A new case of Greenberg dysplasia and literature review suggest that Greenberg dysplasia, dappled diaphyseal dysplasia, and Astley–Kendall dysplasia are allelic disorders

Pernille A. Gregersen1,2,3 | Victoria McKay4 | Maie Walsh3,5 | Erica Brown6 | George McGillivray3,6,7 | Ravi Savarirayan3,7

1Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
2Pediatrics and Adolescent Medicine, Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
3Victorian Clinical Genetics Services, The Royal Children’s Hospital, Melbourne, VIC, Australia
4Department of Clinical Genetics, Merseyside and Cheshire Regional Clinical Genetics Service, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
5Victorian Clinical Genetics Services, Royal Melbourne Hospital, Melbourne, VIC, Australia
6Victorian Clinical Genetics Services, Royal Women’s Hospital, Melbourne, VIC, Australia
7Murdoch Children’s Research Institute, University of Melbourne, Parkville, VIC, Australia

Correspondence
Pernille Axél Gregersen, Department of Clinical Genetics, Aarhus University Hospital, Skejby, Brendstrupgårdsvej 21 C, DK-8200 Aarhus, Denmark.
Email: pernegreg@rm.dk

Funding information
Royal Women's Hospital

Abstract

Background: Greenberg dysplasia is a rare, autosomal recessive, prenatal lethal bone dysplasia caused by biallelic pathogenic variants in the lamin B receptor (LBR) gene. Pathogenic variants in LBR are also associated with Pelger–Huët anomaly, an autosomal dominant benign abnormality of the nuclear shape and chromatin organization of blood granulocytes, and Pelger–Huët anomaly with variable skeletal anomalies, a mild, regressing to moderate–severe autosomal recessive condition. Conditions with abnormal sterol metabolism and different genetic basis have clinical and radiographic features similar to Greenberg dysplasia, for example X-linked dominant chondrodysplasia punctata, Conradi–Hünermann type, and CHILD syndrome, and other conditions with unknown genetic etiology display very similar features, for example, dappled diaphyseal dysplasia and Astley–Kendall dysplasia.

Methods: We present a fetus with typical clinical and radiographic features of Greenberg dysplasia, and review the literature.

Results: Genetic testing confirmed the diagnosis Greenberg dysplasia: homozygosity for a pathogenic variant in LBR.

Conclusion: Comparing the clinical and radiographic phenotypes of Greenberg dysplasia, dappled diaphyseal dysplasia, and Astley–Kendall dysplasia, we suggest that these are allelic disorders.

KEYWORDS
abnormal sterol metabolism, Greenberg dysplasia, LBR, Skeletal dysplasia

1 | INTRODUCTION

Greenberg dysplasia (OMIM #215140) is a very rare, prenatally lethal, autosomal recessive bone dysplasia (Greenberg et al., 1988). It is also referred to as HEM skeletal dysplasia due to the characteristic clinical features of hydrops, ectopic calcification, and the moth-eaten appearance of long bones and the pelvis (Chitayat et al., 1993).

Greenberg dysplasia is caused by biallelic pathogenic variants in the lamin B receptor (LBR) gene located on...
were reviewed by GM and RS following referral for a diagnostic opinion. The mother and her husband gave written informed consent for publication of their baby’s findings according to local ethics committee requirements.

2.1 | Genetic analyses

High-resolution SNParray was performed on DNA from chorionic villous sampling (CVS) as part of clinical care of the pregnant mother and the fetus.

Following a limited clinical postmortem examination including a skeletal survey, bidirectional fluorescent direct sequencing (Sanger) of all coding regions and intron–exon boundaries of LBR was performed on PCR-amplified DNA from the deceased fetus.

2.2 | Literature search

We used the following terms searching PubMed for relevant literature: Greenberg dysplasia, LBR, dappled diaphyseal dysplasia, and Astley–Kendall dysplasia (February 20, 2019).

3 | RESULTS

3.1 | Clinical report

This fetus was the second pregnancy of a healthy, consanguineous couple. A routine 12-week ultrasound revealed short long bones, a small chest, and generalized hydrops. Nuchal translucency was 8.4 mm, CRL 75.2 mm. Initially, a diagnosis of Jeune asphyxiating thoracic dystrophy was considered given the narrow thorax. At 15 weeks + 5 days of gestation, ultrasound showed marked fetal edema, a chest circumference under the 5th centile, flat diaphragm, and polydactyly of both feet. Absence of the fetal heartbeat confirmed intra-uterine death.

The parents consented to a postmortem external examination, radiology, and skin sampling for fibroblast culture. Fetal examination showed growth parameters below the 5th centile for gestational age, large eyes with blue sclerae, hypertelorism, low set ears, hypoplastic midface, bilateral post-axial polydactyly of the feet and a small chest with protuberant abdomen. Hydrops was clinically evident along with remnants of a cystic hygroma (loose skin in the neck). Relevant negative findings were an intact palate, no additional external non-skeletal malformations, and no evidence of cataracts.

The postmortem skeletal survey (Figure 1) demonstrated relative lack of ossification of the skull for gestational age, marked platyspondyly and stippled spine, small thorax, transverse rib defects (“cut-glass” appearance), rhizo-mesomelic shortening.

2 | MATERIALS AND METHODS

The pregnant mother of the fetus was identified and investigated clinically in the Fetal Medicine Unit/Genetics Department of a tertiary maternity hospital. Fetal images
FIGURE 1 (a, b) Relative lack of ossification of the skull, platyspondyly, and stippling of the spine, small thorax, transverse rib defects (“cut-glass” appearance), rhizo-mesomelic shortening and deformity of all four limbs, punctate epiphysis, stippled tarsal and carpal bones, and widespread ectopic ossification (ossification islands). Speckled ossification in the abdominal region, punctate calcification in the articular skeleton, and a “moth-eaten” appearance of the pelvic bones.
and deformity of all four limbs, punctate epiphyses, stippled tarsal and carpal bones, and widespread ectopic ossification (ossification islands). Speckled ossification was present in the abdominal region, possibly in the region overlying the liver and thought to represent evidence of extra-medullary hematopoiesis. Areas of punctate calcification were present throughout the articular skeleton. The pelvic bones had an unusual appearance and contour, suggestive of a “moth-eaten” appearance.

3.2 Genetic studies

By 15 weeks of gestation, SNParray on DNA from chorionic villous sampling (CVS) showed multiple regions of homozygosity (5.2% of the genome) consistent with the known consanguinity; no genomic imbalance was detected.

Postmortem, Sanger sequencing of DNA from the deceased fetus showed homozygosity for an LBR variant (c.1748G > A, p. Arg583Gln; NM_002296.4).

The detected LBR variant changes a highly conserved residue in the sterol reductase domain (Clayton et al., 2010). The variant was previously found in compound heterozygosity with a 4-base pair deletion in another fetus with Greenberg dysplasia (Clayton et al., 2010).

4 LITERATURE SEARCH

In all, 11 fetuses with Greenberg dysplasia have previously been described in the literature; in seven of these biallelic pathogenic variants in LBR was identified (Chitayat et al., 1993; Clayton et al., 2010; Giorgio et al., 2019; Greenberg et al., 1988; Horn, Faber, Meiner, Piskazeck, & Spranger, 2000; Konstantinidou et al., 2008; Waterham et al., 2003). Two fetuses with dappled diaphyseal dysplasia (Carty et al., 1989), two fetuses with Astley–Kendall dysplasia (Astley & Kendall, 1980), and three fetuses with an intermediate phenotype were reported (Elcioglu & Hall, 1998); In these seven latter fetuses, genetic testing of LBR was not performed.

5 DISCUSSION

Greenberg et al. first described this lethal chondrodysplasia with congenital hydrops in two siblings born to consanguinous parents (Greenberg et al., 1988). The cardinal features were severe bone dysplasia, hydrops, very short long bones with a moth-eaten appearance, disordered ectopic ossification centers, and platyspondyly. Two fetuses were subsequently reported with post-axial polydactyly of the hands (Chitayat et al., 1993; Waterham et al., 2003), and one further fetus reported with additional non-skeletal malformations including an omphalocele (Horn et al., 2000). Astley and Kendall previously described a similar bone dysplasia in a stillborn fetus (Astley–Kendall dysplasia) (Astley & Kendall, 1980). In 1989, Carty et al. and Nairn and Chapman separately described a lethal bone dysplasia with similar features to Greenberg dysplasia: Carty et al. reported their condition as dappled diaphyseal dysplasia (DDD) (Carty et al., 1989); Nairn and Chapman variously described three siblings from a consanguineous relationship as having features consistent with either DDD or Astley–Kendall dysplasia (Nairn & Chapman, 1989). Later, Elcioglu and Hall presented a fetus with features of both chondrodysplasia punctata (CDP) and osteogenesis imperfecta (OI), describing this fetus as a further example of Astley–Kendall dysplasia (Elcioglu & Hall, 1998). Elcioglu and Hall disagreed with previous suggestions that DDD and Greenberg dysplasia may represent the same condition with different severity of clinical features, and suggest that these disorders can be differentiated on radiological grounds.

Functional studies of cultured fibroblasts from a fetus with Greenberg dysplasia confirmed that causative variants in LBR lead to a 3β-hydroxysterol Δ14-reductase deficiency (Waterham et al., 2003). As mentioned earlier, homozygosity, compound heterozygosity, and heterozygosity for LBR variants are reported in patients with Pelger–Huët anomaly with or without variable skeletal abnormalities (PHASK and PHA) (Hoffmann et al., 2002). These studies support that Pelger–Huët anomaly with and without skeletal abnormalities of varying degree and Greenberg dysplasia are allelic disorders representing a disease spectrum ranging from very mild to extremely severe (lethality). Further confirmation is provided by the evidence that the healthy mother of the fetus with Greenberg dysplasia reported by Waterham et al. showed hypolobulated nuclei in 60% of her granulocytes, a classic feature of Pelger–Huët anomaly and representing the heterozygous state of 3β-hydroxysterol Δ14-reductase deficiency (Waterham et al., 2003). Further studies on sterol metabolism support the association (Borovik et al., 2013; Sobreira et al., 2015; Thompson et al., 2019; Tsai, Zhao, Turner, & Schlieker, 2016), and Giorgio et al. recently described in detail how variants in different functional domains, and different types of mutations lead to a continuum of LBR-associated phenotypes (LBR genotype–phenotype correlation) (Giorgio et al., 2019).

The demonstration of the underlying defects in the cholesterol biosynthesis pathway in Greenberg dysplasia has shed light on the clinical features overlapping with other disorders in the same pathway, for example CDPX2 caused by variants in EBP. Females with CDPX2 are often born with an erythematous rash following the Blaschko’s lines, which fades over time to leave a phenotype including variable ichthyosis (Herman, 2000). This overlaps with the clinical phenotype seen in patients with CHILD syndrome: Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects, caused by variants in both EBP.
and NSDHL. The phenotypic overlap is not surprising perhaps, given that NSDHL encodes a sterol dehydrogenase or decarboxylase that is part of the C-4 sterol demethylase protein complex and precedes the sterol-\(\Delta^8\)-\(\Delta^7\)-isomerase step, encoded by EBP, in the cholesterol biosynthetic pathway (Herman, 2003). Other disorders caused by variants more distally in the cholesterol biosynthesis pathway can also present with rhizomelia and post-axial polydactyly, including Smith–Lemli–Opitz syndrome and desmosterolosis (Herman, 2003). There is also therefore evidence of overlapping clinical phenotypes in disorders caused by variants in genes involved in the synthesis of cholesterol.

With recent advances in genomic medicine, it is apparent that the phenotypes of conditions are much wider than previously thought. It is therefore likely that, given current knowledge of sterol metabolism, the disorders described as Astley–Kendall dysplasia and DDD, along with the fetuses described by Nairn and Chapman, all form part of a spectrum of disorders due to defects in the post-squalene cholesterol biosynthesis pathway (Herman, 2003). Other disorders caused by variants more distally in the cholesterol biosynthesis pathway can also present with rhizomelia and post-axial polydactyly, including Smith–Lemli–Opitz syndrome and desmosterolosis (Herman, 2003). There is also therefore evidence of overlapping clinical phenotypes in disorders caused by variants in genes involved in the synthesis of cholesterol.

REFERENCES

How to cite this article: Gregersen PA, McKay V, Walsh M, Brown E, McGillivray G, Savarirayan R. A new case of Greenberg dysplasia and literature review suggest that Greenberg dysplasia, dappled diaphyseal dysplasia, and Astley–Kendall dysplasia are allelic disorders. Mol Genet Genomic Med. 2020;8:e1173. https://doi.org/10.1002/mg3.1173
Author/s:
Gregersen, PA; McKay, V; Walsh, M; Brown, E; McGillivray, G; Savarirayan, R

Title:
A new case of Greenberg dysplasia and literature review suggest that Greenberg dysplasia, dappled diaphyseal dysplasia, and Astley-Kendall dysplasia are allelic disorders

Date:
2020-04-18

Citation:

Persistent Link:
http://hdl.handle.net/11343/246095

File Description:
published version

License:
CC BY-NC-ND