Our Lady’s Children’s Hospital, Crumlin
Dublin, Ireland
and
University of Limerick
Limerick, Ireland
Paul McNally, M.D., F.R.C.P.I.
Our Lady’s Children’s Hospital, Crumlin
Dublin, Ireland
and
Royal College of Surgeons in Ireland
Dublin, Ireland
*Corresponding author (e-mail: khulme@uni.sydney.edu.au).

References

et al. Changing prevalence of lower airway infections in young
children with cystic fibrosis. Am J Respir Crit Care Med 2019;200:
590–599.

of geographical location and climate on current Pseudomonas
infection in young children with cystic fibrosis. J Cyst Fibros 2019;18:
817–822.

3. Harun SN, Holford NHG, Grimwood K, Wainwright CE, Hennig S;
Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) study
group. Pseudomonas aeruginosa eradication therapy and risk of
acquiring Aspergillus in young children with cystic fibrosis. Thorax
2019;74:740–748.

Copyright © 2020 by the American Thoracic Society

Reply to Turnbull et al. and to Hulme et al.

From the Authors:

In a recent issue of the Journal, we reported a change in infection
prevalence observed over the 18 years of the AREST CF (Australian
Respiratory Early Surveillance Team for Cystic Fibrosis)
prospective study, specifically, a reduction in the prevalence of
bacterial infections (Pseudomonas aeruginosa, Staphylococcus
aureus, and Haemophilus influenzae), which resulted in Aspergillus
species becoming the most prevalent lower respiratory
infection cultured in recent years (1).

In a letter to the editor, Hulme and colleagues present
infection prevalence data from a 6-year BAL surveillance
program (SHIELD CF [The Study of Host Immunity and Early Lung
Disease in Cystic Fibrosis]) in preschool-aged children with
cystic fibrosis (CF) conducted at three specialist CF centers in Ireland.
Differences in the prevalence of lower respiratory infections
between their cohort and our Australian cohort, as well as
possible explanations for these differences, are discussed in the letter.
The Irish data show a much higher prevalence of lower respiratory
S. aureus and H. influenzae infections and a much lower prevalence
of Aspergillus species infections. These differences are striking,
especially in the younger age group (0–2 yr).

Differences in the prevalence of bacterial infections between
CF centers are not surprising. Even within the AREST CF
cohort, significant differences between the two participating
centers were reported (2). There could be numerous reasons
for such differences, including antibiotic stewardship, practices
involving antibiotic prophylaxis, varying protocols for the treat-
ment of pulmonary exacerbations and environmental factors (as
discussed by Hulme and colleagues), and patient adherence to
treatment, infection control, and airway clearance routines.

The decrease in the prevalence of S. aureus and
H. influenzae infections over the 18 years of the AREST
CF study coincided with an overall more aggressive treatment
approach. Specifically, use of chronic antibiotics increased
considerably. Between 2004 and 2018, the percentage of
preschool patients treated with long-term azithromycin and any
use of inhaled tobramycin increased from 0% to 30% and 4.7%
to 44%, respectively, possibly influencing the prevalence of
bacterial infections. Interestingly, prophylactic treatment with
amoxicillin–clavulanate did not change over the study period. In
their letter, Hulme and colleagues do not provide specific
information regarding antibiotic use in their patients, which
makes it difficult to compare treatment effects on bacterial
infection prevalence between the cohorts.

In a different letter, Turnbull and colleagues raise concern
that infection prevalence in our study does not represent the
full picture of CF airway microbiology in preschool children
owing to a lack of report on samples obtained during
pulmonary exacerbations, such as oropharyngeal swabs and
induced sputum. We agree that it is possible that samples
obtained during exacerbations might have increased the incidence
of positive bacterial cultures. However, we aimed to report
lower airway infection prevalence. Including upper
airway samples, which have been shown to have a low
positive predictive value for detecting lower airway infection during
both exacerbations and clinical stability (3–5) (regardless of the
test’s sensitivity), would lead to an overestimation of the
prevalence of lower airway infection. Furthermore, including
samples obtained during exacerbations would introduce a
selection bias, which would also cause an overestimation of
infected. Thus, although we do agree that it is important to
understand exacerbation microbiology, it’s questionable
whether such data should be included in an epidemiological
study describing lower airway infection prevalence trends in
relatively well preschool children with CF. In addition, and
most importantly, exacerbation microbiology would not change
the significant prevalence of lower respiratory Aspergillus
species infections reported in our study.
The U.S. Cystic Fibrosis Foundation recently recognized that "new and/or validated ways to better classify and distinguish Aspergillus lung phenotypes" are an unmet need in CF care, limiting diagnosis and treatment of Aspergillus infections. As also presented in the letter by Hulme and colleagues, the prevalence rates of Aspergillus infections in patients with CF vary wildly among studies, mainly because of differences in the culturing methods and sample-processing techniques used, but also because of the different routines used for nebulized antibacterial therapies (6). Furthermore, bacterial infections may inhibit culture growth of Aspergillus species, which would also influence the reported prevalence (6). Our cohort showed an overall 40% incidence of Aspergillus species infection in the first 6 years of life, which is similar to what has been reported in other studies (7–9).

Hulme and colleagues pose the question, "Which is the greater evil, a higher prevalence of bacteria or a higher prevalence of Aspergillus?" There is little doubt that lower respiratory infections with bacteria cause lung damage. However, despite current aggressive antibiotic treatment regimens, preschool-aged children are still showing significant structural lung disease by 6 years of age (10). Thus, it is essential to understand the implications of Aspergillus infections, as they are not routinely treated. The use of molecular techniques to better identify fungal infections in patients with CF is critical for assessing the true prevalence of Aspergillus species infections (6), and programs like AREST CF and SHIELD CF provide opportunities to further elucidate the clinical consequences of Aspergillus infections in early CF lung disease. ■

Author disclosures are available with the text of this letter at www.atsjournals.org.

Oded Breuer, M.D.*
Telethon Kids Institute
Perth, Australia
Perth Children’s Hospital
Perth, Australia
and
Hadassah-Hebrew University Medical Center
Jerusalem, Israel

Andre Schultz, M.B. Ch.B., Ph.D.
University of Western Australia
Perth, Australia
and
Perth Children’s Hospital
Perth, Australia

Lidija Turkovic, Ph.D.
Nicholas de Klerk, Ph.D.
University of Western Australia
Perth, Australia

Anthony D. Keil, M.B. B.S.
Perth Children’s Hospital
Perth, Australia
and
PathWest Laboratory Medicine WA
Perth, Australia

Siobhain Brennan, M.B. Ch.B., Ph.D.
University of Western Australia
Perth, Australia

Colin Robertson, M.B. B.S., M.Sc.(Epi.), M.D.
Philip J. Robinson, B.Med.Sc., M.B. B.S., M.D., Ph.D.
University of Melbourne
Melbourne, Australia

Murdoch Children’s Research Institute
Parkville, Australia
and
Royal Children’s Hospital
Parkville, Australia

Peter D. Sly, M.B. B.S., M.D., D.Sc.
The University of Queensland
Brisbane, Australia

Sarah Ranganathan, M.B. Ch.B., Ph.D.
University of Melbourne
Melbourne, Australia

Murdoch Children’s Research Institute
Parkville, Australia
and
Royal Children’s Hospital
Parkville, Australia

Stephen M. Stick, M.B. B.Chir., Ph.D.
University of Western Australia
Perth, Australia
and
Perth Children’s Hospital
Perth, Australia

Daan Caudri, M.D., Ph.D.
Telethon Kids Institute
Perth, Australia
Perth Children’s Hospital
Perth, Australia
and
Erasmus University Medical Center
Rotterdam, the Netherlands

On behalf of AREST CF† and the all authors

ORCID ID: 0000-0002-4775-9095 (O.B.).

*Corresponding author (e-mail: odedbreuer@gmail.com).

†The full membership of AREST CF is available at www.arestcf.org.

References

Copyright © 2020 by the American Thoracic Society
Author/s:
Breuer, O; Schultz, A; Turkovic, L; de Klerk, N; Keil, AD; Brennan, S; Harrison, J; Robertson, C; Robinson, PJ; Sly, PD; Ranganathan, S; Stick, SM; Caudri, D

Title:
Lower Airway Infection in Preschool Children with Cystic Fibrosis: An International Comparison Reply

Date:
2020-03-15

Citation:

Persistent Link:
http://hdl.handle.net/11343/247117

File Description:
published version

License:
CC BY-NC-ND