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ABSTRACT

Genome-wide assessment of protein–DNA interac-
tion by chromatin immunoprecipitation followed by
massive parallel sequencing (ChIP-seq) is a key tech-
nology for studying transcription factor (TF) local-
ization and regulation of gene expression. Signal-to-
noise-ratio and signal specificity in ChIP-seq stud-
ies depend on many variables, including antibody
affinity and specificity. Thus far, efforts to improve
antibody reagents for ChIP-seq experiments have fo-
cused mainly on generating higher quality antibod-
ies. Here we introduce KOIN (knockout implemented
normalization) as a novel strategy to increase sig-
nal specificity and reduce noise by using TF knock-
out mice as a critical control for ChIP-seq data ex-
periments. Additionally, KOIN can identify ‘hyper
ChIPable regions’ as another source of false-positive
signals. As the use of the KOIN algorithm reduces
false-positive results and thereby prevents misinter-
pretation of ChIP-seq data, it should be considered
as the gold standard for future ChIP-seq analyses,
particularly when developing ChIP-assays with novel
antibody reagents.

INTRODUCTION

Genome-wide localization of transcription factors (TF),
chromatin regulators, histone modifications and histone
variants is mainly assessed by ChIP-seq, establishing it as
a central technology for understanding transcriptional reg-
ulation in living cells (1,2). The precision of ChIP-seq ex-
periments and their subsequent correct biological inter-
pretation relies on many different parameters, including

chromatin fragmentation, antibody affinity and specificity,
DNA library preparation, genomic coverage of sequencing
reads, sequencing depth and computational algorithms for
peak calling (3–5). Since antibody quality is critically im-
portant for successful ChIP-seq experiments, immunoblot-
ting (4) or ChIP-string methodologies (6,7) are used to de-
fine the affinity and specificity of antibodies used in ChIP-
seq experiments. In addition to specifically enriched sites
with biological relevance ChIP-seq data can also contain
none relevant but specific signals due to the cross-reactivity
of antibodies used for ChIP-seq experiments against pro-
teins other than the epitope used for immunization. How-
ever, ChIP-seq data can also include random signals widely
distributed over the whole genome, which are normally dis-
missed as background noise. These signals not only vary in
binding motifs but also in signal intensities and are believed
to originate from unspecific binding of DNA to beads or to
the constant FC region of antibodies. Therefore, it remains
difficult to distinguish such false-positive signals from true
TF-associated peaks, especially in cases of low enrichments
for binding motifs at called peak positions (8). Interestingly,
false-positive peaks were even called in ChIP-seq experi-
ments performed against a protein without a DNA-binding
domain (9). In addition, technical aspects like shearing
efficiency or crosslinking procedures can generate false-
positive signals (4). Another ChIP-seq-specific variance are
so-called ‘hyper-ChIPable regions’, recently described in
yeast (9). High levels of transcription have been linked to
these euchromatic sites with large numbers of ChIP-seq-
binding signals enriched at these sites. So far, nucleosome
depletion at transcriptional active sites is considered to ex-
pose the DNA in a greater extent to beads and antibodies
during immunoprecipitation. Apparently this susceptibil-
ity leads to unspecific precipitation of DNA during ChIP-
seq experiments. Due to these limitations, we postulated
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that employing TF knockout (KO) cells in ChIP-seq experi-
ments should significantly increase signal-to-noise ratios by
correcting for background signals, and should increase sig-
nal specificity by allowing for correction of peaks originat-
ing from nonspecific antibody-protein binding. Based on
this hypothesis, we utilized ChIP-seq data from TF-KO con-
trol samples to develop a novel approach, called the Knock-
out Implemented Normalization (KOIN) method to reduce
false-positive signals, identify ‘hyper-ChIPable regions’ and
significantly improve biological downstream interpretation.
We utilized six freely available ChIP-seq TF data sets (10–
13) to demonstrate that KOIN increases the precision of
ChIP-seq data interpretation for each data set.

MATERIAL AND METHODS

ChIP-Seq data sets

The data sets for ATF3 (GSE55317) were generated from
bone marrow-derived macrophages (BMDMs) as previ-
ously described (10). In brief, BMDMs from 6- to 8-week
old wild-type (WT) C57BL/6 and ATF3-deficient mice
were obtained by culturing bone marrow cells for 6 days in
DMEM supplemented with 10% (vol/vol) FCS, 10 �g/ml
Ciprobay-500 and 40 ng/ml M-CSF (R&D Systems).
BMDMs were pretreated with medium alone (unstim), 2
mg/ml HDL for 6 h or 2 mg/ml HDL for 6 h followed by
stimulation with 100 nM CpG for 4 h. ChIP-Seq experi-
ments for GATA3 (11) (GSM523224/GSM742022), SRF
(12) (http://homer.salk.edu/homer/data/index.html; ‘SRF’
data set; http://homer.salk.edu/homer/data/ucsc/asullivan-
10-12-01/ThioMac-SRF.fastq.gz; ‘SRF in SRF -/- mice’
datset; http://homer.salk.edu/homer/data/ucsc/asullivan-
10-12-01/ThioMac.SrfKO-SRF.rep2.fastq.gz) and PU.1
(13) (GSM538003/GSM537999/GSM538000) including
library preparation and base-calling are described in the
corresponding publication. The alignment to the NCBI
Build 37 genome assembly (mm9) was carried out for
all data sets with Bowtie (14). Bowtie alignment was
performed with the following settings for concatenated
replicate data sets: -t -q -e 70 -l 28 -n 2 -best -maxbts 125 -S.
All reads mappable to the reference genome were used for
downstream peak calling including multi-mappable read
positions, determined by Bowtie. Scores for multiple align-
ments for every read were reported and only the position
with the best score was further used in the analysis.

KOIN pipeline

KOIN-corrected peak files were generated with the KOIN
pipeline. ChIP-seq data sets for WT and KO experiments
were first aligned to a reference genome with the Bowtie
program. Aligned sam/bam files were afterward used for
peak calling with MACS. During KOIN, the KO data set
was used as a control to call false-positive curated peak po-
sitions for the WT data set. Next peak positions with nor-
malized tag counts in WT to KO data sets with fold changes
smaller than 2 were filtered out. These data are then used for
downstream data analysis like annotation and PWM motif
enrichments using HOMER (13). The KOIN method is pro-
vided as a command line-based batch process to be operated
in a linux environment (see also Supplementary Methods)

which is available online (https://github.com/LIMES-NGS/
KOIN-pipeline).

Peak identification for standard and KO implemented nor-
malization (KOIN) method

MACS (Model-based Analysis of ChIP-Seq) v1.4.0/v2.0.1
(15) peak calling was performed with the following options:
-g 1.87 × 109 -s 51 -bw 150 -w -single-profile -p 1 × 10-4 -on-
auto. In brief, WT peaks used in the standard method were
called using MACS v1.4.0 with aligned ‘.bam’ files as in-
put. Effective genome size was set to 1.87 × 1009. Intervals
on the reference genome with bimodal signal enrichments
were defined as peak regions, with strand tags enriched up-
stream and anti-sense strand tags enriched downstream of
TF binding. MACS shifted sense and anti-sense tags to the
peak midpoint and detected tag enrichments at peak po-
sitions. To filter out peak positions without significant tag
enrichments, MACS used a Poisson distribution model with
the parameter (�local WT).

λlocal WT = max(λBG WT, λ5k WT, λ10k WT)

MACS defined �local WT as the maximum background sig-
nals. This is calculated by MACS either from the whole WT
data set (�BG WT) or from 5- or 10-kb regions centered to the
peak midpoint (�5k, �10k) depending on the maximum sig-
nal. The sum of called WT peaks included all peaks which
fit to the Poisson distribution model with P-values smaller
than 0.04.

When utilizing data from KO mice (KOIN method),
aligned ‘.bam’ files from WT experiments were used as
‘treatment’ file and aligned ‘.bam’ files from KO experi-
ments as ‘controls’ to calculate background signals utilizing
the MACS algorithm. Peak calling steps were performed ac-
cording to standard method described before. After the first
step, the sum of WT peaks included all peaks, which showed
P-values smaller than 0.04 fitting to a Poisson distribution
model based on the parameter �local KO.

λlocal KO = max(λBG KO, λ1k KO, λ5k KO, λ10k KO)

�local KO is defined as the estimated maximum background
signal. This is calculated by MACS either from the whole
KO data set (�BG KO) or from 1-, 5- or 10-kbp regions cen-
tered to the peak summit (�1kKO, �5kKO, �10kKO) depending
on the maximum signal. In the next step, ‘treatment’ and
‘control’ files were swapped and a second peak calling was
performed for KO peaks (defined as ‘negative’ peaks) found
in the KO data set. All KO peaks are called fitting with P-
values smaller than 0.04 to a Poisson distribution model
with the parameter �local WT. �local WT was defined as esti-
mated maximum background signals in the WT data set.
This is calculated by MACS either from the whole data set
(�BG WT) or at different regions with 1-, 5- or 10-kb length
around the peak summit (�1kWT, �5kWT, �10kWT).

λlocal WT = max(λBG WT, λ1k WT, λ5k WT, λ10k WT)

Nonspecific peaks present in the intersection between
WT and KO peaks called in the first two steps of the KOIN
method were excluded for further analysis. Finally, the sum
of corrected peaks after the KOIN method only contained

http://homer.salk.edu/homer/data/index.html
http://homer.salk.edu/homer/data/ucsc/asullivan-10-12-01/ThioMac-SRF.fastq.gz
http://homer.salk.edu/homer/data/ucsc/asullivan-10-12-01/ThioMac.SrfKO-SRF.rep2.fastq.gz
https://github.com/LIMES-NGS/KOIN-pipeline


Nucleic Acids Research, 2014, Vol. 42, No. 21 13053

significant WT peaks as described in the following formula:

Corrected peaks(KOIN method)

= WT peaks\(KO peaks ∩ WT peaks)

To increase specificity, peaks with less than 2-fold higher
signals observed in normalized WT tag counts in compari-
son to KO tag counts at called peak positions were excluded.
The module ‘annotatePeaks.pl’ included in the HOMER
program can count and size-normalize ChIP-seq tag counts
located at each peak position in WT and KO data sets spec-
ified with the -d option (command: annotatePeaks peak-
file.bed mm9 -size given -d peak-file-tag-directory/). Every
statistical software suit, for example, SPSS or Excel can then
calculate the fold difference between normalized tag counts
for WT compared to KO data sets.

P-values were adapted from the standard value 0.05 to
0.04 to reduce the number of enriched regions to a level al-
lowing statistical analysis with the GREAT tool.

Verification of peak identification with MACS was per-
formed with a second peak calling algorithm called SICER
(Spatial clustering for Identification of ChIP-Enriched Re-
gions) v1.1 (16). For the standard approach in SICER, the
following options were used: mouse reference genome mm9,
redundancy threshold 1, window size 100 bp, fragment size
150 bp, effective genome fraction 0.77, gap size 100 bp and
E-value 100 (16). Files in ‘.bed’ format were loaded as input
into SICER and clonal tags were excluded from the analysis.
Next, SICER shifted tags aligned to the sense and anti-sense
strand for half of the fragment size and identified signifi-
cantly enriched islands with the specified windows size and
a window score. All significant WT peaks called with the
standard method required scores above the window score
threshold and an E-value less than the threshold based on
the random background model used.

KOIN peak calling utilizing KO data sets as controls was
performed with the options: mouse reference genome mm9,
redundancy threshold 1, window size 100 bp, fragment size
150 bp, effective genome fraction 0.77, gap size 100 bp, E-
value 100 and a false discovery rate (FDR) of 0.01. During
KOIN, WT peaks were first called according to the standard
method described. These candidate peaks were further fil-
tered according to the P-value threshold under a Poisson
distribution model defining WT data set read counts and
KO data set read counts as parameters and using Bonfer-
roni corrections for multiple testing. The numbers of ChIP
read counts in WT and KO data sets for each peak were
adapted to the total ChIP library size. Finally, corrected
peaks with false discovery rates of < 0.01 based on the Pois-
son P-value were used for further downstream calculations.

To determine the relative overlap of peaks called by
SICER and MACS, we applied the Hypergeometric Opti-
mization of Motif EnRichment program (HOMER) v4.3
(http://homer.salk.edu/homer/index.html) (13). The merge-
Peaks module in HOMER was used for the comparison of
two different peak files resulting in the identification of com-
mon and unique peak positions (command: mergePeaks
MACS-peaks-file.bed SICER-peaks-file.bed -d given).

Annotation and fragment enrichment analysis

Peaks were annotated to the mouse reference genome
(mm9) according to Refseq TSS information using
HOMER. Annotated peak positions were used to detect
global peak distributions in standard or KOIN-corrected
data sets. WT and KO ChIP-fragment signals were de-
picted as histograms 2 kb up- and downstream of each peak
center in 10-bp sliding windows in histogram mode and
were normalized before analysis to 107 total tag numbers.
Java-Treeview (v1.1.6.r4) was used to create heatmaps. For
graphical display of the ATF3 enriched example regions,
normalized ChIP-seq tag signals and peak locations were
loaded into integrative genomics viewer IGV (17). This
approach allowed the comparison of WT and KO ChIP-seq
tag signals at specific locations independent of total tag
numbers in each data set.

Motif discovery

Peak files calculated by standard or KOIN method by
MACS were used for TF motif discovery by HOMER. For
comparison, peak sites identified as false positives were also
examined for motif predictions. TF-binding sites in a re-
gion of 100 bp up- and downstream of peak centers were
used to isolate sequences as input enabling a de novo motif
analysis with HOMER. For GC normalization purposes,
random background sequences with similar GC% contents
were chosen. Auto-normalization was performed to remove
imbalances in short oligos between target and background
sequences. After search and optimization steps, motifs were
identified. Top 10 HOMER motifs were chosen, according
to their binomial P-values, from each data set and the P-
values were depicted in heatmaps by Partek genomic suite
(v6.6). P-values were converted with the following formula
into positive numbers representing the statistical signifi-
cance of motif enrichment: -log10 (motif P-value). Percent-
ages of target sequences with corresponding binding motif
determined by the standard method or the KOIN method
were compared and depicted with horizontal aligned bar
plots together with the corresponding positional weight ma-
trices (PWM). For each motif, the percentage defines the
number of ChIP-seq tags with occurrence of the particular
motif among all tags. Multiple motif hits at a given tag site
are possible.

Motif ratios were calculated for the top five enriched
motifs called independently in WT and KO data sets with
HOMER by counting the motif occurrence and dividing the
motif numbers in the WT data set by the numbers in the
KO data set. Motif counts were normalized against total
peak counts for every experiment. Higher motif abundance
in WT compared to KO data sets were defined as positive
fold change values and vice versa for higher ratios in KO
compared to WT data sets with negative values.

GO-term enrichment analysis for proximal regions

For every peak, the nearest TSS was identified. Correspond-
ing gene names of peaks at promoter sites within 1000 bp of
TSS respectively peaks inside gene loci were loaded into Cy-
toscape v2.8.3 (18) with the BiNGO (19) plugin (v2.44) and

http://homer.salk.edu/homer/index.html
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gene set enrichment was performed using an FDR thresh-
old of 0.001. Visualization of the Gene Ontology (GO) anal-
ysis as networks was performed with the plugin Enrichment
Map for Cytoscape (v1.2). The cutoff for the Jaccard coeffi-
cient was set to 0.001 and an FDR Q-value of 0.01. KOIN-
corrected and noncorrected results were overlaid to visu-
alize enriched GO-terms after correction. Clusters of GO-
terms were marked and named according to common func-
tions filtered by the plugin word cloud. Only subnetworks
with greater than four GO-terms are shown.

Differential GO-term enrichments including distal loci

We used the Genomic Regions Enrichment of Annotations
(GREAT) tool v2.0.2 (20) to study functions of sets of non-
coding cis-regulatory genomic regions and TSS-associated
regions. MACS peaks were associated with their puta-
tive target genes and connected to corresponding gene on-
tologies by GREAT. After statistical enrichment, calcula-
tions with binomial and hypergeometric test algorithms
GREAT displays significantly enriched GO-terms. GO-
terms with and without false-positive corrections were com-
pared against each other according to their binomial P-
values.

Identification of ‘hyper-ChIPable regions’

The top 25 TF enriched peak positions were ranked ac-
cording to their normalized tag counts independently for
all six data sets. Only loci with occurrence in at least two
data sets were used for detailed inspection with UCSC
genome browser (http://genome.ucsc.edu). To define these
loci as ‘hyper-ChIPable’, the following criteria were used:
potential regions display additional enrichment for unre-
lated DNA-binding proteins currently available in the EN-
CODE database (described below) and are also character-
ized as DNAse I hypersensitive sites; regions show RNA
polymerase II binding and histone modifications including
H3K4me1, H3K4me3 and H3K27me3. Potential ‘hyper-
ChIPable regions’ were analysed visually in all data sets
(https://genome.ucsc.edu/ENCODE). In case the investi-
gated regions showed high signals beyond the viewable de-
fault scaling, the region was defined as ‘hyper-ChIPable’.
The following data sets were used: TF-binding sites (Cal-
tech TFBS; LICR TFBS; PSU TFBS; Stan/Yale TFBS), hi-
stone modifications (Caltech Histone; LICR Histone, PSU
Histone; Stan/Yale Histone), DNAse I hypersensitive cleav-
age sites (PSU DNaseI HS; UW DNaseI DGF; UW DNa-
seI HS).

RESULTS

KOIN reduces false-positive signals in ChIP-seq data

A major prerequisite for correct interpretation of ChIP-
seq data is the reduction of false-positive signals to a min-
imum (4). Moreover, while true positive signals are derived
from the biology of the sample (biological variance, Fig-
ure 1a), additional false-positive signals derived from dif-
ferent types of variance, such as background signals, non-
specific peaks, ‘hyper-ChIPable regions’ and other technical
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Figure 1. Sources of variance in ChIP-seq experiments and schematic
overview of the KOIN method. (a) Overview of factors influencing ChIP-
seq data. (b) Schema of two approaches for analysis of ChIP-seq data us-
ing either the KOIN method (KO Implemented Normalization method, in
green) including knockout (KO) samples or the standard method (in blue).
Next generation sequencing data were aligned to the reference genome us-
ing Bowtie; peaks were called with MACS (preferred peak caller) and an-
notated to the transcript database using HOMER. Results for both meth-
ods were compared during downstream data processing including motif
enrichment analysis using HOMER or comparative gene ontology enrich-
ment analysis (GOEA).

variances can exist (Figure 1a). We postulated that the par-
ticular background signals generated by nonspecific peaks
and ‘hyper-ChIPable regions’ result in false-positive sig-
nals, which should be eliminated when subtracting signals
in ChIP-seq data of transcription factor (TF) knockout
(KO) samples from those obtained using wild-type (WT)
samples. We termed this approach Knockout Implemented
Normalization (KOIN). Major steps necessary to perform
the KOIN calculations are described in the KOIN pipeline
(Supplementary Figure S1). We evaluated the advantages of
KOIN in comparison to the standard method utilizing six
different ChIP-seq data sets (10–13) assessing global bind-
ing patterns of the TFs PU.1, SRF, GATA3 and ATF3 (Fig-
ure 1b). In addition, we also compared downstream data
analysis like motif enrichment or comparative gene ontol-
ogy enrichment analysis (GOEA) ENREF 6. As the pri-

http://genome.ucsc.edu
https://genome.ucsc.edu/ENCODE


Nucleic Acids Research, 2014, Vol. 42, No. 21 13055

mary peak caller, we applied MACS v1.4.0, while MACS
v2.0.1 showed similar results (data not shown) (15). In
essence, KOIN includes as a first step peak calling in WT
followed by removal of peak regions that are called in both
WT and KO samples, and finally, regions with background
signals identified in both WT and KOIN are eliminated (for
more detail see material and methods).

To investigate the degree of false-positive peaks, nor-
malized tag counts for peaks were determined and tag
counts in WT samples (gray color) were plotted against
KOIN-corrected tag counts (red color) at the correspond-
ing genomic location for the four TFs investigated (Fig-
ure 2a). Our method revealed a significant number of false-
positive peaks in the SRF and GATA3 data sets. Interest-
ingly, when addressing genome-wide DNA-binding maps of
ATF3 in macrophages cultured under three different stim-
ulatory conditions (unstimulated, stimulated with HDL, or
HDL + CpG), the number of false-positive peaks for ATF3
was dependent on the cell culture condition. The correction
of false-positive peaks (correction rate) led to a decrease in
peak counts of 80% in the SRF, 78% in the GATA3 and
from 43 to 69% in the ATF3 data sets (Figure 2a, Sup-
plementary Table S1) while there was a slight increase of
peaks called for PU.1 after correction (see below). For SRF
and GATA3, we observed similarly high correction rates
by KOIN when intergenic, intronic or promoter sequences
were analysed separately (Figure 2b). Interestingly, when
addressing genome-wide DNA-binding maps of ATF3 in
macrophages cultured under different stimulatory condi-
tions, differences of false-positive peak numbers for ATF3
were identified. In unstimulated cells and cells stimulated
with HDL and CpG, a similar rate of false-positive peaks
was observed in intergenic and intronic peaks, while peaks
in promoter regions showed higher specificity as indicated
by a higher rate of true positives (unstimulated cells: 50%,
cells stimulated with HDL + CpG: 63%). In contrast, there
was less difference between intergenic (53%), intronic (63%)
and promoter peaks (69%) in cells stimulated with HDL
alone.

To ensure that the number of false-positive peaks is not
related to mapping quality as defined by the ratio of unique
to multi-mappable reads (21), we determined the fraction of
unique mapping reads for all six data sets and plotted them
against the number of reads per position (Supplementary
Figure S2a). First, concerning multi-mappable reads there
was no difference between any of the corresponding WT
and KO data sets. Second, no obvious pattern was revealed
for false-positive rate and mapping quality, particularly
with PU.1 and GATA3 showing similarly high fractions
of uniquely mapping reads while showing rather differ-
ent false-positive rates. Therefore, we kept multi-mappable
reads for further analysis following previous approaches
(21).

We next combined the peak caller SICER (16) with
KOIN to see whether we could further improve our results
obtained when using MACS as the primary peak caller.
SICER revealed up to 90% of the peaks identified by MACS
in uncorrected data with SRF showing the lowest overlap
(Supplementary Figure S2b). Although the overlap between
MACS and SICER was improved after KOIN-correction
for the SRF data set, it still scored lowest in comparison to

all other data sets. Overall, MACS seemed to outperform
SICER, at least for the data sets analysed here.

Global visualization further illustrates the loss of false-
positive peaks

While the data presented in Figure 2 depict the overall num-
bers of corrected peaks and their relation to tag counts, we
next wanted to visualize the correction in relation to the
respective peak center. Using the ATF3 data set (HDL +
CpG) as an example, peak-centered tag count heatmaps of
data before (standard method) and after KOIN-correction
clearly illustrate that false-positive peaks are completely
eliminated (Figure 3a). Moreover, signals appearing more
distant from the major peak signals in both WT and KO
samples are also removed from the data. Similarly, even
in a data set with high specificity like the PU.1 data set,
the KOIN method depleted all false-positive signals (Figure
3b). We further validated the KOIN algorithm by compar-
ing our results with a previously published data set using
the same anti-ATF3 antibody (GSE36104) (6). Using the
CD36 and the CDK8 loci as examples (Figure 3c), ATF3
peaks were called for both loci in both experiments, yet
only the peak in the CD36 locus seems to be ATF3-specific
since both ATF3 KO and WT samples showed peaks in the
CDK8 locus. In summary, visualization of KOIN-corrected
positions demonstrated the successful exclusion of false-
positive signals even beyond the major peak positions.

Improved signal-to-noise-ratios can increase the number of
peaks after KOIN

Surprisingly, we identified increased peak counts (+9%) in
the PU.1 data set after applying the KOIN algorithm (Fig-
ures 2a and b and 3b). In sum, 6037 new peaks were called
(Figure 3d, orange dots). Since KOIN also reduces back-
ground signals, the threshold for peak calling is further low-
ered. For data sets such as PU.1, characterized by a very low
false positive rate, elimination of the small remaining back-
ground signals will lead to the identification of significantly
enriched sites with low tag counts. With the elimination of
only a low rate of false-positive peaks and the additional
calling of peaks due to a changed threshold for peak call-
ing, the number of positive peaks called by KOIN can ac-
tually exceed the number of peaks called by the standard
method. At the same time, reduced background levels also
increase the peak calling P-values as demonstrated by the
shift of data points to the upper left corner of the diagram
(Figure 3d, red dots). In conclusion, KOIN leads to a noise
reduction and supports an optimized data analysis even for
antibodies with high specificity, as exemplified for PU.1.

KOIN eliminates ‘hyper-ChIPable regions’

Another class of false-positive peaks known as ‘hyper-
ChIPable regions’ have recently been discovered in yeast
and are likely to occur in other species (9). These euchro-
matic loci are highly expressed in yeast and defined by a
high enrichment of various unrelated DNA-binding pro-
teins, strong RNA polymerase II binding, hypersensitivity
to DNAse I cleavage and enrichment for certain histone
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Figure 2. Global TF-binding distributions in independent ChIP-seq experiments reveal distinct false-positive signals. (a) Normalized ChIP-seq tag counts
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modification marks (9). We focused on loci with the high-
est normalized ChIP-seq tag counts in at least two of our
data sets and correlated them to the above-mentioned crite-
ria using ENCODE resources (see material and methods).
Indeed, we detected up to 18 ‘hyper-ChIPable regions’ in
our data sets (Figure 4, Supplementary Table S2). How-
ever, more importantly, after KOIN-correction these re-
gions were eliminated from the data set and the top 25
ranked peaks in the KOIN-corrected data did not fit the
criteria of a ‘hyper-ChIPable region’ (Supplementary Table
S3). These data indicate that our approach also accounts
for and corrects false-positive peaks from ‘hyper-ChIPable
regions’.

KOIN enriches for peaks with binding motifs for the respec-
tive transcription factor

Next, we were interested if our approach had an impact on
model building for TF-binding motifs as a complementary

145500

145500

21300

21300

38100

38100

101400
SRF WT

SRF KO

GATA3 WT

GATA3 KO

ATF3 Unstim WT

ATF3 Unstim KO

ATF3 HDL/CpG WT

ATF3 HDL/CpG KO

1 kbpchr2:

98.506,5 kbp 98.507,5 kbp 35.112,5 kbp 35.113 kbp

1 kbpchr9:

101400

23200

23200

3.110 kbp 3.110,5 kbp

1 kbpchr12:

35300

35300

PU.1 WT

PU.1 KO

29900

29900

15900

15900

17000

17000

29900KOIN corrected 1700015900

KOIN corrected

151700

151700

25400

25400

40000

40000

ATF3 HDL WT

ATF3 HDL KO

KOIN corrected 4000025400151700

21300 38100145500

KOIN corrected

KOIN corrected

132000

132000

21000

21000

33100

33100

132000 21000 33100

KOIN corrected

24550

24550

16000

16000

22000

22000

24550 16000 22000

3530023200101400

Genomic position Genomic position Genomic position

Figure 4. ‘Hyper-ChIPable regions’ show extremely high ChIP-seq enrich-
ments for all data sets. Three exemplary positions at ‘hyper-ChIPable re-
gions’ were chosen for six ChIP-seq TF data sets (SRF, GATA3, PU.1 and
ATF3 generated under different stimulatory conditions). Corresponding
ChIP-seq profiles for WT and KO samples are depicted in different colors.
In KOIN-corrected data sets, ‘hyper-ChIPable regions’ with corresponding
tags are absent.

Standard (15310 peaks)
KOIN (3358 peaks)0 185 370

GATA3
GATA4
GATA2
GATA1

GATA-IR4
GATA-DR8
GATA-IR3

GATA-DR4
GABPA

ETS1

C
T
AGATC

T
A
T

C
G
A
T
A
G
C
T

C
G
A

T
A
C
G

A
T
G
C
C
T
AGATT

AAA
C
G
T

C
G
A

A
G
C
T
G
T
C
T
G
CTTATCA

T
A
T
G
C

T
A
G
C
T
AGATAACGC

A
G
T
C
G
A

T
A
G
C

T
AGATG

C
T
A
T
C
G
A

A
G
C
T
C
G
A
TATCA

T
T
A
C
G

G
A
T
C

T
AGATT

C
G
C
A
G
T
T
G
A
C

C
G
T
A
T
C
G
A
G
T
C
A
C
T
G
A

A
G
C
T
AGATG

T
A
T
G
A
T
A
C
G

G
C
T
A

C
T
G
A

C
T
G
A

C
T
A
G

T
C
G
A

C
G
T
A

A
T
G
C
T
AGATT

C
G
A
G
T
A

A
G
C
TATCA

T
T
A
C
G

G
T
C
A

G
C
A
T

T
AGATT

C
G
C
A
G
T
C
T
A
G
T
C
A
G
T
AGATT

A
T
G
A
T
A
C
G

T
C
G
A
T
C
G
A

A
G
C

G

A
C

A

G
C

A

G
G

C

T
A
T
A
C
A
G

G
A
C
T

T

C
G
A

A
G
C
C
AGGAT

A
A
G
C
T
T
C
A
G

GATA3
% Target sequences with motif

0 10 20 30 40 50

-log (motif p-val.(KOIN))

(%) Motif sequence

Standard (3790 peaks)
KOIN (1232 peaks)0 155 310

Jun-AP1
AP-1

BACH2
c-Jun-CRE

ATF1
PU.1
JunD
ELF5
ETS1
ERG

C
T
A
G
T

C
G
ATGAT

A
G
CTCAA

G
C
T
G
A
T
C
T
G
A
C

G
C
A TGAT

A
G
CTA

CAA
C
G
T

A
T
G
C

G
C
A
T
C
GA
CTGAA

C
GTACA

T
A
C
G
T

C
G
A
C

TT
G
T
G
A

G
T
C

C
A
G

A
C
TA
C
T
G
A

C
G
ATGAG

T
C
C
A
GTCAG

C
T

A
G
T
C

G
A
T
C

G
T
A

A
C
G

G
AGGAAC

GTTACG
T
A

A
G
T
C

A
C
G

G

C
AGGAAA

G
C
T

C
G
ATGAG

T
C

A
GTCAG

C
T
G
A
T
C
T
C
G
A

T

C
G
A

A
G
C
C
AGGAT

A
A
G
C
T
T
C
A
G

T
C
G
A

A
G
CC

AGGAAA
G

A

G
C
T
T
C
A
G

HDL + CpGATF3
% Target sequences with motif

0 10 20 30 40 50 (%) Motif sequence

-log (motif p-val.(KOIN))Standard (2779 peaks)
KOIN (595 peaks)0 44.5 89

Jun-AP1
AP-1

BACH2
ATF4

c-Jun-CRE
ATF1
Chop
JunD

CEBP:AP1
PU.1

UnstimATF3
% Target sequences with motif

0 10 20 30 40(%) Motif sequence

-log (motif p-val.(KOIN))

C
T
A
G
T

C
G
ATGAT

A
G
CTCAA

G
C
T
G
A
T
C
T
G
A
C

G
C
ATGAT

A
G
CTA

CAA
C
G
T

A
T
G
C

G
C
A
T
C
GA
CTGAA

C
GTA

CA
G
C
ATG

T

A
C
TGA

T
CAAG

C
T

C
G
ATGAG

T
C
C
A
GTCAG

C
T

A
G
T
C

G
A
T
C

T
A
C
G
T

C
G
A
C

TT
G
T
G
A

G
T
C
C
A
G

A
C
TA
C
T
G
A

T

C
G
ATTTAGCATCAC

G
T
G
A
T
C

G
A
T
C

C
G
ATGAG

T
C

A
GTCAG

C
T
G
A
T
C
T
C
G
A

C
T
A
G
C
G
ATA

GA
T
C

A
G
TGT

A
CAA

G
T
A

A
C
G

G
AGGAAC

GTT
A
C
G

Standard (54443 peaks)
KOIN (59222 peaks)0 6125 12250

PU.1
ELF5
ETS1
ETV1

GABPA
ERG
FLI1

Ets1-distal
ELF1

EWS:ERG

PU.1
% Target sequences with motif

0 10 20 30 40 50 60

-log (motif p-val.(KOIN))

(%) Motif sequence

G
T
A

A
C
G

G
AGGAAC

GTT
A
C
G

T
A

A
G
T
C

A
C
G

G

C
AGGAAA

G
C
T

T

C
G
A

A
G
C
C
AGGAT

A
A
G
C
T
T
C
A
G

T
C
G
A
T
C
G
A

A
G
CA
CGGAT

A
C
A
G

A
G
C
T

T
C
G
A
T
C
G
A

A
G
C

G

A
C

A

G
C

A

G
G

C

T
A
T
A
C
A
G

G
A
C
T

T
C
G
A

A
G
CC

AGGAAA
G

A

G
C
T
T
C
A
G

G
C
A
T
G
A
T

G
CAGGAT

AA
G
C
T

C
T
G
A
T
G
C
A

A
G
C

A
CGGAAC

A
G
G
A
C
T

A
G

T
C

C
G

A
T

C
A

G
TGG

AT

A
C

T

A
T

C
G

G
A

C
T

T
CA

A
G

G
C

A
T

T
C

A
GAAGGAC

G
A

A
G
T
C

C
G
A
T

Standard (5319 peaks)
KOIN (3044 peaks)0 170 340

-log(motif-pvalue (KOIN) )

Jun-AP1
AP-1

BACH2
ATF4
ATF1
PU.1

CEBP:AP1
c-Jun-CRE

Chop
JunD

HDLATF3
% Target sequences with motif

0 10 20 30 40 50(%) Motif sequence

C
T
A
G
T

C
G
ATGAT

A
G
CTCAA

G
C
T
G
A
T
C
T
G
A
C

G
C
ATGAT

A
G
CTA

CAA
C
G
T

A
T
G
C

G
C
A
T
C
GA
CTGAA

C
GTA

CA
G
C
ATG

T

A
C
TGA

T
CAAG

C
T

T
A
C
G
T

C
G
A
C

TT
G
T
G
A

G
T
C
C
A
G

A
C
TA
C
T
G
A

G
T
A

A
C
G

G
AGGAAC

GTT
A
C
G

C
T
A
G
C
G
ATA

GA
T
C

A
G
TGT

A
CAA

C
G
ATGAG

T
C
C
A
GTCAG

C
T

A
G
T
C

G
A
T
C

T

C
G
ATTTAGCATCAC

G
T
G
A
T
C

G
A
T
C

SRF
% Target sequences with motif

CT

C
C

T
A

A
T
G
T
A
C
A
TT

AA
T

A
GGT

G
A
C

G
T
C
A

G
T
A

A
C
G

G
AGGAAC

GTT
A
C
G

T
A

A
G
T
C

A
C
G

G

C
AGGAAA

G
C
T

T

C
G
A

A
G
C
C
AGGAT

A
A
G
C
T
T
C
A
G

T
C
G
A
T
C
G
A

A
G
C

G

A
C

A

G
C

A

G
G

C

T
A
T
A
C
A
G

G
A
C
T

T
C
G
A

A
G
CC

AGGAAA
G

A

G
C
T
T
C
A
G

C
T
G
A
T
G
C
A

A
G
C

A
CGGAAC

A
G
G
A
C
T

T
C
G
A
T
C
G
A

A
G
CA
CGGAT

A
C
A
G

A
G
C
T

T
G
C
A
T

C
G
A

A

G
C

A
CGGAAA

G
A

C
T

Motif sequence

A
G

T
C

C
G

A
T

C
A

G
TGG

AT

A
C

T

A
T

C
G

G
A

C
T

T
CA

A
G

G
C

A
T

(%)
SRF
PU.1
ELF5
ETS1

GABPA
FLI1
ERG
ELF1
ETV1
ETS

Standard (6994 peaks)
KOIN (1427 peaks)0 292.5 585

-log (motif p-val.(KOIN))

-fusion

Figure 5. Impact of KOIN-correction on TF motif analysis. Top 10 signif-
icantly enriched TF-binding motifs in sequence elements found at SRF,
PU.1, GATA3 and ATF3 binding sites were sorted according to their
P-values after KOIN correction. The respective percentage of target se-
quences with corresponding motif are illustrated with (blue) or without
(green) KOIN correction as horizontal aligned bar plots. Positional weight
matrix (PWM) motif sequences are plotted at the right side of the cor-
responding motif. Corresponding P-values for each motif are plotted as
heatmaps.

approach to evaluate peak calling specificity (4). We deter-
mined motif P-values, fractions of peaks with the respective
motif and their changes between uncorrected WT, KO and
KOIN-corrected data sets.
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Figure 6. KOIN correction significantly changes GO-term enrichment
analysis. (a) Network visualization of Gene Ontology Enrichment Analy-
sis for genes with SRF protein binding signals located 1 kb up- and down-
stream from their TSS are visualized for 1510 genes before (black node
borders: GO-terms, blue edges: GO-term relations) and 327 genes after
the correction process (red nodes: GO-terms, green edges: GO-term rela-
tions). GO-terms correlating to genes remaining after correction proce-
dure are depicted as red nodes with black borders. The binomial FDR
corrected P-value cutoff was set to <0.001. Analysis was performed with
Cytoscape and the two plugins BiNGO and Enrichment Map. (b) SRF
ChIP-seq signals in cis-regulatory and noncoding genomic regions were
analysed with the GREAT tool to determine biological relevance of ChIP-
Seq-binding patterns. Enriched GO-terms passed threshold for FDR cor-
rected P-values set to 0.05 with both binomial and hypergeometric tests.
Depicted are the binomial P-values (-log10 (P-value)) of enriched GO-
terms with (green) or without (blue) KOIN correction. Commonly found
KOIN-corrected GO-terms in (a) and (b) are highlighted in green letters.

We identified highly enriched binding motifs for SRF,
PU.1, GATA3 and ATF3 (Figure 5) for uncorrected and
KOIN-corrected data using HOMER. Positive peaks for
the top 10 TF-binding motifs were ranked according to mo-
tif P-values (after KOIN-correction, heatmap, from white
to red) and the percentage of positive peaks for each of
the motifs before (green) and after (blue) KOIN-correction
were plotted. Due to the high specificity of the PU.1 data
set, the percentages of peaks positive for TF-binding motifs
remained unchanged (Figure 5). In contrast, we observed
a profound relative increase in the corrected peaks for the
SRF-binding motif (from 15 to 45% for SRF motif) with
the lowest P-value in comparison to the nonspecific TF mo-
tifs and we observed the same trend for GATA3 and ATF3
(Figure 5). Moreover, when comparing all peaks called by
MACS with those called by MACS and SICER neither the
uncorrected nor the KOIN-corrected data sets showed a sig-
nificant difference (Supplementary Figure S3a). Similarly,
in five data sets the motif P-value (after KOIN-correction)

for the main motif was lower in all peaks called by MACS
versus those called by MACS and SICER (Supplementary
Figure S3b), further suggesting that the peaks called by
MACS followed by KOIN-correction truly reflect the global
binding map of the respective TF. Motif enrichment analy-
sis was also performed independently for KO data sets only
(Supplementary Figure S4a). We observed an absence of
the main motif in each data set, whereas other TF motifs
were enriched with only low significance, indicating puta-
tive false positively called binding motifs. To further val-
idate our motif-binding predictions, we compared the ra-
tios of the top five enriched and independently called bind-
ing motifs for WT and KO data sets (Supplementary Fig-
ure S4b). In the SRF and PU.1 data sets, the main motifs
were enriched. Due to the high similarity in the core bind-
ing sequence, not only GATA3 but also motifs for the whole
GATA TF family were enriched in the GATA3 data set.
Similar observations were made for the ATF3 data sets, in
which the Jun-AP1 motif showed the highest enrichment ra-
tios besides AP-1 or BACH2 for WT against KO data sets.

Taken together, these results suggest that false-positive
peaks in the uncorrected data set can dilute the specific sig-
nal, and removal of these incorrect peaks provides an in-
crease in percentage of peaks carrying the respective mo-
tif. Additionally, false-positive peaks can highly contribute
to enrichment of binding motifs of unrelated TFs (Supple-
mentary Figure S5).

KOIN improves biological interpretation of ChIP-seq data

To illustrate the impact of reducing false-positive results via
KOIN on biological interpretation of ChIP-seq data, we
performed Gene Ontology Enrichment Analysis (GOEA)
based on SRF TF peaks near the transcriptional start site
(±1 kb away from TSS) and inside gene loci followed by net-
work visualization of enriched GO-terms using BiNGO and
EnrichmentMap (Figure 6a). This analysis revealed a pro-
found reduction in the number of biological processes asso-
ciated with the remaining gene loci in the KOIN-corrected
data set. Out of the 13 major and 9 minor subnetworks of
GO-terms, two major subnetworks (s7, s12) and 10 minor
subnetworks (s14, s15, s17,s 19, s21-s26) were completely
lost in the KOIN-corrected data set. While there is clear ev-
idence for an involvement of SRF in those biological pro-
cesses that remained in the KOIN-corrected data (12,22),
there is no evidence for those processes that were eliminated
by KOIN further suggesting that KOIN is indeed removing
false-positive signals.

To extend this analysis to noncoding regulatory regions,
we applied Genomic Regions Enrichment of Annotations
Tool (GREAT) (20) that correlates ChIP-seq signals addi-
tionally in noncoding regulatory regions to corresponding
genes followed by GO enrichment analysis (Figure 6b). Bi-
ological functions are predicted by GREAT on proximal
and distal regulatory regions including a stringent filtering
with hypergeometric and binomial statistical models. Con-
sistent with the findings for the SRF TF peaks only in prox-
imity to the TSS (Figure 6a), the KOIN-corrected data re-
vealed an enrichment of GO-terms related to known func-
tions of SRF, for example, actin cytoskeleton dependent
processes (23) and leukocyte activation in immune response
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(12) (Figure 6b). Both processes were identified by these two
independent bioinformatics approaches to associate GO-
defined biological processes with SRF-binding sites in the
genome. At the same time, GO-terms such as ‘mast cell ac-
tivation’, a process SFR has not been linked to, were elim-
inated after KOIN-correction. We also evaluated whether
peaks called by MACS and SICER would further improve
biological interpretation of the data in comparison to anal-
ysis including all peaks called only by MACS (Supplemen-
tary Figure S6a and b). However, this was not the case.
Together these results illustrate that uncorrected ChIP-seq
data sets most likely overestimate the enrichment of cer-
tain GO-terms and biological processes. The enrichment of
GO-terms associated with known functions of SRF in the
corrected data set further indicates that the KOIN method
sharpens the downstream analysis of ChIP-seq data sets.

DISCUSSION

Here, we introduce KOIN, a novel approach to increase
specificity and signal-to-noise ratio in ChIP-seq data, which
at the same time removes false-positive signals derived from
‘hyper-ChIPable regions’ (9). KOIN involves a data nor-
malization step utilizing ChIP-seq data derived from KO
samples of the respective TF. KO data sets are the optimal
technical control for ChIP-seq experiments, since sheared
chromatin is not processed like the target ChIP sample.
Furthermore, KO data sets are less prone to overamplifi-
cation of genomic loci during library construction prior en-
riched by IgG (3,4,24,25). We tested KOIN with six differ-
ent ChIP-seq data sets and could recognize a significant re-
duction of false-positive signals in five out of six data sets.
Intriguingly, for one data set (PU.1) with a very low false
positive rate, KOIN even improved the recognition of spe-
cific peaks due to an improved signal-to-noise ratio. Re-
moving false-positive peaks was also associated with a rel-
ative increase of sites with the primary TF-specific bind-
ing motif. Reasons for the identification of binding motifs
for other TFs instead of the target TF could be caused by
variations in TF-binding strength based on modifications
of the motif sequence or participating co-factors. For ex-
ample, weak TF-binding sequences need binding of sec-
ondary TFs for DNA binding of the main TF coopera-
tively resulting in a ChIP-seq peak signal (26). Moreover,
as illustrated on the level of metadata analysis, removing
false-positive peaks was critical for accurate biological in-
terpretation of genome-wide mapping studies of TFs. In ad-
dition to MACS, we also tested the combination of KOIN
with SICER, another peak caller for ChIP-seq data. In
principle, the combination of SICER with KOIN also re-
moved the large number of false-positive peak signals iden-
tified in our analysis. However, irrespective of the used
MACS version, MACS performed better overall, particu-
larly considering the downstream metadata analysis. When
performing gene ontology enrichment analysis on uncor-
rected or KOIN-corrected data, a reduction of biological
processes was apparent, particularly for those data sets with
the largest number of false-positive peaks. As exemplified
for the SRF data set, there was no random loss of GO-
terms within the GOEA networks established by BINGO
but rather a loss of complete subnetworks. This finding fur-

ther supports the notion that KOIN is not randomly remov-
ing signals but rather specifically removes false-positive sig-
nals. KOIN-correction also increased the relative fraction
of peaks with the primary binding motif for the TF under
study. Moreover, these sites showed significantly lower P-
values despite the reduced number of peaks further under-
lining specificity of these sites. Based on these findings, we
postulate that the binding of TFs might actually be more
specific for their primary binding motifs than previously
suggested by analysis of WT data sets only. We also hy-
pothesized that KOIN-correction would lead to an elimina-
tion of ‘hyper-ChIPable regions’. Indeed, of the 18 ‘hyper-
ChIP-able regions’ identified in our WT data sets, we did
not find any after KOIN-correction and this was even true
for the pioneer TF PU.1. This was somewhat surprising,
since it has been recently shown that chromatin accessibil-
ity is changed after knockout of pioneer TFs (27). A possi-
ble explanation for the removal of ‘hyper-ChIPable regions’
in data sets of knockout pioneer TFs like PU.1 might be
compensatory mechanisms of other pioneer TFs, for exam-
ple, FLI1 enabling the opening of chromatin (28). Hence,
we propose that KOIN is a simple and systematic approach
to remove such sites in future studies on other TFs. Fur-
thermore, it will also be of great interest to examine whether
current standard ChIP-seq approaches targeting novel TFs,
chromatin regulators as well as the recently introduced ‘oc-
cupied regions of genomes from affinity-purified naturally
isolated chromatin’ (ORGANIC) method (29) would also
benefit from including KO samples into the analysis. A po-
tential scenario for future studies defining the binding of as
yet uncharacterized TFs to DNA might be that newly devel-
oped TF-specific antibodies are tested on native chromatin,
for example, using ORGANIC profiling in both WT and
TF-KO samples, to determine affinity, specificity, signal-
to-noise ratio and ‘hyper-ChIPable regions’. Based on this
analysis, recommendations for use of KO samples in fur-
ther studies can then be provided. One limitation of such
studies is the requirement for specific KO samples. However,
due to the revolutionary developments in genetic engineer-
ing (30,31), the development of both mouse and human KO
cells for this approach should present a challenge, not being
an unsurmountable hurdle. The profoundly improved bio-
logical interpretation of the corrected data provides major
impetus for such an effort.
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Supplementary Data are available at NAR Online.
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