n,\infty})/N \tag{11}
\]

where \(E_N \) is equal to the CF percentage for \(N \) number of consumers, and \(E_{n,\infty} \) is the CF percentage of a very large group of consumers \(n \) tending to \(\infty \). A variety of formulae for calculating the CF have been published in empirical studies [42], [59], [60], [61]. Nickel and Braunstein [59] formulated \(CF = 0.5 \times (1 + \frac{5}{2N^2+3}) \) where they evaluated similar loads in residential households in the United States. Rusck [60] redefined CF as:
where k_N is equal to the CF percentage for N number of consumers, and $k_{n\infty}$ is the CF percentage of a very large group of homogeneous consumers n tending to ∞. Typical values of CF in North American systems for $n>100$ are between 0.33 and 0.50 and could be as low as 0.2 in certain scenarios [62]. CF for residential Australian systems is typically between 0.85 and 0.95 [63]. CF is typically 0.2 to 0.5 in the UK, depending upon the measuring or sampling interval [64].

In the UK [65], DF was empirically shown as:

$$DF = 1 + \frac{k}{(A \times N)}$$

where Confidence Factor k is a constant that each utility sets independently depending on the affluence of the suburb and the demographic of the area. It is typically between 8 and 12 for ADMD between 3kVA and 5kVA respectively. This equation was further refined [66] and an Unbalance Factor (UF) was also applied to MD to account for the unbalanced voltage amongst the phases. This has been discussed in the following section.

2.4.3. Voltage Unbalance

Due to the dynamic nature of a residential distribution network, it is not possible to achieve a completely balanced load in an LV circuit. This is because the residential customer usage pattern varies at different times of the day. System designers and engineers calculate optimum load across the three phases during transformer installation. However, due to
network augmentations and changes in customer usage patterns, the LV balance drifts over
time. This situation results in negative-sequence and zero-sequence currents flowing in the
network, which increases the losses in the network and voltage drop.

Figure 11 – Balanced three-phase LV circuit

Figure 12 – Balanced three-phase voltage/ current waveforms

Figure 13 – Unbalanced three-phase LV circuit

Figure 14 – Typical unbalanced three-phase voltage/ current waveforms
Figure 11 illustrates a simplified balanced LV circuit. The waveforms for voltages and currents in a balanced circuit are shown in Figure 12. Figure 13 and Figure 14 show the same for an unbalanced circuit.

When calculating voltage drop, the ADMD used is a 3-phase value, and hence does not provide visibility of the unbalance across the individual phases. The greater voltage drop caused by unbalance is not captured in Equation (7). Therefore, an Unbalance Factor (UF) is also applied to ADMD to account for the unbalanced voltage across the phases. UF was originally derived from field observations of 21 distribution networks; and was shown to be $(1+5.52\sqrt{N})$ [67] where no branches were present on the LV feeder. A different definition of UF was created later to allow for branched networks: $(1+4.14\sqrt{N})$ [68]. UF was shown by Davies and Paterson [67] to closely match statistical calculations. They concluded that the probability distribution of the voltage across the consumer’s terminals is closely approximated by the normal distribution curve. UF was combined with DF for a 3-phase, 4-wire system as follows [66]:

$$UF \times DF = \left(1 + \frac{4.14}{\sqrt{N}}\right) \times \left(1 + \frac{k}{A \times N}\right)$$ (14)

And for a 2-phase 3-wire system as follows:

$$UF \times DF = \left(1 + \frac{3}{\sqrt{N}}\right) \times \left(1 + \frac{k}{A \times N}\right)$$ (15)

The combined factors are then applied to ADMD in Equation (7) to obtain:

$$V_L = V_S - UF \times DF \times \left(\frac{R \cos \theta + X \sin \theta}{V_S}\right) ALN$$ (16)

From here on, Equation (16) will be referred to as the ‘traditional method’. It is still in use, locally in the Victorian electricity supply industry, with $k = 12$ and $V_S = 400V$ in a 3-phase, 4-wire system:

$$Voltage\ Drop = UF \times DF \times \left(\frac{R \cos \theta + X \sin \theta}{V_S}\right) ALN$$ (17)

$$Voltage\ Drop\ % = UF \times DF \times \left(\frac{R \cos \theta + X \sin \theta}{V_S^2}\right) ALN \times 100$$ (18)

For a 2-phase, 3-wire system, the following equation is used with $V_{S,2PH} = 460V$:
This has served the industry well due to ease-of-use and a unidirectional power flow. But it is failing to adequately address voltage rise seen in ‘active’ LV feeders, which is increasingly becoming the norm in the modern LV grid.

2.4.4. Electricity supply industry practice

In this section, we will be looking at how the formulas specified in the sections above are being applied in industry. A majority of utilities across the world accept some form of (16) for voltage drop calculations [66]. Locally in Victoria, utilities use a confidence factor of $k = 12$. Therefore, $DF = 1 + 12/(A \times N)$. They also accept the use of commercial software such as LVDrop™ to calculate voltage drop which will be discussed later.

Horizon Power and Western Power in Western Australia use LV-Design™ open-source software [69]. The software doesn’t utilise UF and uses $DF = 1 + 1/N_{ph}$ where N_{ph} is the number of customers on the heaviest loaded phase = round up value of $(N/3)$. Hence, Confidence Factor $k \approx 3 \times A$. Another utility, Ausnet Services, does not use UF but instead calculates voltage drop along each phase separately. This involves a very detailed site visit confirming the number of loads connected to each phase at each node. They also use the formula for MD on the transformer:

$$ MD = A_1 \times N_1 + A_2 \times N_2 + \cdots + 12 + \text{Specific Load} \quad (20) $$

Here the subscripts 1, 2, … relate to different consumer groups (residential, commercial, industrial) and are useful in calculating a weighted MD. This concept was introduced in [68]:

$$ MD = A_1 \times N_1 + A_2 \times N_2 + \cdots + 8 \quad (21) $$

In the UK, SP Energy Networks utilise this weighted maximum demand method to calculate the loads in each LV branch [70]. $Load_{\text{branch}} = N_{\text{branch}} \times ADMD_{\text{weighted}} + 8kW$. This has also been derived from [66] discussed above. Scottish and Southern Energy use $Load_{\text{branch}} = N_{\text{branch}} \times ADMD_{\text{weighted}} + 18kW$ according to [71]. They perform voltage

\[
Voltage\ Drop\ % = 2 \times UF \times DF \times \left(\frac{R \cos \theta + X \sin \theta}{V_{S,2PH}^2}\right) ALN \times 100 \quad (19)
\]
drop calculations using the commercial software WinDebut™, which is an updated version of the DEBUT (Demand Estimation Based on Units of Time) tool, that takes a statistical approach developed in [72]. Demand in DEBUT is represented using normal distribution curves, and was derived from [67] discussed above.

In New South Wales in Australia, Ausgrid use $DF = 0.97 + 12/N + 1.3/\sqrt{N}$ [73] and Endeavour Energy use $k = 2 \times A$ i.e. $DF = 1 + 2/N$ [74]. Endeavour specify UF as 4, 2 and 1.5 for $N = 1, 2$ and 3 customers respectively. For $N > 3$, $UF = 1 + 5/N$. The traditional method for calculating maximum demand used by the South Eastern Queensland Electricity Board in Australia was with a Confidence Factor $k = 3 \times A$. If N_{ph} equals the number of customers on a phase, $MD = A \times N_{ph} \times (1 + 3/N_{ph})$ [45].

E.ON, a utility in the UK use the following [75]:

$$DF = \frac{1}{N_e} \times \left(\frac{N_d}{2} \left(1 + \frac{12}{A \times (N_d + N_t)} \right) + N_t \left(1 + \frac{12}{A \times N_t} \right) \right) \approx 1 + \frac{12}{A \times N} \quad (22)$$

where N_e represents the equivalent number of customers downstream of the section in which voltage drop calculations are being performed. This is calculated as half of the number of customers connected in the section (distributed customers N_d), in addition to the number of customers supplied through the section (terminal customers N_t):

$$N_e = \frac{N_d}{2} + N_t \quad (23)$$

In South Africa, the Association of Municipal Electricity Utilities (AMEU) have, according to Rhyn [76], specified that confidence factor $k = 2 \times A$ with $DF = 1 + 2/N$ and $UF = 1 + 2.8/\sqrt{N}$. Research carried out [77], [78] on behalf of the Northern Powergrid Utility in the UK shows $DF = 1 + 12/(A \times N)$ and $UF = 0.7$ for estimating load on a distribution transformer.

All these feeder voltage estimation techniques lack the capability to analyse two-way power flow from PVs and only provide a voltage drop estimate at a singular point in time, even if that worst-case voltage will be experienced only say 5 times a year. Alternatives to the empirical methods explained above are shown in the following section.
2.4.5. Feeder voltage estimation – Alternative techniques

A statistical classification method of ADMD evaluation, with indication of the probability of not exceeding a certain value has been carried out by Gosden [45] as an alternative to the empirical methods explained above. Utilities such as Energex, Ergon Energy, Essential Energy, TasNetworks, ActewAGL and Wellington Electricity use LVDrop™ commercial software which is based on this methodology. This method estimates MD from the probability distribution curves known as Gaussian pdf (Probability Density Function). According to Gosden [45], total load current for n houses \(MD = \mu_{\text{total}} + k\sigma_{\text{total}} \) and for a group of N similar loads, \(MD = N\mu_i + k\sigma_i \) with \(DF = 1 + k\sigma_i / (\sqrt{N} \times \mu_i) \). Note that DF is inversely proportional to the square root of N rather than N. And \(\mu_i \) and \(\sigma_i \) refer to the mean and standard deviation of an individual load. Here \(k \) is the number of standard deviations above the mean the most likely demand is expected to be. It depends on what the user deems as an acceptable level of risk. For a residential area, for most practical purposes, \(k = 2 \) and \(\mu = 2\sigma \) correspond to a confidence level of 97.7%. Hence, \(DF=1+1/\sqrt{N} \). Gosden [45] did not specify UF as he assumed balanced 3 phase loads. This is an impractical assumption. The unbalanced interactions amongst phases are an important element of voltage drop calculations. Utilities have left UF to the discretion of network planners but there has been no proof that rigorous testing has been done to achieve said UF’s. A quick look at the different utilities indicated vastly different understanding of appropriate UF and associated risk. This is often an arbitrary decision as there is insufficient information available to the design engineer or in literature.

Eskom, a utility in South Africa, uses the Herman-Beta method to estimate the currents at the time of maximum effective demand, to calculate voltage drop. This method is a form of Beta pdf statistical modelling described by in [79]. The Beta pdf is shown to be a suitable pdf to represent load data currents, when compared to Gaussian, Weibull and Erlang pdf’s [80]. The authors cite its versatility to be skewed left or right depending on the group ADMD as a major advantage of restricting loads for certain customers. It has the property to be bounded between zero as a minimum and a particular maximum value (e.g. circuit breaker rating). Additionally, a beta pdf shape that is slender represents a homogeneous group of residents (low standard deviation) which is a desirable tool when planning distribution networks. The Beta pdf eliminates the need to use DF on stochastic loads, but relies on the DNO to select multiple parameters: \(\alpha, \beta, c \) as well as ADMD. Power engineers outside Africa, however, are not provided guidelines on how these can be selected except c (fuse rating at point of connection). This can hence result in huge variances dependent on the selected
parameters. This presents a missed opportunity as the scope could have been extended to other networks, for example, in Australia or Europe, in order to satisfactorily prove the merit in the proposed probabilistic methodology.

Namanya [49] extended this application to include PVs. Risk levels and probability of exceeding prescribed feeder end voltages were continued to be modelled on a beta pdf. He proposes a limit on PV penetration percentage according to the percentage risk of voltage rise excursions. Power engineers outside Africa, however, are also not provided guidelines on how the parameters of the pdf can be selected. Namanya [49] proposed to limit PV penetration to 30%, equivalent to a 5% risk of voltage rise excursions. But DNO’s can be severely reprimanded by the customers if the risk of voltage violations outside the permissible range is too high. Violation of the regulatory requirements may even put a distributor’s licence at risk. Holiday [81] recognises this as part of a risk in defining a deterministic value of feeder voltage in the LV network. His definition of an overall risk includes a combination of the risk of (a) voltage violation outside permissible limits; and (b) of choosing the extent and slenderness of the beta pdf curve, and choosing ADMD, etc.

McQueen and Watson [44] developed a different method of demand estimation based on the assumption that demand is a stochastic process. They construct representative Gamma distribution loading profiles for each customer along a network; and use a Monte Carlo simulation to calculate the expected voltage drop. The Monte Carlo method uses stochastic variables, which can take any value between 0 and 1 with the same probability. In the modern age, where demand data is available from smart meter data there is an opportunity to refine this statistical probabilistic method.

Another method of voltage drop estimation is “bottom up modelling” where every appliance is simulated for all households [43]. This, however, is too data-intensive for a large number of households and networks; and is more useful for demand-side management studies. “Bottom up Modelling” has been extended in [52] to include PV’s and batteries. But this is an information-intensive model and is more suited for localised cases such as the microgrid.

Locally in Australia, utilities such as ActewAGL, Energex and Ergon Energy use ADLDD (After Diversity Lowest Daytime Demand) [27], [82]. Thomas [27] proposes ADLDD to be used instead of ADMD when performing separate voltage rise calculations, since voltage rise is most noticeable during winter afternoons when residential usage is the lowest and residential PV’s are operating at their optimal (between 10am and 2pm). Even
though residential power consumption is lower during the night (say 2am), there is no PV generation at that time. The combination of low winter daytime consumption and peak PV generation leads to maximum voltage rise instead. 22 substation networks were surveyed by Thomas [27] and the number of customers were recorded against kVA per customer during winter days. The best square fit was an empirical logarithmic equation found from the graph of number of customers vs. kVA/customer during winter days.

\[ADLDD = 0.1059 \times \ln(N) + 0.0715 \quad (24) \]

\[V_{\text{rise}} = Z_{\text{line}} \left[I_{PV} - \left(\frac{L - x}{L} \right) I_{\text{load}} \right] \quad (25) \]

where \(x \) represents the length of the LV feeder till the customer; and \(L \) represents overall length of LV feeder. Note \(I_{\text{load}} \) represents the current equivalent of ADLDD. As expected, the lower the \(I_{\text{load}} \) the higher the voltage rise. But it seems implausible that 22 networks can be taken to represent entire geographical regions across Australia. This was not well-defended in the paper. Furthermore, in cooler parts of Australia, such as Tasmania, summer daytime demand does not include air-conditioning loads and is actually lower than winter daytime loads.

The value of ADLDD is usually taken as 0.5 kW [83] or 0.5 kVA [84]. In New Zealand, Watson & Watson [85] specified ADLDD for an area as 20% of ADMD (e.g. 0.6 kW in a 3 kW ADMD area). This makes sense intuitively as households with larger peak usage appliances are likely to also have a high daytime off peak latent usage. Research in the UK [56] specified ADLDD between 0.142 kW and 0.4 kW. But this approximation will not hold well in the future when ADLDD is negative, as can take place in a network with a high number of PV installations.

According to [56], the voltage rise can be defined as:

\[\text{Voltage Rise} = V_L - V_S = \frac{R_{\text{line}} (P_{PV} - P_{\text{load}}) + X_{\text{line}} (Q_{PV} - Q_{\text{load}})}{V_S} \quad (26) \]

The PV panel is modelled as a power source. In most scenarios, \(Q_{PV} \) can be omitted as PV panels only produce active power i.e. PF = 1. Volt rise has been defined by [86] as per below equation, but it does not consider phase unbalance.
Voltage Rise \(= V_{PV} - V_s = \left(\frac{Z_{Load}}{Z_{Line} + Z_{Load}} \right) \times (V_s + Z_{Line} \times I_{PV}) - V_s \) \hspace{1cm} (27)

\(Q_{PV} \) is neglected and PV panels modelled as power sources are also done by Eftekharnejad et al. [53]. The authors treat node voltage as a quartic characteristic and calculate it by deducing one feasible solution from four possibilities. This equation has been derived in a similar fashion as to the ‘DistFlow’ equation [54], a term that is commonly understood in the research community. Again, this equation fails to consider phase unbalance.

\[
|V_L|^4 + (P_{PV} - P_{Load})^2(R_{Line}^2 + X_{Line}^2)^2 - Q_{Load}^2(R_{Line}^2 + X_{Line}^2) \\
- 2|V_L|^2R_{Line}(P_{PV} - P_{Load}) + 2Q_{Load}X_{Line}|V_L|^2 - |V_L|^2|V_s|^2 = 0
\] \hspace{1cm} (28)

Other probabilistic techniques [40], [47] and statistical models [72], [50] have also been proposed in literature. But they run into a limitation of granularity. They are unable to replicate voltage logging assessments at every node or pole as is ideal for the modern grid.

2.5. Research Gap

Predictability of existing and future LV feeder voltages is a key concern for a utility in the age of ever-increasing PV penetration. But existing voltage estimation methods used in industry rely on empirical and probabilistic methods, some born in the 1940’s, only provide voltages at a single point in time and are not suited for bi-directional power flow. On the other hand, bottom-up modelling or load-flow simulations is considered too labour-intensive for the vast number of LV circuits that a network owner has. Other voltage estimation methods mentioned in literature assume balanced networks which is unrealistic as PVs exacerbate unbalance; do not make use of interval metering data and rely on other monitoring equipment which pose asset management and cyber security issues. This work hence fills the following gaps:

- A comprehensive literature survey on all the major differing methods of voltage estimation is presented in this chapter, with a focus on industry approach as well. Similar work has not been found in other research papers or theses.

- There has been no attempt made to predict voltages based on future connections that are not statistical probabilistic, or purely deterministic using load-flow. A balanced
approach is required; with the end-result being a method that helps voltage regulation calculations to be done quickly and accurately.

- This thesis proposes a new modern voltage estimation technique using a standard machine learning algorithm to train a decision tree model that predicts feeder voltages with new prosumers. The proposed method calculates accurate 1-percentiles and 99-percentiles (for voltage rise and voltage drop respectively) at each bus in an LV feeder. This model is hence useful in determining the headroom available using V1 and V99. Since it provides the voltage profile for a year, this method is not skewed towards providing a worst-case scenario as the ultimate constraint and hence does not make overly conservative assumptions which are present in the status quo. It allows more prosumers onto the network, and hence improves network planning and asset utilisation techniques. This is discussed in Chapters 4 and 5.

- Utilities in the western world have access to interval metering data. But are failing to fully embrace data analytics and are slow or unwilling to adapt to the changing nature of the grid. This work will help in changing attitudes and demonstrates the usefulness of machine learning in the modern grid. A second machine learning algorithm is used to train a set of simple parameters (representing the load and PV diversity and imbalance) of a non-linear regression model. This gives rise to a grey box model that utilises machine learning and also presents the parameters to engineers that provide visibility of the in-built assumptions of the model. It forms a readily applicable extension to current voltage calculation approaches with minimal re-engineering; and improves the accuracy of LV residential network planning and forecasting. The trained model performs reasonably well when compared to expected voltages from a simulation. As shown in Chapter 5 this is better suited for applications where the planner is trying to predict total number of voltage excursions over a year as the overall RMSE for each time instance is very low.
CHAPTER 3 – PROBLEM ANALYSIS

This chapter is split into two sections. The first part of this chapter outlines the nature of distribution networks in Australia. The second part specifies the technical details behind the modelling work done in this research.

PART I – BACKGROUND

3.1. Victorian Power Networks

Figure 15 – Operating areas of the Victorian electricity distributors [87]

Above is a map of different distribution networks and their respective jurisdictions in Victoria, Australia. As of December 2017, three companies operate the five distribution networks in Victoria. Just like the rest of the world, electricity distribution is a regulated
business in Australia. Distribution licensees are monopolies within their respective boundaries and are hence only allowed to charge a fixed revenue from each customer as per rules set by the Australian Energy Regulator (AER). It is also under these rules that determines the fact that if there are certain ways in which utilities can lower the cost of design or construction of their networks, they can pass on the savings to the consumers in the form of lower tariffs. Distribution licensees are not allowed to perform unregulated business such as installation of customer owned equipment such as PVs or batteries; and are also not allowed to participate in the wholesale and retail markets.

The entire transmission network in Victoria is owned by one company. Transmission of electricity is the process of transporting energy from generation plants to urban load centres or wherever electricity is consumed. The newer generation plants may use solar irradiation, wind power, or uranium as its fuel rather than natural gas, diesel, or coal. A bulk of the energy production in Victoria and Australia is powered by burning of brown coal in generation power plants. This electricity is then fed into step-up transformers and transmitted at Extra High Voltage (EHV) around 500kV towards metropolitan areas through overhead transmission lines. The wires run for hundreds of kilometres and are supported by tall lattice structures known as transmission towers. EHV is used so that losses in the conductor over such a distance can be kept to a minimum. Once the transmission lines reach close to urban centres, they terminate into Terminal Substations which step the voltage down to sub-transmission levels (order of magnitude of 66kV or 132kV). From here-on the distribution licensee is responsible for transporting energy to virtually every household or business within their jurisdiction. The sub-transmission lines are first transported to zonal substations, which can be thought of as a supplying station for a pocket of few suburbs. The Zone Substations step the voltage down from HV to MV (typically 11kV or 22kV). Power is diverted to suburban streets through overhead or underground MV lines. It is then stepped down again to LV by distribution substation transformers. This voltage transformation is done to increase safety but this also increases the downstream losses. This voltage can be used by consumer-grade appliances.

There are two main templates for distribution networks around the world. These can be referred to as European and North American systems. Both the systems use a predominantly radial network and use the same types of equipment: conductors, cables, transformers, regulators, surge arrestors, etc. The main differences are in layouts and configurations. The North American system typically uses 25 or 50 kVA single-phase transformers and has standardised the 120/240V LV levels. It is characterised by short
secondary circuits (from LV terminal of transformer to point of supply), typically no more than 250 feet (76m) [88]. The European system with LV 230/400V or 240/415V, is used in many different parts of the world, for e.g. UK, Netherlands, Belgium, Finland, Brazil, Columbia, South Africa, Australia and New Zealand. It uses larger three-phase transformers and more consumers per transformer. The LV feeders are typically 4 times the length (300m) of the North American system. In rural areas, utilities sometimes only run 2 MV phases down a long stretch of road or into a paddock and install a single-phase transformer with LV 230/460V connected phase-to-phase. More information on the European system can be found in [89]. Locally in Victoria, MV levels are 22kV, 11kV or 6.6kV.

Figure 16 – Comparison of North American and European Systems [88]

![Figure 16](image-url)
3.2. **MV and LV Lines**

Utilities are found to typically service 1 of 3 regions (urban, suburban or rural), which does not necessarily apply only to Australian networks. All three regions have their own characteristics.

Dense urban areas have predominantly underground distribution networks. They service vital customers (like company headquarters or major sporting arenas) and hence have strong reliability and redundancy built in. MV cables used are typically 3-core 240mm² copper or aluminium which have low impedance. These networks use larger sized transformers (350 kVA to 1500 kVA) and supply large loads such as office and residential high-rise buildings. The LV network is designed to partially backup adjacent LV feeders [90]. The LV cables have low impedances and low X/R ratios.

Suburban networks are usually overhead, but may also contain areas of residential and commercial estates with underground reticulation. The MV network is designed to partially backup adjacent MV feeders. The MV overhead conductors have higher impedances than the MV underground cables used in urban areas. Suburban areas have smaller transformers than those in urban areas. The LV network is designed to connect onto adjacent LV feeders via open switching points for redundancy. The LV overhead conductors have higher impedances than the LV underground cables used in urban areas.

Rural regions are serviced by overhead distribution networks. Since Australia is characterised by a vast expanse that is populated intermittently by small communities, rural regions typically contain long (50km or more) MV feeders which have limited capability of backing up adjacent MV feeders. Since these MV feeders were designed decades ago to accommodate a one-way power flow, the current capacity of MV feeders is inversely proportional to their distance from the Zone Substation. In other words, MV feeders tend to get thinner and of higher impedance the farther they go away from their supplying substation. Transformers used are small in size (say 25 kVA) since they supply small loads and small number of customers. The LV network is generally too geographically dispersed for backup. The LV overhead conductors can have relatively high impedance, feasibly over an ohm [90].

3.2.1. **400V Construction**

LV lines in Australia follow a 400V, 3-phase, 4-wire configuration and are usually strung on approx. 10m tall poles. If the poles also have MV assets on them, LV is strung
lower than MV as shown in Figure 17, and 12m tall poles are used instead, such that approx. 2m separation between MV and LV can be maintained at pole, and the highest voltage is attached to the top.

![Diagram of Pole Top Construction](image)

Figure 17 – Typical Pole top construction in Australia [91]

When modelling a 400V, 3-phase, 4-wire configuration, the length of the cross-arm to be modelled plays an important role and had to be obtained from the local utility. For short transmission lines or for distribution lines, shunt admittance (capacitance) can be neglected. But reactance for LV feeders, and hence voltage drop, is affected by the cross-arm spacing as this defines the phase-to-phase separation.

<table>
<thead>
<tr>
<th>SUPPLY SYSTEM</th>
<th>No. of WIRES</th>
<th>MAX. SAC. COND. SPAC.</th>
<th>CROSSARM LENGTH AND CONDUCTOR CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-phase</td>
<td>3100 5200</td>
<td>830</td>
<td>2100</td>
</tr>
<tr>
<td>3-phase</td>
<td>1300 2800</td>
<td>600</td>
<td>2700</td>
</tr>
</tbody>
</table>

![Diagram of LV Cross-arm Phase Separation](image)

Figure 18 – LV cross-arm phase separation details [91]

As per Figure 18, the typical phase-to-phase separation in a cross-arm used in local utilities is either 600mm or 830mm. These configurations will produce different reactance.
Positive sequence (and negative sequence) reactance consists of self-inductance of the phase conductor and mutual inductance between the conductors. The combined inductive reactance of the line is calculated by the following equation [92]:

\[X = 2\pi f L = \mu_0 f \ln\left(\frac{GMD}{GMR}\right) \]

(29)

- \(f = 50Hz \)
- \(\mu_0 = 4\pi \times 10^{-7} \text{ H/m} \) for a non-magnetic material
- \(\text{GMR} = \text{Geometric Mean Radius} \)
- \(\text{GMD} = \text{Geometric Mean Distance} \)

There are magnetic flux lines not only outside of the conductor, but also internally. With a large number of strands, the calculation of the GMR for a stranded conductor can be tedious. But a simplification is used to use the equation for a solid cylinder \(GMR = e^{-1/4} \times r \) where \(r \) is the radius of the conductor. Irrespective of the conductor size, GMD must be calculated for individual line configurations in a multiphase system, considering combinations of distances between conductors [93]:

\[GMD = 3 \sqrt{d_{12} \times d_{23} \times d_{31}} \]

(30)

Positive sequence (and negative sequence) resistance is not affected by the cross-arm size, and is instead dependent on temperature conditions. Unlike DC resistance, the variation of AC resistance with temperature is not linear over the normal temperature range due to the skin effect. \(R \) can be calculated using the following equation [94]:

\[R = R_{\text{ref}} \left[1 + \alpha (T - T_{\text{ref}}) \right] \]

(31)

- \(R \) = conductor resistance at temperature ‘\(T \)’
- \(R_{\text{ref}} \) = conductor resistance at reference temperature (taken as 0.18 \(\Omega/\text{km} \) at 20\(^\circ \)C)
- \(\alpha \) = temperature coefficient of resistance for the conductor material (taken as 0.004308 for aluminium at 20\(^\circ \)C) [94]
- \(T \) = conductor temperature in \(^\circ \)C
- \(T_{\text{ref}} \) = reference temperature that \(\alpha \) is specified for

Approx. normal cyclic rating for 19/3.25AAC (code name ‘Neptune’) is 320 kVA for LV or 17.7MVA for MV. The electrical and physical performance data have been obtained from the manufacturer’s catalogue [95].
3.2.2. Modelling of Distribution Networks

All utilities in Australia have their own version of GIS which is a geographic representation of their respective networks. HV and MV conductors are well documented and modelled in GIS, which allows utilities to run fault level analysis and export models into other load flow tools such as PSS/E. These exported models can be used by consultants to perform transient analysis (speed of response) and analyse the Short Circuit Ratio (system strength) when proposing connection of a new solar-powered plant onto the grid, for example. These processes and fundamentals, in theory, should also be used when analysing new PV connections onto the LV grid. But one of the main impediments to LV modelling is the presence of large holes in the data available from any utility GIS. The presence of unknown LV active and neutral conductors, unknown LV customer phase connections, unknown distribution transformer tap position and unknown PV inverter response modes is fairly characteristic of all utilities in Australia. Hence each network has to be individually modelled in tools such as PSS/Sincal, Powerfactory or OpenDSS. Models become huge, and require resources as well as computation time. Equally, the smallest LV networks are also important to model as there is less diversity amongst the customers. Certain concessions may still have to be made, such as not modelling LV service wires based on the assumption that they do not incur significant voltage drop or voltage rise. Assuming the most common LV conductor in an area to stand-in for the case network is also a typical practice. Best estimates can be made based on age and standard practices at the time for overhead or underground cables. There are cross-referencing issues that usually pop up when using smart meter data. This is when a customer serviced from one transformer is incorrectly assigned to another transformer in GIS. This is most commonly found for customers near LV open points, though not always. LV customer phase information is largely unknown, although the use of data analytics to identify this remotely (rather than identifying for each residence on site) is an area being explored by Victorian utilities who have access to smart meter data.

The main considerations that the network model should allow for are: 4 wire, 3-phase plus neutral representation; and interval meter load data integration (allocation of load to specific LV busbars).

Within OpenDSS, models are constructed using a series of text files. The Case Network 1 model created is based on an actual overhead distribution network in suburban Melbourne, Australia. Case Network 1 model is a fairly typical representation of the networks prevalent in Australia. It was chosen since it falls within a zone substation that
has seen a higher number of voltage excursions than other zone substations. Excursions are voltage violations above or below predefined an acceptable voltage range. The area shown in red below represents the geographical boundary (extremities of the MV feeders) of the zone substation in question. These heat-maps are provided by a local DNO.

![Figure 19 – Heat-map of number of overvoltages within United Energy’s area](image)

![Figure 20 – Heat-map of duration of overvoltages within United Energy’s area](image)
3.3. Transformer Construction

Transformers exist in various construction types including pole-mount, single wire earth return (SWER), indoor, ground, SWER isolating and kiosk pad-mount construction. The size of individual substation can range between 10 kVA and 500 kVA for pole-mount, up to 50 kVA for SWER, 100 kVA for SWER isolating, and typically between 100 kVA and 8MVA for ground, kiosk and indoor substations. The secondary operates at 230/400V and LV reticulation is via 3-phase, 4-wires. The 4th wire is the neutral conductor. Note the MV in the European system is 3-phase 3-wire. The neutral conductor does not travel along the MV feeder route. See Figure 16.

Transformers supply end users through the LV network (400/230V) which consists of typically 2-4 radial circuits (underground or overhead). Losses in the distribution network are moderate to high. Voltage drop in the distribution network is the highest (proportionately) i.e. up to 6-7%. This is because HV, MV and LV networks have different impedance characteristics, going from mainly inductive for HV to mainly resistive for LV. Figure 21 presents an illustration of a Geographic Information System (GIS) of a local distribution network (in Victoria, Australia) supplying customers. Most radial LV circuits are interconnected to neighbouring LV circuits through an open point (normally open isolator). Typically, 2-6 (mostly single phase) end-users are connected on each distribution box/pillar or pole in the LV circuit.

Distribution transformers are relatively expensive and vital network components in transporting power between the HV and LV network. They have a historically low failure rate, however if a substation load exceeds its rating for an extended time, the transformer winding temperature will exceed its design value, shortening plant life and increasing the chances of in-service failure. Distribution transformers have high failure consequence in terms of capital cost of unplanned replacement, localised supply reliability, and environmental and health and safety impacts. Therefore, proactively identifying and addressing any significant overloads before failure is considered prudent asset management.

A distribution transformer is connected to its LV circuits though LV circuit fuses and to the HV feeder through HV fuses. The purpose of the HV and LV fuses is to protect the transformer and LV network respectively from high fault or overload currents. The maximum envisaged load flowing through the fuse should not exceed the LV fuse rating, else there is a risk of a supply outage. The maximum allowable length of an LV feeder is based on the protection reach of an LV fuse. Under extreme hot weather conditions (typically when the
average of overnight low and next day high exceeds 35°C), a Victorian LV network can experience numerous LV fuse operations. This is due to load from temperature sensitive equipment (such as air-conditioners) in LV circuits exceeding the fuse rating which results in supply outage to a number of customers. Restoring supply to customers after fuse operations incurs additional operating costs such as reimbursements to customers as well as costs for the field crew to attend to the outages and recover supplies by replacing fuses. During extreme heatwaves, many of these fuse operations can occur across multiple sites at the same time. As a consequence, supply restoration can take several hours depending on the volume of outages. DNOs sometimes undertake proactive measures such as upgrading LV fuses to avail some of the spare capacity, as long as the protection reach of the increased fuse size does not violate the feeder length limitations. They also re-prioritise projects to complete those projects with higher network impact before summer season to maximise benefits realisation.

Figure 21 – Typical pole-mount transformer supplying end user customers
Unlike power transformers used in Zone Substations, distribution transformers do not have OLTC devices, which means that they do not monitor or regulate voltage. They have off-load tap changers with typically 7 steps (2 boost, 4 buck and 1 neutral) as shown in Figure
23 (left-side) where tap position 3 has been selected. These off-load tap positions provide the ability to set the secondary voltage at 0.95-1.10 per unit (p.u.) with 2.5% increments by adjustment of the local transformer turns ratio. Figure 23 shows a pole-mounted transformer nameplate from the case network we have modelled (referred to as ‘Case Network 1’ going forward) which has a 4% impedance rating, typical of those found of this size in Australia. The typical transformer impedances along with X/R ratios for transformers used in Australian distribution networks are shown in Table 5.

Table 5 – Transformer Impedances Typically Used in Australia at 75°C [90]

<table>
<thead>
<tr>
<th>Description</th>
<th>Z (%)</th>
<th>X/R ratio</th>
<th>R (%)</th>
<th>X (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 kVA 3ph 22kV Pole-mount</td>
<td>3.3</td>
<td>3.00</td>
<td>1.04</td>
<td>3.13</td>
</tr>
<tr>
<td>100 kVA 3ph 22kV Pole-mount</td>
<td>4.00</td>
<td>0.97</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>200 kVA 3ph 22kV Pole-mount</td>
<td>4.12</td>
<td>0.94</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>315 kVA 3ph 22kV Pole-mount</td>
<td>4.36</td>
<td>0.89</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>400 kVA 3ph 22kV Pole-mount</td>
<td>5.33</td>
<td>0.74</td>
<td>3.93</td>
<td></td>
</tr>
<tr>
<td>350 kVA 3ph 22kV Pad-mount Kiosk</td>
<td>6.3</td>
<td>3.60</td>
<td>1.69</td>
<td>6.07</td>
</tr>
<tr>
<td>1500 kVA 3ph 22kV Pad-mount Kiosk</td>
<td>6.3</td>
<td>7.00</td>
<td>0.89</td>
<td>6.24</td>
</tr>
</tbody>
</table>

In LV distribution, off load tap changers are often the only form for voltage control typically available to the DNO for LV. This is demonstrated in Figure 24 where the average voltage position is lowered once the tap operation is complete. But manually adjusting thousands of local transformers, one connection request at a time, is not an efficient exercise and ultimately increases operating costs and hence tariffs. This is in contrast to HV, where voltage support is provided by means of quadrature power supplied by synchronous condensers (over-excited synchronous motors, on no load). In MV distribution, capacitor banks provide leading PF, or a combination of thyristor-switched inductor/capacitors (STATCOM) provide leading and lagging PF.

![Figure 24 – Average voltage lowers after tap down operation [96]](image)

Four network components studied so far (transformers, tap position, MV and LV lines) all have an effect on the overall voltage regulation bandwidth that ultimately dictates
voltage received at the point of customer connection. This bandwidth will be studied in more
detailed in the following section.

3.4. Voltage Regulation Bandwidth

From the point of view of LV planning, upstream voltage regulation is hence made
up of 5 network elements:

3.4.1. MV bus

MV regulation directly affects the voltages seen at distribution transformer and at
customer premises. Power transformers in Zone Substations have On-Load Tap Changing
transformers which continually adjust their tap positions (+/- single 1.25% tap) on the fly,
according to time of day, day of the week or consumption profiles of downstream load on
particular feeders. Additionally, utilities in Victoria are known to run dynamic voltage
management systems which can change power transformer tap based on the smart meter
voltages on the loads downstream of the power transformer. 2.5% contribution to voltage
regulation can be expected from the tap changes at the MV bus.

3.4.2. MV feeder to distribution transformer

DNO’s also implement wide-scale PF correction of medium-voltage (MV) feeders
using distributed capacitors. This significantly reduces the voltage drop along the MV feeders
and can raise voltages within the LV networks by approximately 1 to 4V on PF corrected
feeders.

Utilities are able to ascertain their MV feeder voltages with a fair degree of certainty
due to MV monitoring that is fairly prevalent. In Case Network 1, the total length of the MV
line to the supply Zone Substation is 5,896m. The current and voltage profile along the MV
feeder for one phase are shown below with 4.106A flowing from the Zone Substation to the
Case Network 1 transformer. Voltage seen at the primary side of the Case Network 1
transformer is given as 12.803kV line-to-neutral i.e. 22.175kV line-to-line. There is voltage
drop noticeable in the MV line since the voltage at the Zone Substation is 13.083kV line-to-
neutral i.e. 22.660kV line-to-line. This represents a voltage drop of 2.14% in the MV line at
this point of time. This can usually go up to 4% voltage drop in peak load 10% POE
(Probability of Exceedance) conditions and 1% voltage drop in light load conditions [82].
POE is the likelihood that a demand forecast will be met or exceeded. A 10% POE maximum demand projection is expected to be exceeded, on average, one year in 10, while a 50% POE forecast is based on average weather and is expected to be exceeded, on average, every second year. Hence 3% contribution to voltage regulation can be expected in the MV feeder.

![Voltage Profile](image1.png)

Figure 25 – MV feeder line-to-neutral voltage profile upstream of Case Network 1

![Current Profile](image2.png)

Figure 26 – MV feeder current profile upstream of Case Network 1

3.4.3. Distribution transformer impedance to LV secondary

The internal winding resistance of the transformer also plays a role. Voltage drop across the transformer terminals has been measured as ranging from 2.6% to 0.4% at a 125%
and 20% loading (of nameplate rating) respectively [82]. This study also used a transformer with 4% impedance and a similar PF of 0.95. Hence, 2.2% contribution to voltage regulation can be expected in the distribution transformer.

3.4.4. Distribution transformer tap offset

Localised voltage regulation issues are often resolved by distribution tap changes, which typically occur in 2.5% single step changes as discussed previously. The overall contribution to voltage regulation that can be expected from the 4 upstream network elements is 10.2%. Since a total of 16% bandwidth (+10%-6% as per Table 1) is available, this leaves only 5.8% available bandwidth for downstream regulation.

3.4.5. LV mains feeder and service wire

LV networks are most likely to be constrained by the voltage deviation within them as opposed to that as a result of the voltage deviation in the MV network. This is particularly true on larger LV networks (i.e. overhead residential networks with large numbers of customers in each circuit), since these will have much larger LV deviations. There are two more downstream network elements within which voltage regulation will be experienced: the LV mains feeder and the LV service wires. For the service wires, allowance for 1V voltage rise and 1.3V voltage drop [82] is typical, which works out to be another 1% contribution to voltage regulation. You hence have only 4.8% (11V) available bandwidth for LV mains feeder voltage regulation. Every feeder will have different values for voltage drop and voltage rise, and hence different allowable voltage headroom. We see typically 2.5% contribution to overall voltage regulation from the LV feeder for a well-balanced circuit. But that depends also on factors such as circuit impedance, PV penetration and coincidental peak load. When calculating headroom in a feeder, it is an acceptable practice in Victoria to use V99 and V1 values to negate outliers, as discussed earlier.

<table>
<thead>
<tr>
<th>Network Element</th>
<th>Typical Contribution to Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV bus</td>
<td>2.5%</td>
</tr>
<tr>
<td>MV feeder</td>
<td>3%</td>
</tr>
<tr>
<td>Distribution transformer impedance</td>
<td>2.2%</td>
</tr>
<tr>
<td>Distribution transformer tap</td>
<td>2.5%</td>
</tr>
<tr>
<td>LV mains feeder</td>
<td>< 4.8% (11V)</td>
</tr>
<tr>
<td>LV service wires</td>
<td>1%</td>
</tr>
</tbody>
</table>
As summarised in Table 6, there is only a small, finite bandwidth available to voltage regulation in the LV grid, which is a challenge.

3.5. Consumption Data from Meters

Smart-meters installed in Victorian households give visibility of aggregate demand at 5-minute or even 10-second intervals. Advanced Metering Infrastructure (AMI) data has been used in previous studies for interruption reporting and statistics, fault indication, location and in the case of very advanced meters, isolation in LV networks [97]. We will extend the use of metering data to distribution network design by calculating voltage profiles when new residents are connected onto the network model.

![AMI meter](image)

Figure 27 – Picture of an AMI meter installed in a suburban house in Melbourne

For our research, half hour interval metering data is available to us, which provides the following information:

- Date and interval
- kVAr and kW, either consumed or generated
- National Metering ID and Meter no.
- Register ID (with values E1 for load and B1 for PV)
Note this information can also be usually obtained by any householder through an online request from the utility or retailer. National Meter Identifier (NMI) is a unique 10- or 11-digit number used to identify every electricity network connection point in Australia. This is how retailers can identify a site’s electricity supply.

PART II – MODEL CONSTRUCTION

The second part of this chapter outlines the model of the real-world network used in our research and the general analysis approach that utilities use for modelling network components in distribution networks and power-flow simulation.

3.6. Software Tools

Having the ability to model PV and household loads in half-hourly intervals was a key requirement in choosing a simulation tool for our research. Many commercial software packages are available that can perform LV distribution network simulations. Some of the commonly used ones are PSS®SinCal, MATLAB®SimPowerSystems, OpenDSS™, ReticMaster™, PowerFactory™ and CYMDIST™. Performing simulations for both low and high load scenarios as well as low and high solar irradiation times would be necessary.

But simulations for longer time periods may also be required due to other factors at play. Impact on the network assets and voltage profile of the LV feeder is highly dependent on customer usage patterns and phase imbalance as well. The simulation tool chosen should not limit us to a snapshot of critical time periods only. And it should be able to perform time series analysis (not dynamics or transients’ studies) for an entire year with relative ease and speed. We would also require it to be inexpensive (preferably free to use for research purposes) and computationally responsive. We have decided to use OpenDSS™ (Open Distribution System Simulator™), an open-source software developed at the EPRI (Electric Power Research Institute) [94], [98]. The default load flow algorithm used in OpenDSS is the current injection method, based on Newton-Raphson technique for solving the distribution system. Accordingly, the load flow analysis as a part of the tool is based on the current injection method. The relevant details can be found in OpenDSS manual [99]. The only overt limitation of this software for us is that it does not allow simultaneous modelling or load flow
for more than one distribution transformer at a time. This does not affect us as looped networks are not considered in our research.

In OpenDSS, a user has to create multiple files that can store various components of a distribution system model. Files are required for the node X-Y coordinates, line codes, line data, distributed generation data, transformer data and the load model. Shown below is an example of an 8 bus LV network, its various components and how they are defined in OpenDSS. LV voltages are measured relative to the secondary transformer LV busbar at A.

![Example of an 8 bus LV network](image)

Figure 28 – Example of an 8 bus LV network [100]

In the above figure, Vsource is the voltage source at the node SourceBus. TR1 is the transformer with the fixed turns ratio. Lines 1 to 5 are overhead or underground lines, the physical line data for which are defined in the line data file. Loads 1 to 4 data and PV 1 to 2 data are defined in the load and generator files. These include magnitude, phase and type of load and PV. Appendix C contains details on the OpenDSS code and a couple of output plots.

The OpenDSS software comes with a Component Object Model (COM) and hence interacts well with MATLAB®, a well-known coding platform, used in our work for post-processing. MATLAB has a good reputation of being easy to use amongst industry professionals and researchers alike. Appendix C also contains the MATLAB code written for invoking our OpenDSS model and running the power flow for one year’s worth of data.

3.7. 22-Bus Unbalanced Distribution Network

In OpenDSS, X/R of the line was obtained from the utility and conductor manufacturer, instead of any assumed values. The span lengths (distance between successive
poles or LV busbars), the 4-wire geometrical configuration data (such as height of LV attachment on pole and length of LV cross-arm), the transformer size, transformer impedance and phase information for each customer were all modelled as found on site. Half-hourly demand data for a whole year (June 17, 2014 12.30am to June 17, 2015 12.00am) for all the 54 residences being serviced by the transformer were also used from the interval metering data provided by the DNO. The PF at each half-hour interval was also available. Hence the load reactive power could be calculated, instead of any assumptions required. The data-set’s peak demand (130 kW or 138 kVA) was on 21st February 2015. The local maximum temperature on this day according to the Bureau of Meteorology was 37°C and the overnight low was 19°C. This makes sense because when the maximum temperatures exceed 35°C, the air-conditioning load is a major cause of peak demand in Victoria.

A geographical representation of the network can be seen in Figure 29. The blue circles represent the poles (or nodes), and the red triangle represents a 3-phase 200 kVA 22kV/433V Dyn11 pole-mounted transformer at bus 1. Span 1 between bus 1-2 is modelled as a 1m length of cable connecting the transformer secondary to the overhead wire. This network splits into two different branches at bus 2 (east and west) at the outset. Bus 2 to 9 is the radial west circuit and Bus 2 to 16 is the east circuit. The north-east branch of bus 17 to 22 connects onto bus 11. Span lengths are typically around 45m as shown in Appendix A. There are 8 houses on this network with PV panel installations. Buses 4, 7, 13, 14, 19 and 22 have PV connections. The thickness of the blue lines represents the typical amount of power flowing into the overhead lines at a particular timeslot, which in this case is June 17, 2015 12.00am. The service wires are not modelled in our research and are hence not shown.

A snapshot of the United Energy GIS is shown in Figure 30. Since this is aligned to true north, it is oriented differently compared to the OpenDSS representation. The service wires are visible in the GIS snapshot. The transformer pole has been highlighted.

![Figure 29 – Spatial representation of multiple branched radial LV network diagram](image-url)
There are 2 LV feeders (east and west), whose characteristics are shown in Table 7. Note PV penetration is not defined here as a percentage of PV capacity installed compared to transformer capacity (as some studies do). PV penetration, as used here, is the percentage of houses with rooftop PV on the network. Loads were modelled as P and Q type, wye connected, 0.9 lagging. Note in OpenDSS, PF for a load is positive if it is lagging and PF for PV is positive if it is leading. The PV systems were modelled as unity PF. The percentage of voltage drop does not go beyond 6.1% at either branch of the network as per Table 7. The average PF is around 0.93 across all loads and time instances. The respective average P vs. average Q curve for all 54 loads on the given network fall in a straight line, as shown in Figure 31. The net values are all positive.
The cumulative active and reactive power at the distribution substation are shown in Figure 32. There is no noticeable trend except that the real and reactive power components are directly proportional. The reactive power is much lower than the real power, which indicates a low number of reactive power devices and/or a low correlation between when devices that consume/ export reactive power (e.g. washing machines) are used [56].

All values are positive downstream of the transformer which indicates that there is no reverse power flow in this network due to reasonably low PV penetration. For the east circuit, the active power elements do show up with negative values, due to the higher PV penetration in this circuit.
3.8. Conductor Impedance Characteristics

The overhead bare LV mains conductor modelled, as provided by the utility, is 19/3.25 AAC (interpreted as 19 strands of 3.25-inch diameter of All Aluminium Conductor) with \(r = 8.125 \text{mm} \). At 65°C, \(R \) is calculated as 2.196 mΩ/km. We have calculated the GMR as 0.7788 \(\times 8.125 = 6.32775 \text{mm} \). The GMD depends on the distance between the individual phases. In our research, we have used GMD for the 2100mm cross-arm, as found on site. Phase-to-phase separation of 600mm is hence used in the calculation of GMD:

\[
GMD = \sqrt[3]{600 \times 1300 \times 1900} = 1140.11 \text{mm}
\]

and hence \(X = 326.1 \text{ mΩ/km} \).
3.9. Model Inputs from Meter Data

The other piece we required in order to carry out the simulation was interval-meter data. Table 23 in Appendix B provides a snapshot of the meter data made available to us. The meter number is the serial number of the meter itself. There are 365 x 48 rows for each household. If a household has PV, there are a further 365 x 48 rows with PV power generated for those houses.

3.10. Micro Embedded Generator Connection

Most of the voltage rise within the grid is a result of rooftop PVs, which is the most common type of micro embedded generator. The ability to represent PV inverter with a realistic solar profile is critical. We have obtained solar generation data from a utility for the 8 households on the network; and have modelled the PV units as power sources.

![Figure 35 – Average annual PV generation profile](image)

Solar generation data, much like the consumption data, is available in half-hour intervals. It hence does not show transient fluctuations due to passing clouds, etc. The 8 profiles are all different due to the difference in panel size, orientation of roof and shading. The average profile of the 8 profiles, over the course of the whole year is shown in Figure 35. It shows peak generation around 12.30pm, with almost all of the solar power generated between 8am and 5pm when averaged across all 4 seasons.
3.11. Data Visualisation

Once the model has been set up, we then run the simulation, Figure 36 shows the voltage profile at Bus 22, which is one of the three LV feeder extremities of the case network. This plot has been obtained from simulation in OpenDSS using voltage at Line 21, which refers to the span from Bus 21 to 22, and the voltages shown at load end. The x-axis is time elapsed from June 17, 2014 (referred to as Day 1) to June 16, 2015 (Day 365). The three phases have been shown separately, with the white phase voltage shown in black.

The unbalance on the line becomes apparent as the white phase has the greatest voltage drop and seems to be the heaviest loaded.

Figure 37 has been obtained at Bus 1 from simulation in OpenDSS, and shows aggregated consumption data from all the different households as seen by the transformer. The graph confirms that white phase is the heaviest loaded and hence we confirm an inverse correlation between voltage and demand. As before, the x-axis reflects the day of the year from June 2014 to June 2015. As can be noticed, the summer months of January and February have some peak load days but do not reflect the highest peak aggregated load in the year. But usually in Victoria, the air conditioning load in summer far exceeds the winter load from heating which is not noticed in above network plot for July-August. It can thus be surmised that this was a mild summer.
Figure 37 – Demand profile at the Substation

Figure 38 shows the time series voltages at Bus 9 on a hot day. Bus 9 is one of the feeder extremities in this network. We see that the voltage drop maxima and minima at Bus 9 generally coincide with the transformer load maxima and minima respectively.

Figure 38 – Load and voltage profiles for a high demand day

The peak load is around 5.30pm which is when householders return to their homes and turn on air-conditioning loads and other appliances. The rest of the times will include a baseload powering fridges and freezers and other small electronic equipment.
The maximum and minimum voltage at the load end of each line are shown in Figure 39. 4 points per line are shown: the highest and lowest voltage in the year and the V99 and V1 as well. The three phases have not been shown individually in this graph. Since line 9 and line 2 are geographically close to each other, the voltages are fairly close as well. Likewise, for line 11 and line 16. This graph is useful for determining the headroom available for additional load or PV connection on each line. If calculating the headroom for line 13 for example, you would first allow for 1V voltage rise and 1.3V voltage drop in the service wires which haven’t been modelled in OpenDSS. You would then have no further leeway in voltage drop since you will have reached the lower limit of 216.2V as specified in Victorian regulations. But for voltage rise you would have 27.7V (= 253 - 224.3 - 1) of headroom available. There would have to be certain allowance made for the upstream voltage regulation. A typical allowance for MV variations as shown previously is 23.5V (or 10.2%). Total headroom available would hence be 4.2V. This can be adjusted either for voltage drop or voltage rise by specifying a tap setting in OpenDSS. The tap setting in OpenDSS used in these simulations is 0.975p.u. This translates to a starting voltage of 0.975 x 230 = 224.25V. The starting voltage of line 1 does not line up with 230V for this reason. Figure 39 suggests that the transformer may be tapped up in practice to avoid any voltage drop violations.

![Figure 39 – Voltage at load end of each line of Case Network 1](image)

All the lines are experiencing some level of voltage rise. Some of the voltage rise is due to PV but some of it is due to presence of single-phase loads that haven’t been distributed in a balanced way amongst the phases along that branch. This can be verified if we plot the V1 and V99 using the average of the three phases at each line.
A lot of the voltage rise is now not present as shown in Figure 40. This is why relying on literature that takes only balanced networks into account should be met with circumspection. The maximum voltage drop seen is much lower than that seen in Figure 39. This gives an indication why phase imbalance is so crucial for a complete picture on voltage regulation analysis.

In this chapter, we have looked at the various components of the electricity infrastructure used to deliver power to homes. We then looked at all the contributors to voltage regulation and the available bandwidth for LV mains voltage rise or drop. In part II of this chapter, we focussed on finding the right software tools for our research. We then chose a case network, part of the one of the worst performing MV feeders for voltage excursions, from a utility in suburban Melbourne. We then detailed the technical calculations required to model the network. We then ran the simulation and analysed the results for demand vs. voltage.
In this chapter, we take the traditional method given by equation (16) repeated below, as a starting point and expand it further so we obtain a parameter that captures the effect of solar connections on voltage regulation.

\[V_L = V_S - UF \times DF \times \left(\frac{R \cos \theta + X \sin \theta}{V_S} \right) ALN \]

We refer to the combined load diversity and unbalance factors DF and UF as Load Correction Factor (LCF) for the remaining part of the thesis. Note the traditional method does not consider the reverse power-flow from prosumers i.e. residences with solar PV panels. These residences back-feed power into the LV grid, causing voltage rise. In order to capture this, a new parameter, called Solar Correction Factor (SCF), is incorporated in Equation (16) to counter the traditional voltage drop. The traditional method is hence revised to form a new equation including SCF, \(N_{PV} \) and \(P_{PV} \):

\[V_L = V_S - \left(\frac{R (LCF \times N \times P_L - SCF \times N_{PV} \times P_{PV})}{V_S} \right) L - \left(\frac{X (LCF \times N \times Q_L)}{V_S} \right) L \]

There is insufficient evidence that empirical methods traditionally used to obtain LCF still hold up given the changing consumption patterns and household device efficiencies, etc. What we would like to do is develop a new method to that forecasts future voltages from a given sequence of historical observations, i.e. a time series. Historically, time series
forecasting has mainly been studied in statistics and econometrics. In the last decade though, machine learning has become one of the most active areas of predictive modelling and research. It involves creating algorithms that can automatically learn from data. We propose to use a standard machine learning algorithm called non-linear regression to train the LCF and SCF. The methodology has been shown in my conference paper [1] to be appropriate for our use, as we can define the general function form and estimate parameters from the data. We seek to approximate a function, given a finite sample of training instances, similar to supervised classification. This methodology will allow updating of well-established voltage estimation methods.

The secondary reason of proposing this methodology is due to the nature of question being posed: “Given the power consumption data for each household, how much further voltage drop or rise is a new connection expected to cause on the network?” The intention is to learn what makes the voltage profile behave a certain way from the training data. Using those learned characteristics, the algorithm should then produce the new voltage profile based on new input data i.e. be able to predict the voltage. The learned structure should hence apply well beyond the training data and help prove that machine learning is an appropriate tool to forecast load voltage and that data analytics can have many more applications in power systems. This will form the basis of our solution.

4.1. Background

Since we have already defined the general function form, let us have a look how machine learning can be applied. Depending on their output, machine learning models can be classified as regression (the target variable is continuous), classification (the target variable is categorical), and others like clustering (often unsupervised), probability density estimation, and dimensionality reduction [101]. Machine learning has grown in popularity in the last few years, and it is being used today for data analysis in the manufacturing industry, healthcare, financing, etc. This is largely due to its superior performance in making predictions. If the objective of machine learning is not very obvious (not a well-defined problem), it is called unsupervised learning. This is useful when only patterns are being sought, without much information beforehand on what they might look like. Supervised Learning with the other hand, is when each data point comes with a label or a response. This can also know as the output or the dependent variable in statistics. In an unsupervised environment, the labels are missing. At a high level, supervised learning is function approximation.
In classification, labels are from a fixed, finite set, for e.g. 0 and 1 for binary classification. Labels that have a continuous numerical range lead to a regression problem [102]. Regression allows a set of data points to be estimated by a curve described by an estimator $f(x)$. The main purpose being to construct such a curve that accurately predicts unrecognised data and minimises the regression error. The challenge is to find an estimator (or estimation function) so that the predicted value is unbiased and consistent i.e. is as close to the correct value as possible. Estimation functions generally fall into the two categories: linear and non-linear. Linear regression is used when the independent variables x are related by a linear relationship. Note due to complexities brought about the non-linear relationship between demand and voltage, we cannot use linear regression, and hence propose non-linear regression. Non-linear regression function $y_i = f(x_i, \beta)$ represents the relationship between a vector of independent variables, x (inputs or predictors), and its associated observed dependent variables, y (response variables). The function f is nonlinear in the components of the vector of parameters β (regression coefficients), but otherwise arbitrary.

Next, a training set is created: $x_i \in \mathbb{R}, \quad m, y_i \in \mathbb{R}, \quad i = 1,...,m$.

This is a collection of labelled examples that a supervised learner can train on before it can predict labels of instances. Our training set is defined as containing of 3 input variables (Q_L, P_L, P_{PV}) and 1 output target or response variable (V_L) for each time instance. The input variables are the active and reactive power consumed and the active power generated at each bus of the network. The response variables are the load voltage for each bus and have been obtained from simulation in OpenDSS.
With our training set defined, we pass it into a learning algorithm which creates a function. The function will be used to take an input and output a prediction based on that input. This may be interpreted as black box process wherein we have no visibility of what assumptions the function is internally making to make the predictions. Hence what we would also like, in addition to the function, is visibility of SCF and LCF parameters determined by the learning system, so that they that can be reconciled to existing voltage drop or voltage rise calculation practices such as excel spreadsheets modelled on Equation (32).

For a well posed learning problem, we will need to define a performance measure. This will allow us to measure the accuracy with which predictions are being made. This is usually done by calculating the loss function \(L \), which is done by comparing the model’s predictions to the test data (or the ground truth). For regression, this is done by calculating the Mean Squared Error (MSE). MSE gives an estimate of the variance of the error term. Different machine learning tools look to minimise the MSE or cost function of the regression. The vector of coefficients returned in \(\beta \) hence minimises the least squares equation. We define \(L \) as:

\[
L = \sum_{i=1}^{m} [y_i - f(x_i, \beta)]^2
\]

Given a loss function, training error (or empirical risk) is defined as:

\[
E = \frac{1}{m} \sum_{i=1}^{m} L(y_i, f(x_i, \beta))
\]

An ‘off-the-shelf’ function in MATLAB called ‘fitnlm’ is used to perform this analysis, which executes the Levenberg-Marquardt (LM) least squares algorithm [103] to minimise the MSE between the predicted and the observed responses. This will be used to evaluate the parameters that lead to the least loss on the training set.

A test set is also created: \(x' \in \mathbf{R}, \quad m', y' \in \mathbf{R}, \quad i = 1, ..., m' \)

4.2. Non-Linear Regression Fit – Implementation

Before the machine learning process can be carried out, simulations in OpenDSS and post-processing in MATLAB need to be completed. Simulation of the case network in
OpenDSS is carried out under 2 scenarios: one with the distributed generation and one without. The time-series P_L and Q_L for each line is taken from the simulation without PV. But the time series records of variable V_L will be taken from the simulation with PV. This is done because the time-series P_L and Q_L line data available in the first simulation was a net load minus PV output, and not the true consumer load.

Variable V_L used for training is not the average of the 3-phase voltages; but is taken as the minima or maxima of the 3, depending on time of day. From 11am to 2:30pm, the maxima of the phase voltages are used. This would train the model for voltage rise as demand is low and solar output is high. For 6:30am to 9am and 3:30pm to 9pm, the minima of the voltages are used. Data from these 18 half-hour intervals would train the model for voltage drop since load is high at these times. The rest of the 22 half-hour intervals are not used for training as voltage excursions in a residential network are not noticeable during those times.

Next, the training and test data are demarcated as different halves of the line voltage data obtained. Training Set A contains the data for the first half of the year. The rest of the data constitutes the Test Set A. These sets each contain 99,645 points for V_L, i.e. 4,745 data points for each bus. The first 4,745 data points are for bus 2, then the next 4,745 data points are for bus 3 and so on.

We also establish Test data that are obtained from networks with different number of residential connections than Case Network 1. Training Set B contains two collections of data – one with simulated voltages from Case Network 1 with 20 fewer residences; and one from the Case Network 1 with 20 more residences. There is a total of 398,580 data points taken for V_L i.e. 26 half-hour interval data points for 365 days for 21 busbars, twice over. The loads removed or added are chosen at random locations amongst the different nodes. The consumption profile of each of the added loads is taken as an average consumption profile of the 54 residential profiles. Test Set B is created with the expected voltages from the simulation of Case Network 1 for the whole year. Hence, it has 199,290 data points. This will be used to calculate the MSE between predictions.

Next the assessments for SCF and LCF for each bus are done via non-linear regression through an iterative procedure. This is a machine learning technique that fits a non-linear model specified by Equation (32) to variables P_L, P_{PV}, Q_L stored in a dataset array for each time instance. We will be using the ‘fitnlm’ function in MATLAB again as it creates a least-squares fit of the response to the data, minimising the empirical risk, and returning a non-linear model.
For the first node though, Equation (32) is further refined so that V_S is assumed as 230 x tap. This is so that the starting voltage can be calibrated with upstream voltage regulation in the MV line. Once the tap value has been obtained for node 1, it is no longer used for training of downstream node voltages. The parameter tap in OpenDSS has been specified as 0.975 p.u. This translates to a starting voltage of 0.975 x 230 = 224.25V.

$$V_L = \text{tap} \times V_S - \left(\frac{R(LCF \times N \times P_L - SCF \times N_{PV} \times P_{PV})}{\text{tap} \times V_S} \right) L - \left(\frac{X(LCF \times N \times Q_L)}{\text{tap} \times V_S} \right) L \quad (35)$$

The initial guesses for the parameters are taken as 1. V_S is taken from predicted data for the upstream node. Therefore, topology of the network is also stored as an input i.e. for each bus, the upstream busbar number is stored. This is so that the predicted load voltages of the upstream bus can be used as source voltage of the next bus.

4.3. Testing Data and Validating Predictions

Once a trained model, tap setting for the first bus and specific LCF, SCF for every bus are created, then voltage for each bus of the case network for each time stamp can be generated. This is done here using the ‘predict’ function in MATLAB. This function uses parameters belonging to the case network (Q_L, P_L, P_{PV}) and response variable V_L. V_S is taken from predicted data for the upstream node. The same topology is used as the training network since that does not change. The results for V_L are then compared to simulation results as well as results from Equation (16). Since the case network is in Victoria, Australia, an LCF with $k = 12$ is used in this research, which is as per local power industry guidelines [91]. Since Equation (16) provides a solitary value for voltage instead of a time-series of voltages, it is compared to 99-percentile values for each bus. The V1 values are not used for comparing voltage rise since Equation (16) does not calculate voltage rise. The RMSE difference in corresponding V1 and V99 values of the predicted and simulation voltages is calculated. The MSE of the fitted model is returned as a scalar value. The expected voltage results are from Test Set B, but could also be readings from smart meter voltage data, were they available.

The advantage of using non-linear regression-based machine learning is that LCF and SCF parameters can be obtained and reconciled to existing voltage drop or voltage rise calculation practices such as excel spreadsheets modelled on Equation (32). This is important to create a grey box model that utilises machine learning and also presents the parameters to engineers and provide visibility of the in-built assumptions of the model. A grey box model,
as used here, is a model where the engineer has limited knowledge over the internal workings of the methodology but doesn’t face a steep learning curve. The grey box is a blend of black box and white box techniques. This has advantages when compared to a white box model, such as static load flows, where the user requires full knowledge of the internal workings of the application and also faces a time-consuming and exhaustive process. A grey box helps create an explainable model which is very important in industry. The methodology becomes easier to explain and implement which gives it a strong advantage when compared to other analytical models. Section 4.5 discusses how we measure the performance of this grey box model compared to status quo.

![Workflow diagram](image)

Figure 42 – Workflow for machine learning and validating predictions (grey box)

In the next section, we show a classical black box model for comparison purposes. As defined here, the black box model is where internal behaviour is not known or understood by the user. While performance of a black box model may potentially be better, it is not explainable to engineers and electricity industry professionals and is not expected to find acceptance in industry at large. A binary regression decision tree model from the 1980’s is sufficient for the purposes of comparison. Finding better black box models such as algorithms based on Artificial Neural Networks, k-nearest Neighbour, the Bayesian algorithm or classification using Support Vector Machine is beyond the scope of this work.
4.4. Decision Tree

If we had very little knowledge or assumptions beforehand about how the different variables are related, it becomes more of a data-mining type question. Decision tree models have been considered suitable for this task. The purpose of the analyses via tree-building algorithms is to determine a set of ‘if-then’ logical (split) conditions that lend themselves to not only classification but also permit accurate predictions in regression problems. Tree methods are non-parametric (and nonlinear) supervised machine learning algorithms with a tree-like structure with its root node at the top. Each fork is a split in a predictor variable and each node at the end has a prediction for the target variable. Note other approaches such as neural networks can also solve regression problems, but have not been considered here.

The classical standard Classification and Regression Trees (CART) algorithm developed by Breiman [104] is used here. This algorithm may be referred to as “decision trees”, but is referred to as CART on some platforms like R and MATLAB. CART does not require any special data preparation or implicit assumptions, other than a good representation of the problem. It consists of 2 kinds of decision trees:

- **Classification Trees**: A classification tree is an algorithm where the target variable is fixed or categorical. The algorithm is then used to identify the “class” within which a target variable would most likely fall. This is usually a binary split i.e. for two classes that are mutually exclusive, the classification tree will split the data based on homogeneity.

- **Regression Trees**: A regression tree refers to an algorithm where the target variable is continuous and the algorithm is used to predict its value [105]. A regression model is fit to the target variable using each of the independent variables.

CART is one of the oldest and most fundamental algorithms of machine learning. Given a new input, the tree is traversed by evaluating the specific input started at the root node of the tree. It splits each branching node of the binary tree based on the values of the predictors. Essentially, a learned binary tree partitions up the input space based on the predictors and response variable from the input data. Once the predictors \(Q_L, P_L, P_{PV} \) and response variable \(V_L \) have been defined, the next step is to choose the split points on those variables to create a suitable tree. The top few nodes on which the tree is split are the most important variables within the set. Feature selection in CART gets performed automatically which is an advantage. These split points will divide the input space using an approach called recursive binary splitting. This is a numerical procedure where all the values are lined up and
different split points are tried and tested using a cost function. The split with the lowest cost is selected. The cost function is the sum of MSE across all training samples that fall within the space. Let y_i denote the output for the training sample i and \bar{y}_i denote the prediction for observation i, $i = 1,...,m$. The following least squares equation is formed with the most accurate prediction being the prediction with the minimum cost (smallest variance or error):

$$C = \sum_{i=1}^{m} \frac{1}{m} [y_i - \bar{y}_i]^2$$

(36)

This process is continued recursively. This algorithm is hence a very performance heavy process. It is executed using the ‘fitrtree’ function in MATLAB here. The depth of the tree should also be decided but ‘fitrtree’ grows deep decision trees by default. The average number of splits is between 14 and 15. One can grow shallower trees to reduce model complexity. Similar to previous function, one can use the ‘predict’ method to make predictions. The following least squares equation is formed for predictions made on the test set:

$$C' = \sum_{i=1}^{m'} \frac{1}{m'} [y_i - \bar{y}_i]^2$$

(37)

Figure 43 – Workflow for machine learning and validating predictions (black box)
4.5. Validation Calculations

Once the predictions have been completed, three sets of calculations are performed for validating them:

- **RMSE between prediction and simulation voltage data points across all times and for all nodes.** This will help decide overall how well is the learning algorithm able to predict load bus voltages provided a set of inputs.
- **RMSE between predicted V1 percentiles and simulation V1 percentiles for all 21 nodes.** This will help determine how far or close the predicted voltage drop is to the actual values. This is an important metric as the utility is able to determine its appetite for risk based on this. As long as the predicted V1 does not exceed allowable limits, the utility should be able to keep adding more connections onto the network without any augmentation expenditure.
- **RMSE between predicted V99 percentiles and simulation V99 percentiles for all 21 nodes for voltage rise.** Similar to above, this will help the utility gauge whether or not to allow more prosumers onto the LV circuit.

From these three calculations, the black box and grey box models can be easily compared to ascertain which provides better results.

Next, one additional calculation is performed for RMSE between the simulation V99 and the voltage drop provided by traditional methods at each node. This will help answer whether the established methodologies fare better than our proposed methodology; and will also provide an insight into whether a utility would have unwittingly refused to add connections onto the network using established methods. For this purpose, we first create an excel model of Equation (16). We run voltage drop calculations for the LV feeder, storing the voltages at each node. These are then compared to the ‘ground truth’ simulation voltages. The ground truth or the expected voltage results are from Test Set B, but could also be readings from smart meter voltage data, where available. Note, the established methods do not provide voltage rise values. Hence, no direct comparison can be formed between the proposed method and the established ones.

For added functionality, in the excel models created above, we then use new values of LCF and SCF. Instead of the empirically developed methods from Equation (16), we use variables provided by the non-linear regression learning. This will help highlight the
differences in the voltage calculations from the traditional vs. regression models for each bus. 3 calculations will be carried out in this regard:

- RMSE between V99 of the new method using LCF, SCF and the V99 from the simulation for each bus;
- RMSE between V1 of the new method using LCF, SCF and the V1 from the simulation for each bus; and
- RMSE between simulation V1 and traditional voltage drop methods for each bus.

In this chapter, we reviewed the methodology used. This includes expanding the state-of-the-art to create a parameter that can capture the effects of solar connections on feeder voltage. We take a time series of voltages and propose a learning algorithm to fit a non-linear function to approximate the parameters. We train voltage regulation parameters to forecast voltage drop and rise along LV feeders with new connections; thereby creating better models for predicting LV feeder voltages from given household demand. We also detail a black box model which uses CART as the learning algorithm. In the next chapter we will look at the performance of both algorithms and verify the results.
CHAPTER 5 – RESULTS AND DISCUSSION

5.1. Case Network 1

Thus far, simulation data is analysed and used for training and testing the parameters using MATLAB as the main evaluation tool. In this chapter, the results of the predicted V99 and V1 are plotted; and the results from the machine learning algorithms are explained. First, the results from Training Set A will be shown using the LM algorithm. This will be compared with results from the CART algorithm. Next, the results from Training Set B will be shown using the LM algorithm, and then compared to the results from the CART algorithm. Then, new voltage drop and voltage rise calculations will be shown using the LCF and SCF from the non-linear regression, as explained before. Then we will focus on results from a second study done using a network of high level of PV penetration. This sensitivity check will validate our methodology. We will be continually discussing our findings throughout this chapter.

5.1.1. Learning and Testing on Training Set A – LM Validation

Machine learning is said to be valid if the error calculated for training and testing on the same data set is zero or minimal. We perform our validation test on training Set A, first using the LM algorithm. The results are shown in Figure 44. We see that it is a congested plot of nearly 100,000 data points both from the simulated (blue) and predicted (yellow) data sets. It is not easy to show if the predictions are matching the training data. Hence, we also show the 1-percentile and 99-percentile from the data sets for each line voltage in red and black. These are showing close alignment as we are training and testing on the same data set. We then also overlay the traditional method Volt-Drop (VD) on the same graph and we see it is
diverging remarkably from the simulation data. This underscores the point that the traditional method is not a reliable measure of the ground truth.

Figure 44 – Learning and Testing on Training Set A using LM

In the interest of clarity, we have replotted Figure 44 showing just the 1-percentiles and 99-percentiles of test set and predictions. A very close match is now visible in Figure 45.

Figure 45 – Learning and Testing on Training Set A using LM replotted
The overall RMSE is 1.11V for all data points with the LM algorithm which indicates a very good match indeed. For reference, the RMSE difference in the traditional method and the simulation for voltage drop is much higher at 9.53V. The RMSE difference in predicted and simulation 99-percentiles (voltage rise) for each line voltage is 0.44V and 1-percentiles (voltage drop) for each line voltage is 1.07V.

5.1.2. Learning and Testing on Training Set A – CART Validation

To validate the CART algorithm, the same methodology is applied and the same data set is used. As shown in Figure 46 and Figure 47, much better results are achieved and the performance superiority of CART becomes visible. This makes intuitive sense since we are testing on the same data set we trained the algorithm on. The overall RMSE is 0.8V for all data points with the LM algorithm which is exceptionally small. The RMSE difference in predicted and simulation 99-percentiles (voltage rise) for each line voltage is 0.15V and 1-percentiles (voltage drop) for each line voltage is 0.10V. This is summarised in Table 8.

Figure 46 – Learning and Testing on Training Set A using CART
5.1.3. Learning with Training Set A and Testing on Test Set A using LM

We have tested the two algorithms used in our work and they are performing very well which was expected when training and testing on the same data set (first half of the year). Next, we train using the LM algorithm on Training Set A (first half of the year) and test on Test Set A (second half of the year).

The results are shown in Figure 48. The x-axis has 99,645 points, i.e. one for each timestamp over the 6 months. The entire predicted data set is also plotted along with the upper and lower percentiles. Figure 49 shows only these percentiles for expected line voltages from the simulation and the percentiles for the predicted voltages. The overall RMSE is 1.22V for all data points with the LM algorithm which indicates a very good result given we are training on one half of the year and testing on the other half. The RMSE difference in predicted and expected 99-percentiles (voltage rise) for each line voltage is 0.61V and 1-percentiles (voltage drop) for each line voltage is 1.87V.
Table 9 shows the average LCF and SCF obtained for each line from the non-linear model fit. The LCF from the traditional method is also shown. The SCF created for PVs provides a higher order of flexibility that the traditional method does not have. Since the first span from bus 1 to 2 is modelled as a 1m length of cable, its results are not included in the average. Line 1 is used primarily in the LM algorithm to train the transformer tap parameter, the prediction for which is 0.975p.u. This matches the turns ratio specified in the simulation.
As a cross-check, these parameters can be retrofitted into Equation (32) to obtain new voltage drop and voltage rise values.

Figure 50 – Comparing the voltage drop calculation using new parameters

These values, plotted in Figure 50, are closely aligned with the expected values obtained from the simulation. The new voltage drop values are a closer match to the simulation V99 than the traditional method voltage drop values were. Parameters are hence useful as they act as a bridge between the traditional method and the learning methodologies proposed here. This highlights the superiority of obtaining the LCF from machine learning as compared to LCF from traditional practices. Note in Figure 50, we are plotting only one voltage point per line, not time series data. Hence the x-axis only has 21 points. It is for this reason that the RMSE between simulation V1 and traditional voltage drop is not shown as 9.53V in Table 10 since that was over an entire time-series of data whereas 3.889V is for 21 points only.

Table 9 – Parameter Comparison for Set A

<table>
<thead>
<tr>
<th></th>
<th>LCF- traditional (k=12)</th>
<th>LCF- LM (Set A)</th>
<th>SCF- LM (Set A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>4.64</td>
<td>1.75</td>
<td>3.44</td>
</tr>
</tbody>
</table>

The voltage rise values obtained using the SCF are a close match to the simulation V1 values as well. Since the traditional method does not provide a voltage rise, this is a

Table 10 – Comparison of RMSE (V)

<table>
<thead>
<tr>
<th>RMSE between new V99 and simulation V99</th>
<th>RMSE between new V1 and simulation V1</th>
<th>RMSE between simulation V1 and traditional voltage drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.959</td>
<td>1.125</td>
<td>3.889</td>
</tr>
</tbody>
</table>

The voltage rise values obtained using the SCF are a close match to the simulation V1 values as well. Since the traditional method does not provide a voltage rise, this is a
significant improvement over the state-of-the-art. Hence, we can see that the LM algorithm has led to practical and useable parameters for the network LCF and SCF. It has lent itself to a grey box method of obtaining voltage drop and voltage rise in an LV network.

5.1.4. Learning with Training Set A and Testing on Test Set A using CART

Following on from the previous training exercise, we keep the same training and test sets. But we use the CART algorithm to perform the learning. When using this algorithm to predict line voltages, a higher overall RMSE of 1.43V is calculated between predicted and expected voltages. This is due to overfitting of data and occurs when testing performed on Training Set A leads to zero or very minimal error, but testing performed on Test Set A leads to poor performance, as is the case here. Overfitting occurs when the decision tree takes into account a lot of noise that exists in the data and comes up with an inaccurate result. A decision tree that is very complex or deep usually has a low bias. This makes it very difficult for the model to incorporate any new data. Under/overfitting is also called a bias-variance trade-off.

Figure 51 – Expected and predicted results of Set A using CART

Figure 51 shows a plot of 6-month voltage data from the simulation for all nodes, and the V99 and V1 voltages. The RMSE difference in predicted and expected 99-percentiles
(voltage rise) for each line voltage is 0.13V and 1-percentiles (voltage drop) for each line voltage is 0.65V. But CART algorithm does not provide actionable parameters of LCF and SCF for use in Equation (32). Training a non-linear model fit is quicker, more suitable to the needs of parametrisation and avoids overfitting of data.

In Figure 52, the results of the traditional method voltage drop are also shown (in magenta). As can be seen, the predicted V99s are closer than the traditional formulae to the simulated results. As mentioned, all the predicted voltage results are not overlaid on the plot; and only the V1 and V99 values are shown for clarity.

![Figure 52 – Learning with Training Set A and Testing on Test Set A using CART](image)

5.1.5. Learning with Training Set B and Testing on Test Set B using LM

In this exercise, we use Training Set B for learning purposes and create a non-linear model fit with the LM algorithm. We then test the model on Test Set B and make predictions on a year’s worth of data points. The overall RMSE between predicted and simulation voltages increases to 1.32V but still indicates a very good result as the training set has a different number of consumers to the test set. As mentioned before, the RMSE difference between the traditional method and the simulation results for voltage drop is much higher at 9.53V.

As shown in Table 15, the RMSE difference for 99-percentiles (voltage rise) for each line voltage is 0.52V and 1-percentiles (voltage drop) for each line voltage is 2.45V. Even though 2.45V seems high, the results from Set B are very encouraging given that 20 consumers were added or removed on a case network of 54 consumers (i.e. 37% load differential from base case). When compared to LM algorithm predictions on Set A, RMSE for V1 decreases slightly, but the RMSE difference in simulation and predicted V99 increases. These differences notwithstanding, the similar overall RMSE results indicate that using Set B as
training set performs on par than the one where the number of consumers remains the same. The only noticeable difference is in the V99 RMSE. The results of this exercise are plotted in Figure 53. The x-axis has 199,290 points, i.e. one for each timestamp over the year. The results of the traditional method voltage drop are also shown (in magenta). As can be seen, the predicted voltage V99s are closer than the traditional formulae to the simulation V99s. Figure 54 shows a clearer graph without all the individual data points.

Figure 53 – Expected and predicted results of Set B using LM

Figure 54 – Learning with Training Set B and Testing on Test Set B using LM
Table 11 shows the LCF and SCF obtained from this non-linear model fit. The larger traditional method LCF is leading to the larger voltage drop calculations. The large LCF indicates an excessive allowance for phase unbalance and diversified demand than the LCF from the regression model, which indicates a relatively better-balanced network and more coincidental residential peak demands. This creates a potential scenario in the real world where the utility declines to add more connections onto the network as it purportedly cannot do so without excessive voltage drop when using the traditional voltage estimation methods. We see clearly that using the new methodology does not lend itself to the same conclusions. The SCFs created for PVs in our methodology provides a higher order of flexibility still that the traditional method does not have.

<table>
<thead>
<tr>
<th>Table 11 – Parameter Comparison for Set B</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCF- traditional (k=12)</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>Average</td>
</tr>
</tbody>
</table>

Table 12 compares the LCFs of the traditional vs. regression models for each bus in the west circuit (bus 2 to bus 9). SCF for last two spans is nil due to absence of PV downstream of those spans. The two regression models themselves provide differing average LCFs, which can be evidenced if the voltage drop from the left third of Figure 49 and Figure 54 are compared. The predicted voltage drops from Figure 49 are much closer to those from Figure 54, which suggests that the LCF from LM (Set A) brings us closest to the ground truth. The average SCFs from the two algorithms are very different but due to the low PV penetration in the area, it is not statistically significant.

<table>
<thead>
<tr>
<th>Table 12 – Case Network 1 – Parameter Comparison for West Circuit – To Bus 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Bus</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>Average</td>
</tr>
</tbody>
</table>

Similarly, for the east circuit with LV feeder extremity at Bus 16 (see Table 13) or Bus 22 (see Table 14), the LCF’s obtained using regression analysis are much lower than calculated
in the traditional method. The two different regression models themselves provide a much closer match in average LCFs than in the west circuit, which can also be evidenced in the middle third and the right third of Figure 49 and Figure 54.

TABLE 13 – CASE NETWORK 1 – PARAMETER COMPARISON FOR EAST CIRCUIT – TO BUS 16

<table>
<thead>
<tr>
<th>Source Bus</th>
<th>Load Bus</th>
<th>LCF-traditional ((k = 12))</th>
<th>LCF-LM (Set A)</th>
<th>SCF-LM (Set A)</th>
<th>LCF-LM (Set B)</th>
<th>SCF-LM (Set B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>2.05</td>
<td>1.64</td>
<td>4.98</td>
<td>1.49</td>
<td>3.69</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>2.13</td>
<td>1.48</td>
<td>3.78</td>
<td>1.31</td>
<td>2.63</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>2.65</td>
<td>1.58</td>
<td>3.00</td>
<td>1.07</td>
<td>1.99</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>2.96</td>
<td>1.75</td>
<td>2.16</td>
<td>1.57</td>
<td>2.65</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>3.75</td>
<td>1.84</td>
<td>2.20</td>
<td>1.67</td>
<td>2.62</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>5.24</td>
<td>0.74</td>
<td>-</td>
<td>0.43</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>12.15</td>
<td>0.82</td>
<td>-</td>
<td>2.42</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>4.42</td>
<td>1.41</td>
<td>16.10</td>
<td>1.42</td>
<td>2.72</td>
</tr>
</tbody>
</table>

TABLE 14 – CASE NETWORK 1 – PARAMETER COMPARISON FOR EAST CIRCUIT – TO BUS 22

<table>
<thead>
<tr>
<th>Source Bus</th>
<th>Load Bus</th>
<th>LCF-traditional ((k = 12))</th>
<th>LCF-LM (Set A)</th>
<th>SCF-LM (Set A)</th>
<th>LCF-LM (Set B)</th>
<th>SCF-LM (Set B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>2.05</td>
<td>1.64</td>
<td>4.98</td>
<td>1.49</td>
<td>3.69</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>2.13</td>
<td>1.48</td>
<td>3.78</td>
<td>1.31</td>
<td>2.63</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>3.28</td>
<td>1.13</td>
<td>1.68</td>
<td>1.77</td>
<td>10.77</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>3.49</td>
<td>1.57</td>
<td>8.89</td>
<td>1.95</td>
<td>11.20</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>3.75</td>
<td>2.10</td>
<td>11.58</td>
<td>2.13</td>
<td>11.90</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>5.24</td>
<td>1.09</td>
<td>-11.16</td>
<td>0.88</td>
<td>-5.61</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>6.29</td>
<td>2.31</td>
<td>5.74</td>
<td>2.06</td>
<td>9.21</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>12.15</td>
<td>2.64</td>
<td>2.08</td>
<td>5.30</td>
<td>15.74</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>4.80</td>
<td>1.75</td>
<td>3.44</td>
<td>2.11</td>
<td>7.44</td>
</tr>
</tbody>
</table>

5.1.6. Learning with Training Set B and Testing on Test Set B using CART

In this exercise, we use training Set B for learning purposes and create a decision tree model fit with the CART algorithm. We then test the model on Test Set B and make predictions for line voltages for every half hour for a year. We see that the overall RMSE between predicted and simulation voltages of 1.35V is a slight reduction compared to CART algorithm predictions on Test Set A. The RMSE difference in simulation and predicted V1 increases slightly to 0.23V, but the RMSE difference for V99 increases noticeably to 2.01V. This notwithstanding, the similar overall RMSE results restate that using a training set with a
different number of consumers to the test set performs on par than the one where the number of consumers remains the same. The only noticeable difference is in the V99 RMSE.

![Graph showing voltage data](image1)

Figure 55 – Expected and predicted results of Set B using CART

![Graph showing voltage data](image2)

Figure 56 – Learning with Training Set B and Testing on Test Set B using CART

Figure 55 shows the results from the simulation and V99 and V1 of the predicted voltages using CART. In Figure 56, the entire data set is not plotted for clarity. We can see that this algorithm performs very well compared to expected voltages from the simulation.
Comparing LM to CART for Set B, CART has the edge as the better predicting algorithm when V1 and V99 RMSE are compared. But the overall RMSE between predicted and simulation voltages increases slightly to 1.35V. This is due to overfitting of data. Training a non-linear model fit is quicker, more suitable to the needs of parametrisation and avoids overfitting.

TABLE 15 – COMPARISON OF RMSE BETWEEN BLACK BOX AND GREY BOX METHODS (V)

<table>
<thead>
<tr>
<th>Algorithm / Test Set</th>
<th>RMSE between all prediction and simulation voltages</th>
<th>RMSE between predicted V99 and simulation V99</th>
<th>RMSE between predicted V1 and simulation V1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM / Set A</td>
<td>1.22</td>
<td>0.61</td>
<td>1.87</td>
</tr>
<tr>
<td>CART / Set A</td>
<td>1.43</td>
<td>0.13</td>
<td>0.65</td>
</tr>
<tr>
<td>LM / Set B</td>
<td>1.32</td>
<td>0.52</td>
<td>2.45</td>
</tr>
<tr>
<td>CART / Set B</td>
<td>1.35</td>
<td>0.23</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Table 15 contains a summary of all RMSE’s. If an engineer is finding the total headroom available at a glance, then the decision tree model can be used in that context as that’s where its strength lies. But the non-linear model is performing relatively well overall, we hence see no reason to improve this methodology. LM algorithm is just least square fitting and is hence very robust and efficient for an unconstrained problem like ours. It suits our needs and gives us confidence in the predicted voltages. Using this method, a utility will be able to confidently determine the total number of expected voltages with the addition of new connections.

5.2. Case Network 2 – High PV Penetration

In the following part of the chapter, the results of a second study done on the same topographical network are presented, but with 30 additional PV connections. This represents a forward-looking network, where a majority of the residences are prosumers. In this network (referred to as ‘Case Network 2’), 38 micro-embedded generators out of a total 54 residences are present i.e. 70% PV penetration, up from 15% used in the Case Network 1.

The added PVs are assigned randomly to the existing residential loads. A few of them are modelled as 3-phase PV connections. But most are modelled as single-phase PV connections with the household load phase determining which phase the PV is connected onto. With such a high PV penetration, unbalance is very high in the network.
5.2.1. Learning with Training Set C and Testing on Test Set C using LM

The simulation of the model is carried out. The training and test data are demarcated as different halves of the line voltage data obtained. Training Set C contains the data for the first half of the year. The rest of the data constitutes the Test Set C. These sets each contain 99,645 points, i.e. 4,745 data points for each bus. The results of the predicted voltages with the LM algorithm are shown in Figure 57. The overall RMSE is 1.87V for all data points. The RMSE difference in predicted and expected 99-percentiles (voltage rise) for each line voltage is 1.40V and 1-percentiles (voltage drop) for each line voltage is 2.82V. This is larger than results from Case Network 1. But is much lower than the RMSE difference in the traditional method and the simulation for voltage drop of 10.48V. These results are very encouraging since we are training on one half of the year and testing on the other half, and with a very high PV penetration. Figure 58 displays the results of only the V1 and V99, which is useful when calculating available voltage headroom.

![Figure 57 – Expected and predicted results of Set C using LM](image-url)
Table 16 shows the average LCF and SCF obtained for each line from the non-linear model fit. The LCF from the traditional method is also shown. The SCF created for PVs provides a higher order of flexibility. Since the first span from bus 1 to 2 is modelled as a 1m length of cable, its results are not included in the average. Line 1 is used primarily in the LM algorithm to train the transformer tap parameter, the prediction for which is 0.975p.u. This matches the turns ratio specified in the simulation.

Table 16 – Parameter Comparison for Set C

<table>
<thead>
<tr>
<th></th>
<th>LCF- traditional ((k=12))</th>
<th>LCF- LM (Set C)</th>
<th>SCF- LM (Set C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>4.64</td>
<td>1.71</td>
<td>21.76</td>
</tr>
</tbody>
</table>

5.2.2. Learning with Training Set C and Testing on Test Set C using CART

As can be seen in Figure 58 and Figure 60, the CART algorithm performs much better for V1 and V99 compared to the LM algorithm. But compared to results from Case Network 1, a higher overall RMSE of 2.20V is calculated between predicted and simulation voltages. This is a peculiar result since the RMSE between V99’s and RMSE between V1’s is much lower at 0.17 and 0.90 respectively. This suggests that while the CART algorithm provides much closer matches at the edges of distribution between prediction and simulation data, the overall variance is higher. This high variance (or error) is attributed to overfitting of data, as discussed previously. The LM algorithm is hence more suitable for our needs, while CART is more suitable for finding available headroom.
5.2.3. Learning with Training Set D and Testing on Test Set D using LM

The Training Set D and Test Set D are created next in a similar manner to how Set B data were created for Case Network 1. The Training Set D contains voltage data for a whole year for 2 scenarios: The Case Network 2 with 20 additional loads and 20 fewer loads. The Test Set D contains node voltage data for a whole year on the Case Network 2.
After using LM algorithm for learning and testing on Test Set D, the overall RMSE between predicted and simulation voltages is 1.90V, which is very similar to results from LM algorithm predictions on Test Set C. The RMSE difference in predicted and expected 99-percentiles (voltage rise) for each line voltage is 2.69V and 1-percentiles (voltage drop) for each line voltage is 2.62V. RMSE for V1 hence decreases slightly. But the RMSE difference in simulation and predicted V99 increases noticeably. This is shown in the summary Table 21.

![Figure 61 – Expected and predicted results of Set D using LM](image1)

![Figure 62 – Learning with Training Set D and Testing on Test Set D using LM](image2)
Given that 20 consumers were added or removed whilst training (i.e. 37% load differential from test set), this is still a very encouraging result compared to the state-of-the-art, and demonstrates the usefulness of machine learning. The similar RMSE for all the data points indicate that using Set D for training performs on par with using Training Set C. The only noticeable difference between results from the two training sets for LM algorithm is in the V99 RMSE. Table 17 shows the LCF and SCF obtained from this non-linear model fit.

Table 17 – Parameter Comparison for Set D

<table>
<thead>
<tr>
<th></th>
<th>LCF- traditional ((k=12))</th>
<th>LCF- LM (Set D)</th>
<th>SCF- LM (Set D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>4.64</td>
<td>1.44</td>
<td>13.69</td>
</tr>
</tbody>
</table>

Table 18 compares the LCFs of the traditional vs. regression models for each bus in the west circuit (bus 2 to bus 9). The two different algorithms themselves provide differing average LCFs and SCFs, which can be evidenced if the voltage drop from the left third of Figure 58 and Figure 62 are compared. In Figure 58, the predicted voltage drops are much closer to the expected results from the simulation. This suggests that the LCF from LM (Set C) brings us closest to the ground truth. The average SCFs from the two algorithms are very different. On deeper analysis, this is due to low PV penetration on this circuit, especially downstream of bus 4, and hence this is not statistically significant result.

Table 18 – Case Network 2 – Parameter Comparison for West Circuit – To Bus 9

<table>
<thead>
<tr>
<th>Source Bus</th>
<th>Load Bus</th>
<th>LCF- traditional ((k = 12))</th>
<th>LCF- LM (Set C)</th>
<th>SCF- LM (Set C)</th>
<th>LCF- LM (Set D)</th>
<th>SCF- LM (Set D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2.13</td>
<td>1.84</td>
<td>17.54</td>
<td>1.50</td>
<td>13.05</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2.38</td>
<td>1.89</td>
<td>17.08</td>
<td>1.51</td>
<td>12.40</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2.74</td>
<td>1.93</td>
<td>112.78</td>
<td>1.32</td>
<td>53.70</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.28</td>
<td>2.19</td>
<td>100.22</td>
<td>1.37</td>
<td>50.17</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>3.75</td>
<td>2.51</td>
<td>86.78</td>
<td>1.63</td>
<td>49.67</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>5.24</td>
<td>2.47</td>
<td>-</td>
<td>1.58</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>8.12</td>
<td>1.92</td>
<td>-</td>
<td>1.40</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>3.95</td>
<td>2.10</td>
<td>66.88</td>
<td>1.47</td>
<td>35.80</td>
</tr>
</tbody>
</table>

Similarly, as shown in Table 19 and Table 20 for the east circuit, the LCF’s obtained using regression analysis are much lower than calculated in the traditional method. The two different algorithms themselves provide a much closer match in average LCFs and SCFs than in the west circuit, which can also be evidenced in the middle and right thirds of Figure 58 and Figure 62. This proves that the empirical correction factors used in the traditional model do not hold true in the 21st century.
Table 19 – Case Network 2 – Parameter Comparison For East Circuit – To Bus 16

<table>
<thead>
<tr>
<th>Source Bus</th>
<th>Load Bus</th>
<th>LCF- traditional ((k = 12))</th>
<th>LCF- LM (Set C)</th>
<th>SCF- LM (Set C)</th>
<th>LCF- LM (Set D)</th>
<th>SCF- LM (Set D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>2.05</td>
<td>1.64</td>
<td>9.83</td>
<td>1.50</td>
<td>8.72</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>2.13</td>
<td>1.49</td>
<td>8.54</td>
<td>1.34</td>
<td>7.43</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>2.65</td>
<td>1.48</td>
<td>5.86</td>
<td>1.07</td>
<td>4.51</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>2.96</td>
<td>1.71</td>
<td>4.08</td>
<td>1.53</td>
<td>3.47</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>3.75</td>
<td>1.86</td>
<td>4.05</td>
<td>1.80</td>
<td>3.70</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>5.24</td>
<td>0.78</td>
<td>-</td>
<td>0.66</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>12.15</td>
<td>0.93</td>
<td>-</td>
<td>0.61</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>4.42</td>
<td>1.41</td>
<td>6.47</td>
<td>1.21</td>
<td>5.56</td>
</tr>
</tbody>
</table>

Table 20 – Case Network 2 – Parameter Comparison For East Circuit – To Bus 22

<table>
<thead>
<tr>
<th>Source Bus</th>
<th>Load Bus</th>
<th>LCF- traditional ((k = 12))</th>
<th>LCF- LM (Set C)</th>
<th>SCF- LM (Set C)</th>
<th>LCF- LM (Set D)</th>
<th>SCF- LM (Set D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>2.05</td>
<td>1.64</td>
<td>9.83</td>
<td>1.50</td>
<td>8.72</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>2.13</td>
<td>1.49</td>
<td>8.54</td>
<td>1.34</td>
<td>7.43</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>3.28</td>
<td>1.44</td>
<td>23.48</td>
<td>1.72</td>
<td>23.73</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>3.49</td>
<td>1.52</td>
<td>17.58</td>
<td>1.86</td>
<td>18.64</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>3.75</td>
<td>1.72</td>
<td>12.79</td>
<td>1.88</td>
<td>12.90</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>5.24</td>
<td>1.42</td>
<td>16.32</td>
<td>1.19</td>
<td>11.19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>6.29</td>
<td>1.82</td>
<td>-1.52</td>
<td>1.52</td>
<td>-1.07</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>12.15</td>
<td>1.57</td>
<td>-4.23</td>
<td>1.82</td>
<td>-2.47</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>4.80</td>
<td>1.58</td>
<td>10.35</td>
<td>1.60</td>
<td>9.88</td>
</tr>
</tbody>
</table>

The presence of negatives downstream of bus 20 in the SCFs in the table above can be attributed to the fact that LCF and SCF cannot be independently manipulated. Hence when there are very few loads at the extremities, we can see negatives in the SCFs. But this does not lead to vast fluctuations in forecast voltage, and it is not a statistically significant result.

For line 1, tap ratio is predicted as 0.975p.u. using either of the two training sets. This has not been verified on site but does match the starting voltage specified in the simulator settings of 224.25V (equal to 0.975 x 230V).

5.2.4. Learning with Training Set D and Testing on Test Set D using CART

When training Set D with CART algorithm, the overall RMSE between predicted and simulation voltages is 2.15V, which is higher though than the RMSE from LM algorithm predictions on Test Set D. This may be seen as a strange result given that the RMSE difference
in predicted and expected 99-percentiles (voltage rise) for each line voltage is 0.60V and 1-percentiles (voltage drop) for each line voltage is 1.95V, both an improvement. But this is another example of how the CART algorithm is overfitting. CART has better performance when V1 and V99 RMSE are compared only, as evidenced by Figure 62 and Figure 64.

The overall RMSE between predicted and simulation voltages of 2.15V is similar to RMSE from CART algorithm predictions on Test Set C, as per Table 21. This reconfirms that using a training set with a different number of consumers to the test set performs on par than the one where the number of consumers remains the same.

![Figure 63 – Expected and predicted results of Set D using CART](image)

Figure 63 – Expected and predicted results of Set D using CART
When comparing the black box and grey box models, as before, it is important to note that the latter is quicker, avoids overfitting and is more suitable to the needs of parametrisation.

TABLE 21 – COMPARISON OF RMSE BETWEEN BLACK BOX AND GREY BOX METHODS (V)

<table>
<thead>
<tr>
<th>Algorithm / Test Set</th>
<th>RMSE between all prediction and simulation voltages</th>
<th>RMSE between predicted V99 and simulation V99</th>
<th>RMSE between predicted V1 and simulation V1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM / Set C</td>
<td>1.87</td>
<td>1.40</td>
<td>2.82</td>
</tr>
<tr>
<td>CART / Set C</td>
<td>2.20</td>
<td>0.17</td>
<td>0.90</td>
</tr>
<tr>
<td>LM / Set D</td>
<td>1.90</td>
<td>2.69</td>
<td>2.62</td>
</tr>
<tr>
<td>CART / Set D</td>
<td>2.15</td>
<td>0.60</td>
<td>1.95</td>
</tr>
</tbody>
</table>

5.3. Summary and Discussion

In this chapter, we have presented our results and a discussion around our findings. We have looked at 2 different case networks in this chapter to analyse our methodology.

We begin with simulating the Case Network 1, a model of a real-world distribution network. The 21 bus voltages for each time instance for a year are taken. We verify our 2 machine learning algorithms are performing as expected by training and testing on the same data set (first half of the year) and getting a very close match between predictions and the data set. We then test the non-linear and decision tree models on the voltage data of the second half of the year. In this manner, we have demonstrated that given new household load data (P and Q), voltages can be forecast for a given network topology using both learning methods.

For sensitivity, we create a forward-looking scenario with high PV penetration to see the effects this has on voltage rise predictions as well as new LCF and SCF parameters. We
repeat the methodology of training and testing on different halves of the year for Case Network 2 using the two learning algorithms. The overall RMSEs did rise since large swings in voltage (day-time and night-time) make it difficult to predict. But both the learning methods performed better than the voltage drop from the traditional method. Given that the traditional method does not produce a voltage rise, this is seen as an important success. The decision tree model is suitable for the needs of finding voltage headroom, but consistently performs worse overall than the non-linear model fit as seen in the first column in Table 21.

We then use these algorithms for training on voltage data from networks of 20 more and 20 fewer households than both Case Network 1 and Case Network 2. Both algorithms are able to predict voltages for the whole year from the relevant Case Network (with the original number of customers) with small RMSEs.

When comparing the grey box and black box solutions, the former is quicker and avoids overfitting. It is also more suited for our needs of obtaining trained parameters for diversity, unbalance and transformer turns ratio (tap). The black box model performs better in predicting the upper and lower bounds of the voltage range for every bus. The overall RMSE for each time instance, though, is higher than grey box, which may be its biggest shortcoming depending upon the application.
CHAPTER 6 – CONCLUSIONS

6.1. Summary of Thesis

In Chapter 1, we see that Governments around the world are increasingly pledging for carbon emission reductions. The emphasis is on using clean technologies in the power generation sector. At a policy level in Australia, for example, there is an emphasis to provide energy sustainably, securely, and cheaply; consistent with Australia’s obligations in the international climate change mitigation effort. Australia is poised to see a dramatic shift away from its high reliance on coal; to solar and wind-power, and a highly decentralised structure in the form of rooftop PV and behind-the-meter batteries. Appropriate electricity market designs and new energy policies will see solar rooftop penetration in households increase to a large-scale over the next few years. An example of this is the 2019 Victorian Solar Homes Program [5] which provides 50% subsidies towards rooftop PV and embedded storage. This will encourage accelerated rates of rooftop PV adoption, making it a viable method to reduce household electricity bills. But this will lead to many technical issues for DNOs and network planning engineers such as:

- Voltage fluctuations caused by intermittent PV generation (cloud passage);
- Voltage regulation (voltage rise);
- Significant reverse power flow resulting in overloading of upstream network assets; and
- System stability.

In this thesis, we focus on voltage regulation issues and voltage estimation techniques being used when new prosumer applications are received. In the local electricity supply
industry, existing feeder voltage estimation methods are based on empirical or probabilistic methods that can be traced back to 1940’s and do not incorporate two-way power-flow brought about by PV units. Given the relatively predictable operating regime and low level of LV monitoring, there has not been much research and innovation done to create new voltage estimation techniques. Currently used techniques are based on conservative assumptions or rely on the design engineer’s local area knowledge of the network to source the correct inputs. Some commercially available software such as LVDesign and LVDrop provide better results but provide voltages at only one point of time instead of a time series. Techniques mentioned in literature have been probabilistic, empirical, statistical or “bottom-up” as shown in Chapter 2. There have been no attempts to predict voltages based on future connections that are not statistical probabilistic, or purely deterministic. A balanced approach is required; that helps voltage regulation calculations to be done quickly and accurately.

In this Master Dissertation, a modern approach for calculating voltage drop and voltage rise in a real-world LV feeder is shown using standard machine learning tools. Various network components are first modelled in Chapter 3 and technical details are presented on the 400V distribution network in Australia. There are identified 5 upstream network components that lead to voltage regulation that an end-customer sees at the point of connection. These hence affect headroom available to connect either PV or load at any given residential premises. Whilst 4 of these components are to a certain degree estimable, voltage regulation within the LV feeder mains is dependent on various factors which makes it difficult to ‘control’. Given power consumption data for each household is available through interval meters, there has been no previous attempt made to revisit voltage estimation methodologies to answer the question: “how much further voltage drop or rise is a new connection expected to cause on the network?”

Chapter 4 details the machine learning methodology proposed. Household interval metering data (for load and generation) and the topology of a network are provided by the local utility which we use to form a model of Case Network 1 in OpenDSS. A load-flow simulation of this real-world network is carried out based on conductor data from the manufacturer; and span lengths, transformer size, transformer impedance and phase information for each customer as found on site. We obtain voltages at each node or pole, as well as real power consumed, real power generated and apparent power consumed downstream of each node. Using this data, test and training sets are created from different halves of the year. Case Network 2 is prepared using the same topology, but with much higher PV penetration. The process for creating training and test data sets is repeated.
Next the traditional relationship between voltages, load and circuit impedance for calculating voltage drop is renewed to include a solar PV correction factor to allow for voltage rise calculations as well. A non-linear regression model is then modelled on the modified relationship. Parameters for the regression model are identified as load and solar correction factors. These account for demand diversity and phase unbalance in household loads and rooftop PV units. For bus 1, a third parameter is also introduced in the aforementioned relationship so that the starting voltage of bus 1 can be calibrated with upstream voltage regulation in the MV network. These parameters are trained and the results of the regression model predictions are shown in Chapter 5. This non-linear regression model is shown to accurately and quickly predict voltage variations in the network. Error on the LV network is 1.22V across 21 nodes and 99,645 time-intervals, when training and testing on different halves of the year, even though consumption patterns and solar irradiation patterns change due to different seasons in the test data run. When training and testing on networks with different number of connections, error on the network is only 1.32V. The methodology hence holds up when tested on a network with a different number of residences than on which it was trained. These results are significant given that 20 consumers were added or removed on a case network of only 54 households. This methodology proves that we can use regression to learn what makes the voltage profile behave a certain way from the training data. Using those learned characteristics, the algorithm then produces the new voltage profile based on new input data i.e. is able to predict the voltage. This is the basis of our time-series regression solution. Next, we compare the LCF obtained from our grey box model to those used in traditional volt-drop estimation techniques. In Case Network 1, we find that the traditional method LCF indicates much higher (around 2.5 times) allowance for phase unbalance and diversified demand as obtained from our regression model. Empirical methods used in the traditional model hence do not necessarily hold true in the 21st century. SCF created for PVs in our regression model for each bus provide a higher order of flexibility. This, undoubtedly, enables predictions of bus voltages from machine learning to be far superior to the traditional method.

This methodology is repeated by using a different learning method i.e. CART. Even though the results from this decision tree model for determining the voltage headroom available are superior, there are concerns regarding acceptance of this black box model in industry as it presents no actionable parameters.

Case Network 2 with high PV penetration is then tested using the same workflow as Case Network 1. The results from both learning methods are still accurate, with or without
additional consumers on the network that the training data did not have. This proves that the learned structure can also be applied beyond the training data. Furthermore, the predicted tap position is shown to exactly match the one modelled in the simulation, for both case networks.

When comparing black box to grey box methods, both provide highly accurate results. We hence see no reason to improve the grey box methodology, as it additionally provides trained parameters for each span. The classical black box model is shown to be prone to overfitting and is slower to train as well. Better black box models may be used, but this is beyond the scope of our work.

6.2. Summary of Contributions

Digital technologies are rapidly transforming industries in Australia and around the world. Utilities too should use technology-driven innovation to generate efficiencies across their enterprises, improve customer satisfaction, improve planning practices and understand LV feeder voltages. It is clear that the obligation to manage power quality will turn into obligation to enable or manage solar exports. But note that there is limited appetite for network investment. To support this, we have demonstrated that data ingestion, forecasting and analysis can be deployed in practical terms. Although on the surface, this research and its conclusions may seem specific to the Victorian (or Australian) context, the insights obtained may inform decision-making elsewhere. The methodology is location independent, and is well suited for the modern LV grid where interval metering data is readily available.

On the other hand, there may be some professionals who see this work as risky as it may be usurped by a ‘Network of the Future’. This is characterised as having active LV network management including better topological and network connectivity information (i.e. supply point associations between meter and upstream transformer). This is foreseen to allow data collection, aggregation and real-time or automated voltage investigations. But such a scenario may be a decade or two ahead of us. Meanwhile, regulating bodies and utilities, in the interest of avoiding PV export limits, have a very imminent need to predict LV feeder voltages with an ever-increasing rooftop solar penetration.

The contributions of this thesis can be summarised below:

One of the first main contributions of this work is the literature survey done on all the differing methods in academia of calculating voltage drop and rise in LV feeders. This
extensive work should prove useful to other network planners and researchers alike as it also covers methods used in a wide variety of local and international utilities.

In this Dissertation, a new approach to compute voltage drop in an LV feeder is presented. The proposed method also calculates accurate voltage rise in the LV feeder in-case of bi-directional power flow due to PV. This is a vital contribution since this will help further reduce barriers to PV adoption such as expensive augmentation works that are passed on to the customers, either upfront or through lowering of network prices over time.

Two machine learning methods used in this research have different advantages and may be used by network planners for different applications. The decision tree model performs very well when predicting the V1 and V99 at each node and hence can calculate the magnitude of any voltage violations. This is useful for predicting available voltage headroom once a new load or PV connection is made. Comparatively, the non-linear regression model is shown to be slightly less accurate for predicting available headroom, but we see no reason to pursue alternate techniques such as deep learning or Artificial Neural Networks. The strength of the non-linear regression lies in predicting voltages at every half-hour interval over a year. This is more useful for applications where the total number or the frequency of voltage violations with a proposed connection is of importance. Such an application could be used for proving to the regulator, for example, that the number of violations does not exceed a given amount in a year. Although DNOs do not face harsh fiscal penalties from regulating authorities for voltage excursions, there is a clear benefit for the DNO to prioritise feeders that have high number of voltage excursions; as they can indicate other issues such as high phase imbalance, high peak load, incorrect tap setting or a long circuit. This method can hence help in prioritising different constrained LV feeders as the higher the number of predicted excursions, the higher the risk of customer complaints and/ or liability. The strength of the non-linear regression over the decision tree method also lies in creating a grey box model, which can be easily understood and implemented in the industry by retrofitting into existing methods such as spreadsheets modelled on Equation (16). Not using traditionally exaggerated empirical or probabilistic allowances for diversity or unbalance will facilitate more informed technical assessments and better utilisation of assets. The cost of performing any analysis will be a miniscule fraction of potential cost involved in network upgrades. Hence, our work caters to the practical realities and best practices of system planning.
This thesis shows that forecasts made with machine learning are quite reliable and perform well with small MSE compared to simulation results. The proposed methodology incorporates half-hour interval metering data now more and more readily available in the developed world. An ideal smart grid system should be built on measuring information at the most appropriate time intervals such that the data can be refined down to information useable for a wide range of cases with minimal overheads. And we show that half-hour interval data is appropriate for the proposed application. Not choosing to use 10-second or 5-minute data from smart meters helps us avoid the complications of using highly granular data which have the potential to create data management and data storage constraints. This work demonstrates a practical use of the consumption data accessible to utilities, which is not being analysed for the purpose of estimating future voltages.

6.3. Future Works

Some added features to the methodology will lead to an improved final solution. For example, predicted voltages shown here are steady-state values and don’t take into consideration the intermittent fluctuations in voltages due to cloud cover. This could be explored in the future.

This research acts as a guide for technical planning of residential LV networks and compliance with voltage limit regulations. Further analysis can be done by introducing short-term forecast capability (using weather correction for upcoming summer for example); or long-term (localised economic growth indices or population/load growth indices). Network planners or researchers can also associate a monetary risk with the voltage excursions predicted through the methodology presented here, forecast for different weather conditions (50% POE or 10% POE days). Depending on the overall voltage excursion duration and voltage excursion frequency per customer, engineers can take interest in financial modelling of augmentation works vs. the monetary risk of voltage violations. This will allow engineers to perform cost-benefit analysis and perform project prioritisation. This could even help the poles-and-wires companies to pivot towards a different business model. For example, where incentivising new households connecting onto the grid with a PV-battery combination presents a lower risk of voltage violations and an overall cheaper solution compared to augmentation works.

The methodology can also be used to study the effect of emerging technologies like
EVs and batteries on voltage regulation. Ultimately, this will allow distribution networks to evolve with the changing mix of renewables and distributed energy resources. Researchers will be able to use the same methodology to study those disruptors in detail by overlaying them onto the network. Testing of different voltage management strategies can be performed which can then be validated in a lab. Inverter testing in the field for comparison will be still better. Forecasting voltages can be hugely beneficial to Virtual Power Plants with smart control algorithms set-up. In cases of low voltages forecast, such algorithms could request batteries to supply power to the grid to support local voltages. And in cases of high voltages, the algorithms could request EV charging, thus increasing load and reducing voltages on the network. There is no doubt that this will be valuable work, especially if an Application Programming Interface (API) can be created for publishing operating envelopes (for individual and aggregated distributed energy resources), which will help demonstrate an orchestration-based approach used by DER providers and aggregators. An online map created using this API will also help empower and educate prosumers.

Further work can be done to use machine learning to predict existing circuit impedances, given circuit lengths. Comparing the calculated impedance with standard conductor impedance database will help determine the type of existing LV conductors on the network which is highly beneficial for any DNO due to scarce conductor data in their GIS.

Machine learning can also be used to predict distribution transformer tap position using the existing AMI voltage data and upstream SCADA (Supervisory Control and Data Acquisition) data of MV levels on the primary side. This will be a vital achievement for any DNO as it will reduce operating expenditure involved with sending out linesmen and technicians on site to record tap settings.

Studies on static voltage stability, power losses in the network and short-circuit and fault level in the presence of growing number of PVs can all be included in future research using the same methodology presented here.
REFERENCES:

A. B. Morton, "Potential of and limitations to Distributed management of LV and MV feeder voltage profiles with high penetration of embedded generation and storage," in *CIGRE 2018 Session*, Paris, France, no. 47.

School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, 2016.

Appendix A: Case Network 1 Configuration Data

Table 22 – Line Lengths Modelled In OpenDSS

<table>
<thead>
<tr>
<th>Span or Line in OpenDSS</th>
<th>Source Bus</th>
<th>Load Bus</th>
<th>Span Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>16</td>
<td>54</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>21</td>
<td>49</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>
APPENDIX B: SAMPLE INTERVAL METERING DATA FOR ONE HOUSEHOLD

Table 23 – Metering Data For A Resident In Case Network 1 For One Day

<table>
<thead>
<tr>
<th>date</th>
<th>kVAR</th>
<th>kW</th>
<th>nmi_id</th>
<th>meter_no.</th>
<th>register_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 17, 2014, 1</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 2</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 3</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 4</td>
<td>0.074</td>
<td>0.226</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 5</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 6</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 7</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 8</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 9</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 10</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 11</td>
<td>0.074</td>
<td>0.226</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 12</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 13</td>
<td>0.164</td>
<td>0.5</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 14</td>
<td>0.115</td>
<td>0.35</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 15</td>
<td>0.164</td>
<td>0.5</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 16</td>
<td>0.099</td>
<td>0.3</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 17</td>
<td>0.124</td>
<td>0.376</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 18</td>
<td>0.173</td>
<td>0.526</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 19</td>
<td>0.124</td>
<td>0.376</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 20</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 21</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 22</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 23</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 24</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 25</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 26</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 27</td>
<td>0.074</td>
<td>0.226</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 28</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 29</td>
<td>0.074</td>
<td>0.226</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 30</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 31</td>
<td>0.074</td>
<td>0.226</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 32</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 33</td>
<td>0.082</td>
<td>0.25</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 34</td>
<td>0.091</td>
<td>0.276</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 35</td>
<td>0.756</td>
<td>2.3</td>
<td>640XXXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Date</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Jun 17, 2014, 36</td>
<td>0.304</td>
<td>0.926</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 37</td>
<td>0.214</td>
<td>0.65</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 38</td>
<td>0.156</td>
<td>0.474</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 39</td>
<td>0.517</td>
<td>1.574</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 40</td>
<td>0.444</td>
<td>1.35</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 41</td>
<td>0.419</td>
<td>1.274</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 42</td>
<td>0.124</td>
<td>0.376</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 43</td>
<td>0.124</td>
<td>0.376</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 44</td>
<td>0.131</td>
<td>0.4</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 45</td>
<td>0.131</td>
<td>0.4</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 46</td>
<td>0.115</td>
<td>0.35</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 47</td>
<td>0.115</td>
<td>0.35</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
<tr>
<td>Jun 17, 2014, 48</td>
<td>0.115</td>
<td>0.35</td>
<td>640XXXXXX</td>
<td>6XXXXX</td>
<td>E1</td>
</tr>
</tbody>
</table>
APPENDIX C: OPENDSS AND MATLAB CODE

The following is the OpenDSS code written as part of this research. A precursor to using this code is setting up the OpenDSS model via the different txt files for load, generator, transformer data, etc., as explained in Section 3.6:

```matlab
clear
set editor = "C:\\WINDOWS\system32\notepad.exe"
Set DefaultBaseFrequency=50
New circuit.LVTest
Edit Vsource.Source BasekV=22 pu=1 ISC3=3000 ISC1=5
Redirect WireDataNGeometry.txt
! Defines overhead bare conductor data & geometries
Redirect LoadShapes.txt
Redirect Lines.txt
Redirect Transformers.txt
Transformer.TR1.Taps= [1.0, 0.975]
Redirect Loads_1n3phase.txt
Redirect PVShapes.txt
Redirect PVSystem_1n3phase_a.txt
Redirect Monitors.txt
New energymeter.m1 LINE.LINE1 1
Set voltagebases= [22 .400]
Calcvoltagebases
buscoords buscoords.txt
set mode=yearly number= (48 73 *) stepsize=0.5h
! 73-day simulation
```

Once the OpenDSS model is set up, the following MATLAB code is used to invoke OpenDSS and run the simulation:

```matlab
% Clear and Close Figures
clear all; close all; clc
fprintf('Loading data ...
'

% 1. Start the OpenDSS COM each time MATLAB is opened.
[DSSCircObj, DSSText, path] = DSSStartup;
DSSCircuit=DSSCircObj.ActiveCircuit;
path = 'C:\Users\Ashish Bharat Gupta\Documents\MATLAB\UE Data\'; % reset path

% 2. Compiling the circuit.
DSSText.command = [ '"Compile "' path 'Master.dss"' ];
% - Obtain load names and number of loads
Load_names=DSSCircuit.Loads.AllNames;
```
sizeNames=size(Load_names);
numLoads=sizeNames(1);

% 3. Solve the circuit.
for i = 1 : 5 % Run 5 times since a 73-day window is chosen in OpenDSS
 DSSText.command = 'solve';
 DSSText.command = ['export seqVoltage Sequence\myseqVoltages', int2str(i), '.csv'];
 DSSText.command = ['export seqCurrent Sequence\myseqCurrents', int2str(i), '.csv'];
end

% 4. Show plots for validation and close OpenDSS COM.
DSSText.command = 'Redirect ExportMonitors.txt';
DSSText.command = 'set normvminpu=0.94';
DSSText.command = 'set normvmaxpu=1.10';
DSSText.command = 'plot profile ph=all';
DSSText.command = 'Plot monitor object= L1 channels=(1 3 5)';
release(DSSCircObj)

The two output plots are shown below:

![Figure 65 – Line-to-Neutral voltage for the three circuits at the last time instance](image_url)
Figure 66 – Demand profile at the substation
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Gupta, Ashish Bert

Title:
Impact of Rooftop Solar on Distribution Network Planning

Date:
2019

Persistent Link:
http://hdl.handle.net/11343/233725

File Description:
Final thesis file

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.