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ABSTRACT
We conduct minimal-channel direct numerical simulations of

turbulent flow over two-dimensional rectangular bars aligned in the
spanwise direction. This roughness has been often described as d-
type, as the roughness function ∆U+ is thought to depend only on
the outer-layer length scale (pipe diameter, channel half height or
boundary layer thickness). This is in contrast to conventional engi-
neering rough surfaces, named k-type, for which ∆U+ depends on
the roughness height, k. The minimal-span rough-wall channel is
used to circumvent the high cost of simulating high Reynolds num-
ber flows, enabling a range of bars with varying aspect ratios to be
investigated. The present results show that increasing the trough-
to-crest height (k) of the roughness while keeping the width be-
tween roughness bars, W, fixed in wall units, results in non-k-type
behaviour. The roughness function appears to scale with W, sug-
gesting that this is the only relevant parameter for very deep rough
surfaces with k/W & 3. In these situations, the flow no longer has
any information about how deep the roughness is and instead can
only ‘see’ the width of the fluid gap between the bars.

INTRODUCTION
Turbulent flows bounded by a rough wall are ubiquitous in

engineering and geophysical applications. The roughness gener-
ally increases the drag force exerted on the wall when compared
to a smooth wall, which is often quantified by the (Hama) rough-
ness function, ∆U+ (Hama, 1954). This quantity reflects the re-
tardation of the mean streamwise flow over a rough wall com-
pared to a smooth wall, and can be related to the difference in
skin-friction coefficients, C f . The superscript + indicates quan-
tities non-dimensionalised on kinematic viscosity ν and friction
velocity Uτ ≡

√
τw/ρ , where τw is the wall-shear stress and ρ

is the fluid density. The intuition that increasing the roughness
height would increase the drag suggests that the roughness func-
tion should scale on some characteristic roughness height k+. In
the fully rough regime, in which the skin-friction coefficient no
longer depends on the Reynolds number, the roughness function
scales as ∆U+ = κ−1 log(k+)+D, where κ ≈ 0.4 is the von Kármán
constant and D depends on the rough surface in question (Hama,
1954). These surfaces have been termed k-type roughness, due to
the dependence on the roughness height. However, a second type of
rough-wall flow was discovered for closely packed rectangular bars
aligned in the spanwise direction in pipes (Streeter & Chu, 1949;
Sams, 1952; Ambrose, 1956). This was discussed in the seminal
work by Perry et al. (1969), who studied these spanwise-aligned
bars in a developing turbulent boundary layer. Here, the roughness
function was shown to not scale on the roughness height k+, but
rather the boundary layer height, δ+, as ∆U+ = κ−1 log(δ+)+A.
Perry et al. (1969) termed this roughness d-type roughness (named
after the pipe diameter, due to the earlier pipe flow studies), as it de-
pends on the outer-layer length scale (pipe diameter, boundary layer
thickness or channel half height, h).

The flow physics on how the outer-layer length scale influ-
ences ∆U+ is unclear. Authors such as Perry et al. (1969), Cui
et al. (2003) and Coleman et al. (2007) suggested that there are sta-
ble vortices inside the roughness cavities which are isolated from
the flow above. The flow within the roughness canopy (below the
roughness crest) would therefore be similar to a lid-driven cavity
flow, while the outer-flow would see what is similar to an alternat-
ing slip and no-slip boundary condition at the interface. The outer-
layer flow would have no information about how deep the cavities
are, implying k is not relevant. Townsend (1976), Djenidi et al.
(1999) and Jiménez (2004) proposed some form of ejection of the
roughness cavity flow into the outer layer, where these ejections are
triggered by an outer-layer-dependent process such as large-scale
sweeps, which scales with d.

Much of the difficulty in studying d-type roughness comes
from experimental uncertainty in determining Uτ . An incorrect
measure of this quantity directly influences ∆U+ ≡ ∆U/Uτ , which
can make isolating the effects of k and h problematic. Jiménez
(2004) reviewed several experimental studies of d-type rough sur-
faces but found that the evidence for the idea that ∆U+ only scales
on h was uncertain. Conventional direct numerical simulations
provide an exact estimate of Uτ , but the closely packed nature of
the spanwise aligned bars necessitates an extremely dense grid.
Leonardi et al. (2007) provided one of the first direct numerical
simulations (DNS) of a d-type surface. These authors were not able
to verify if ∆U+ was a function of the channel half-height h, but
did show that ∆U+ was not a function of the roughness height k+.
They therefore broadened the definition of d-type roughness to be
any surface for which ∆U+ 6= f (k+).

The aforementioned expense of the dense grid has made simu-
lating d-type roughness infeasible for many researchers. However,
recently it was shown in Chung et al. (2015) and MacDonald et al.
(2017) that a minimal-span channel can be used to directly sim-
ulate rough-wall flows, which follows on from the early work of
Jiménez & Moin (1991) and Hamilton et al. (1995) in smooth-wall
minimal domains. This technique involves restricting the spanwise
domain width, Ly, to be much smaller than the channel half height,
h, with L+

y ∼ O(100) typical. Only the near-wall flow around the
roughness is fully resolved while the outer-layer flow is restricted
by the narrow domain. As a result, the mean velocity profile of the
minimal-span channel deviates from the full-span channel above a
wall-normal critical height zc ≈ 0.4Ly. Below zc, the turbulent flow
is the same as in a full-span channel, so is regarded as ‘healthy’
turbulence (Flores & Jiménez, 2010). MacDonald et al. (2016) suc-
cessfully used this technique to simulate densely packed sinusoidal
surfaces with solidities (frontal roughness area divided by plan area)
of up to Λ = 0.54. Given that d-type surfaces usually have Λ≥ 0.5
(Jiménez, 2004), then the minimal-span channel would be highly
suitable for such surfaces. As there is explicitly no outer-layer
length scale associated with the flow (as there are no outer-layer
length scale eddies) in the minimal channel framework, we cannot
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Figure 1. (a) Equivalent sand grain roughness against solidity for
different rough surfaces, adapted from Jiménez (2004). The solidity
of the present rough surfaces ranges over 0.5≤Λ≤ 6, shown by the
red region. (b) Sketch of the present roughness. In all cases, W =

b = λ/2. Virtual origin (Jackson, 1981) denoted by ε . Blue arrows
show streamlines commonly used to describe d-type roughness.

explicitly test the hypothesis that ∆U+ = f (h+). However, by in-
creasing the channel width and therefore the largest captured length
scale zc, this can serve as a span-independence verification to pro-
vide some indication on the influence of the largest length scale
in the flow. Moreover, if we consider several rough surfaces with
varying k+ then we can examine what functional dependence, if
any, ∆U+ has on k+.

Most previous d-type roughness studies use square bars
aligned in the spanwise direction, and vary the width of the fluid
gap between the bars, W, for a fixed k (Djenidi et al., 1999; Cui
et al., 2003; Coleman et al., 2007; Leonardi et al., 2007). The
present study varies k for fixed values of W, which corresponds
to progressively taller rectangular bars. The solidity, Λ = k/(2W),
is exceptionally large, with values of 0.5 up to 6. Figure 1(a) shows
the equivalent sand grain roughness plotted against solidity for dif-
ferent rough surfaces, adapted from Jiménez (2004). The solidity
of the rough surfaces in the present study is indicated by the red
region, and can be seen to have much larger aspect ratios than pre-
vious studies. The sketch in figure 1(b) of the present roughness
shows the flow patterns often used to describe d-type roughness
(Jiménez, 2004). Intuitively, the vortices inside the roughness cavi-
ties would likely scale on the cavity width W+ which could suggest
some kind of ∆U+ = f (W+) dependence. Rather than create a new
‘W-type’ roughness classification, we will follow Leonardi et al.
(2007) and continue to use the term d-type roughness, to refer to a
surface where ∆U+ 6= f (k+).

Table 1. Description of the simulations performed. Symbols: W,
distance between bars; k, peak-to-trough roughness height; Λ =

k/(2W), solidity; Nx, number of cells in streamwise direction; Nzk,
number of cells in the wall-normal direction below the roughness
crest; U+

b f , expected full-span bulk velocity using a composite ve-
locity profile; ∆U+, roughness function. All simulations conducted
at Reτ ≈ 395 with L+

x = 1000, ∆y+ ≈ 4.5, and wall-normal grid
spacings at the roughness crest and channel centre of ∆z+w ≈ 0.4
and ∆z+h ≈ 12.9, respectively.

W+ k+ Λ L+
y Nx Nzk U+

b f ∆U+

10 5 0.25 153 1600 12 16.7 0.9

10 10 0.5 153 1600 24 16.1 1.5

10 20 1.0 153 1600 48 15.6 2.0

10 30 1.5 153 1600 72 15.2 2.5

10 40 2.0 153 1600 96 15.1 2.6

10 60 3.0 153 1600 144 15.1 2.6

20 60 1.5 153 800 144 15.0 2.7

20 120 3.0 153 800 195 14.8 2.8

50 150 1.5 306 320 360 14.4 3.3

50 300 3.0 306 320 720 14.4 3.2

100 50 0.25 306 320 112 13.6 4.0

100 150 0.75 306 320 229 12.9 4.4

100 300 1.5 306 320 302 12.6 4.5

100 600 3.0 306 320 452 12.6 4.5

100 1200 6.0 306 320 752 12.5 4.6

100 300 1.5 612 320 302 13.2 4.8

METHODOLOGY
The numerical method used in this study is described and val-

idated in Chan et al. (2015) and MacDonald et al. (2016) This is a
second-order finite volume code which directly solves the Navier–
Stokes equations. A half-height (open) channel is used whereby
a slip wall was positioned at z = h, while a no-slip impermeable
wall is used for the spanwise-aligned bars. Periodic boundary con-
ditions are applied in the streamwise and spanwise directions. The
flow is driven by a prescribed constant mass flux, so that the driving
pressure gradient of the channel, Gx =−dP/dx, varies at each time
step. This mass flux is set via trial and error such that the friction
Reynolds number, Reτ =Uτ h/ν ≈ 395 for all cases. This Reynolds
number was selected as it was shown in Chan et al. (2015) that the
roughness function, ∆U+, is overestimated for Reτ = 180 simula-
tions, becoming Reynolds number invariant for Reτ & 395. Table
1 details the simulations that were performed in this study. The
expected full-span bulk velocity, U+

b f =
∫

U+
compdz+/h+, is given,

where the composite velocity profile of Nagib & Chauhan (2008)
for full-span channel flow is fitted to the simulation data for z > zc
to give U+

comp.
A cell-to-cell expansion ratio of approximately 1.028 is used in

the wall-normal direction above the roughness crest, resulting in a
fairly large grid spacing at the channel centreline. However, the grid
spacings below zc are such that ∆z+ only increases beyond conven-
tional DNS spacings above the wall-normal critical height, zc. As
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Figure 2. Mean velocity profile for smooth-wall (solid) and rough-
wall (dashed) minimal channels with W+ ≈ 100, k+ ≈ 300. Lighter
grey refers to increasing channel width (table 1). Thick black line
is full-span smooth-wall channel data of Moser et al. (1999). Inset
shows difference in smooth- and rough-wall velocity. The origin in
z+ is at the roughness crest.

the region of the flow above zc is already altered due to the nature of
the minimal channel, these spacings should have negligible impact
on the near-wall flow of interest. The wall-normal mesh spacing be-
low the roughness crest is approximately constant at ∆z+w for cases
with k+ < 120. Cases with larger k+ have a larger wall-normal
spacing towards the centre of the roughness cavity, with ∆z+ ≈ 2,
however at the roughness crest and trough it is ∆z+ ≈ 0.4.

The minimal-span channel is used so that the streamwise and
spanwise domain sizes are relatively small compared to conven-
tional (full-span) channels. The recommendation in Chung et al.
(2015) is typically used to determine the spanwise domain width for
k-type roughness, namely Ly & max(100ν/Uτ ,k/0.4,λr,y), where
λr,y is a characteristic roughness spanwise length scale. For the
present two-dimensional roughness, λr,y → ∞ and it is likely that
another length scale would take precedence, anticipated to be W for
W� k. This λr,y constraint will therefore be ignored. The sec-
ond constraint comes from ensuring the roughness is submerged in
healthy turbulence i.e. k < zc = 0.4Ly. Given that this is likely more
applicable for k-type roughness and the present roughness may be
more dependent on W, we will instead ensure Ly > O(W), where
the independence of the flow below zc that sets ∆U+ is more closely
examined in the next section. The streamwise length should satisfy
Lx & max(3Ly,1000ν/Uτ ,λr,x) (MacDonald et al., 2017), where
for the present roughness with relatively narrow streamwise wave-
lengths of λ+

r,x ≤ 200, the second constraint is the limiting one.

RESULTS
Effect of channel width

The flow of the minimal-span channel is intrinsically related
to the spanwise width, with the critical wall-normal height scal-
ing as zc = 0.4Ly. Previous studies support the view that the
roughness crest must be submerged in healthy turbulence, requir-
ing z+c > k+ ⇒ L+

y > k/0.4 (Chung et al., 2015). For the present
roughness, where it is presumed k is not a relevant scale, this rela-
tionship must be re-examined. Figure 2 shows the effect of increas-
ing channel width on the mean velocity profile for bar roughness
with W+ ≈ 100, k+ ≈ 300. As observed in previous minimal-span
channels, increasing the channel width L+

y , and hence critical height
zc, reduces the centreline velocity in the altered outer layer. A larger
proportion of energy containing eddies are captured by the wider
channels and the results tend to match more closely with conven-

tional full-span channel flow.
The rough-wall flow with the smallest width of L+

y = 153 ≈
1.5W+ (dark grey dashed line) is seen to result in a slightly in-
creased mean velocity below the critical height of z+c ≈ 0.4L+

y ≈
61+, when compared to the larger width cases. This is not observed
in the smooth-wall flow (solid lines) so that the velocity difference
between smooth- and rough-wall flows is about 1 friction velocity
lower for L+

y = 153 (inset of figure 2). When L+
y ≥ 306 ≈ 3W+,

little difference is seen with increasing channel width. Note that
there is no smooth-wall minimal-span data for L+

y = 612; instead
the full-span data of Moser et al. (1999) is used. This may explain
the increase in the velocity difference for z+ & 100 for L+

y = 612.
However, the near-wall agreement in the velocity difference (inset)
for L+

y & 306 supports the view that there is little effect in increasing
channel width above Ly ≥ 3W. That is, we have obtained a ∆U+

that is insensitive to the minimal span. In terms of the critical wall-
normal height, zc, the above results suggest that for spanwise bar
roughness zc ≈ 1.2W, or that the height of the healthy turbulence
region must be greater than the fluid width between bars, W.

The classical description of d-type roughness is that the rough-
ness function scales on the largest turbulent length scale, which is
conventionally the channel half height, h. In minimal-span channels
the critical height zc can be regarded as the largest captured turbu-
lent length scale in the flow as opposed to h. The above results,
however, show that increasing zc above 1.2W has diminishing in-
fluence on the flow. This is therefore inconsistent with the classi-
cal description of d-type roughness being influenced by the largest
length scales present in the flow.

Mean flow statistics
Streamlines of time-averaged velocity are shown in figure 3

over a contour of the wall-normal turbulence intensity, w′+2. Firstly,
we will just consider the effect of increasing k+ for a fixed W+ = 10
(figure 3a). Streamlines are only shown for motions with a local ve-
locity greater than 0.05 friction velocities. A clear difference for
k+ = 5 is seen, with the small roughness height flattening the recir-
culating ‘bubble’. There is a subtle difference with k+ = 10, how-
ever once k+ & 20 little effect is seen with increasing k+. This
suggests that once k/W& 2 there is very little effect in changing k.
At this point, there is a single recirculating spanwise bubble rotat-
ing in the clockwise direction. The contour shows that the turbulent
motions do not penetrate far into into the roughness canopy, tend-
ing to zero within 10 to 20 viscous units. Note that these fluctua-
tions are defined using the triple decomposition of w =W + w̃+w′

(Finnigan, 2000) where the time-independent (spatially dependent)
component, w̃, of the fluctuation is subtracted off and w′ is a purely
turbulent fluctuation.

Increasing the width of the fluid gap whilst retaining a fixed as-
pect ratio k/W (figure 3b) results in a strengthening of the fluid re-
circulation region, as well as a greater penetration of the turbulence
into the roughness canopy in terms of z+. However, it still appears
that the turbulent fluctuations do not penetrate much past z/W≈ 2.
When W+ = 100, a secondary recirculating bubble (with localised
velocity greater than 0.05 friction velocities) emerges below the pri-
mary one. This secondary recirculating bubble is nearly the same
strength as the primary recirculating bubble seen when W+ = 10 in
(a). This secondary bubble is still present for W+ < 100, however
its strength is substantially diminished.

A common issue in roughness studies is determining the loca-
tion of the origin in z, often termed the virtual origin, ε . A physi-
cally appealing method that is often employed is to define ε as the
centroid of the moment of the drag forces acting on the rough wall
(Jackson, 1981). This takes the form of ε =

∫
z|Fp+Fν | dz/

∫
|Fp+

Fν | dz. Figure 4(a) shows the ratio of the pressure drag force Fp to
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Figure 3. Streamlines of time-averaged velocity for (a) W+ = 10
with 5≤ k+ ≤ 60 and (b) k/W= 6 with 10≤W+ ≤ 100. Stream-
lines only drawn for motions with local velocities greater than
0.05Uτ . Contour shows the wall-normal turbulence intensity w′+2

with a log colourbar.

the total drag force, Fp +Fν . For the three narrowest fluid gaps of
W+ . 50, the pressure drag is approximately 32% of the total drag
and is almost independent of k. It is only with the largest width,
W+ ≈ 100 that the pressure drag increases to around 41% of the
total drag. These magnitudes are similar to those observed in three-
dimensional sinusoidal roughness which exhibits k-type behaviour
(Chan et al., 2015; MacDonald et al., 2016). In the seminal d-type
work of Perry et al. (1969), the authors assumed that the viscous
drag was negligible so that the pressure drag, which could be ex-
perimentally measured using pressure tappings, was the only con-
tribution to Uτ . The present data for 10≤W+ ≤ 100 shows that the
viscous drag is approximately 60–70% of the total drag, suggesting
this assumption may not be ideal. However this ratio decreases with
W+ and the values of W+ & 250 used in Perry et al. (1969) may
make the assumption more appropriate.

Figure 4(b) shows the virtual origin, calculated using Jackson’s
method. The origin for the three smallest W+ values is almost in-
variant with k, with ε ≈ 0.11W. Note that this means ε+ increases
with W+ however the collapse with the scaling of ε/W suggests
W is a crucial parameter for the present roughness. For the largest
value of W+≈ 100, ε is substantially larger than the narrower cases,
tending towards an asymptote of ε ≈ 0.36W when k/W ≥ 3. This
is most likely due to the secondary recirculating bubble observed
in figure 3(b), which exists over −200 . z+ . −100. This recir-
culating bubble causes a non-negligible pressure difference to act
across the roughness elements which in turn causes ε+ to increase.
Given that this secondary bubble extends down to z+ ≈ 200, then
it follows we require at least k+ > 200⇒ k/W > 2 to reach this
asymptote. These results are in qualitative agreement with the high
aspect ratio model of Sadique et al. (2017), based on flow over
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Figure 4. (a) Ratio of pressure to total (viscous + pressure) drag
and (b) virtual origin ε normalised on fluid gap W. Symbols: +++,
W+ = 10;◦◦◦, W+ = 20;♦♦♦, W+ = 50;×××, W+ = 100.

three-dimensional rectangular prisms. The model predicted ε/W to
asymptote to a constant for k/W & 5, where it is likely the weaker
sheltering behaviour of 3D roughness (Yang et al., 2016) is what
requires a larger k/W ratio to reach the asymptotic limit than the
present 2D roughness.

The mean velocity profile is shown in figure 5 for the cases
with W+ = 10 and W+ = 100. The velocity difference between
smooth- and rough-wall flows for W+ = 10 (inset of figure 5a) has
a dependence on k for k+ . 20, but when k is sufficiently large
(k+ & 30⇒ k/W & 3) little difference is observed. Similarly, for
W+ = 100 a collapse is observed for k/W& 3 (inset of figure 5b),
where the cases with the largest peak-to-trough heights (k+ = 300,
600 and 1200) are almost indistinguishable from one another.

Roughness function
The roughness function ∆U+ is computed by taking the value

of U+
s −U+

r at z+c ≈ 0.4L+
y . Figure 6(a) shows the roughness func-

tion against the peak-to-trough height, k+. It is clear that increasing
k+ for fixed values of W+ does not tend towards the fully rough
asymptote of k-type roughness, that is κ−1 log(k+). However, con-
sider fixed values of k/W, shown by the dashed and dotted grey
lines for k/W = 3 and k/W = 6, respectively. This is more repre-
sentative of an experimental study in which a single geometry (with
fixed k/W) is studied at various flow speeds which leads to the
roughness Reynolds number varying. By considering fixed k/W,
the data now appears to behave more like a k-type roughness in that
the larger values of k+ are tending towards the fully rough asymp-
tote. This is despite the previous results showing very little change
in the flow structures with such a large aspect ratio. It would seem
that the offset constant D in κ−1 log(k+)+D is dependent on k/W,
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Figure 5. Mean velocity profile for smooth-wall (solid) and rough-
wall (dashed) minimal channels with (a) W+ ≈ 10 and 5≤ k+ ≤ 60
and (b) W+ ≈ 100 and 50 ≤ k+ ≤ 1200. Lighter grey refers to
larger k+ (table 1). Inset shows difference in smooth- and rough-
wall velocity.

with increasing k/W leading to a reduced D.
The roughness function as a function of solidity, Λ = k/(2W)

(figure 6b), shows how the roughness function tends towards a con-
stant value for large solidity (large k/W ratios). This value depends
on the fluid width W+, with increasing W+ leading to an increas-
ing roughness function. It is important to emphasise that here we
are varying k+ for a variety of W+ values. Previous studies that
examine the roughness function for varying solidity typically do so
by keeping k+ fixed and varying W+. This results in the rough-
ness function decreasing with solidity in the so-called dense regime
when Λ & 0.15 (Jiménez, 2004; MacDonald et al., 2016), as ob-
served in figure 1(a). If we were to consider a fixed k+ value for the
present bar roughness and increase the wavelength, we would still
obtain a reducing roughness function in the dense regime (Λ& 0.15,
shown by the vertical dashed line in figure 6b). To see this, consider
the first data point for W+ ≈ 100 (red cross, k+ ≈ 50, Λ = 0.5) and
final data point for W+ ≈ 10 (black plus, k+ ≈ 60, Λ = 3). Even
though the roughness heights are slightly different, it is clear that
the roughness function is reducing with solidity for these approxi-
mately matched k+ values.

To better show the trend with W+, the roughness function
is considered in figure 6(c) for surfaces with fixed aspect ratios
of k/W = 3 and k/W = 6 (indicated by the dashed and dotted
lines in figure 6a). For these fixed aspect ratio bars, the rough-
ness function is seen to collapse on one another. This suggests
that for these high aspect ratio (tall and narrow) rough surfaces,
it is W, and not k (figure 6a) that is the relevant length scale. The
k-type asymptote, κ−1 log(k+)+D for fixed k/W would then be-
come κ−1 log(W+)+C, where C = D+κ−1 log(k/W). If we as-
sume the roughness function for W+ = 100 is in the fully rough
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Figure 6. Roughness function, ∆U+, plotted against (a) roughness
height, k+, (b) solidity, Λ, and (c) fluid gap, W+. Symbols: +++,
W+ = 10; ◦◦◦, W+ = 20; ♦♦♦, W+ = 50; ×××, W+ = 100. Dashed and
dotted lines correspond to k/W= 3 and k/W= 6, respectively.

regime, then this offset C can be estimated as C ≈ −6.7 from the
present data and is independent of k/W (solid line in figure 6c).
The equivalent sand grain roughness k/ks ≡ exp(−κ(3.5+D)) =
(k/W)exp(−κ(3.5+C)) can also be estimated, where the constant
3.5 comes from the difference between the smooth-wall log-law off-
set (≈ 5) and Nikuradse’s rough-wall constant (≈ 8.5). In other
words, for k/W ≥ 3 we have ks ≈Wexp(−3.2κ) ≈ 0.3W, or that
it is solely a function of W. For W+ ≤ 100, which is more reminis-
cent of the k-type transitionally rough regime, the roughness func-
tion follows a linear trend of ∆U+ ≈ 0.021W++2.3.

CONCLUSIONS
Direct numerical simulations of turbulent flow over spanwise-

aligned bars have been performed in which the height of the bars, k,
is larger than the spacing between them, W. These bars are some-
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times referred to as d-type roughness, as the roughness function is
thought to scale on the outer-layer length scale. The present sim-
ulations are conducted in a minimal-span channel, which explic-
itly limits the size of the largest length scale in the flow. By pro-
gressively widening the channel and increasing this largest length
scale, it was found that there was little change to the mean veloc-
ity profile when Ly ≥ 3W, or when the critical wall-normal height
zc = 0.4Ly & 1.2W. This suggests that the outer layer of the flow
is not significant to this rough surface, raising questions about the
classification of such surfaces as d-type.

The roughness function appears to be tending towards the k-
type asymptote when fixed ratios of k/W are considered (figure
6a), where each ratio of k/W has a different offset constant in
κ−1 log(k+) + D. However, the pressure to total drag ratio and
virtual origin all show little variation with k, suggesting that k
is no longer relevant to the flow. A clear collapse is seen when
the roughness function is instead plotted as a function of W+ for
fixed ratios of k/W ≥ 3. The fully rough asymptote would then
be κ−1 log(W+) +C, where C ≈ −6.7 and can be related to the
offset D as D = C− κ−1 log(k/W). For a given value of k/W,
this enables the offset constant and to be calculated, and hence
the equivalent sand grain roughness at given operating conditions,
ks = Wexp(κ(3.5+C)) ≈ 0.3W. This applies for any bar rough-
ness which has a sufficiently high aspect ratio k/W≥ 3.

The fully rough inertial limit of W+ being large has yet to be
been attained through numerical simulations, although would be
of considerable interest. An estimate for the fully rough constant
C ≈ 6.7 has been given using the present data at W+ = 100, al-
though this could be better validated with higher W+ values. Perry
et al. (1969) had large W+ values, with W+ ≈ 250 in the zero pres-
sure gradient boundary layers cases and W+ & 1000 in the adverse
pressure gradient cases. The present values of 10≤W+ ≤ 100 are
therefore more reminiscent of transitionally rough k-type surfaces.
However, the computational requirements for simulating turbulent
flow over bars with W+ ≈ 1000, even with the minimal-span chan-
nel, are currently prohibitive.
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Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid
Mech. 36, 173–196.
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