Review Article

Reporting and ideal testosterone levels in men undergoing androgen deprivation for prostate cancer—time for a rethink?

Sonja Cabarkapa a, Marlon Perera a, Ken Sikaris b, Jonathan S. O’Brien a, Damien M. Bolton a,b, Nathan Lawrentschuk a,c,d, *

a Department of Surgery, Austin Hospital, University of Melbourne, Melbourne, Australia
b Department of Pathology, University of Melbourne, Melbourne, Australia
C Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
d Department of Surgical Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia

Article history:
Received 18 February 2017
Received in revised form 1 May 2017
Accepted 18 May 2017
Available online 6 June 2017

Keywords:
Androgen deprivation
Pathology
Prostate cancer
Prostate-specific antigen
Reporting
Testosterone

1. Introduction

Since the 1940s, serum testosterone (T) has marked the cornerstone of prostate cancer (PC) progression as postulated by Huggins and Hodges,1 suggesting a direct correlation between high levels of T and PC progression. This highlights the rationale for castration, traditionally surgical, in an attempt to lower serum T and limit PC progression. Over the last 3 decades, androgen deprivation therapy (ADT) has been introduced as an alternative to surgical castration to achieve castration in the treatment of advanced PC.2 Historically, the recommended castrate threshold was below 1.7 nmol/L (50 ng/dL), and this value is still referenced by some regulatory authorities and utilized in clinical trials.3

However, recent studies have conferred better oncological outcomes, with an even lower T threshold of 0.7 nmol/L (20 ng/dL).4 This has resulted in changes to international guidelines including a recent statement from the European Association of Urology promoting this lower threshold.3

Despite the identification of the importance of ensuring castrate levels of T during ADT, the manner in which serum T is reported has not been re-evaluated in recent times. The absolute values assist in clinical decision making, underpinning the importance of their accuracy. However, at present, T levels are still reported in the context of men being assessed for hypogonadism rather than therapeutic castration. Typical threshold levels for hypogonadism are generally >12 nmol/L (346 ng/dL),4 values that hold little significance in the setting of ADT (see Fig. 1). Similarities may be drawn in the assessment of biochemical recurrence after definitive treatment for PC—where accurate prostate-specific antigen (PSA) levels at the lowest detection points are critical and may affect management.

* Corresponding author. Department of Surgery, Austin Health, University of Melbourne, Studley Rd, 3084, Melbourne, Australia.
E-mail address: lawrentschuk@gmail.com (N Lawrentschuk).

http://dx.doi.org/10.1016/j.prnil.2017.05.003
© 2017 Asian Pacific Prostate Society. Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
In the setting of ADT, clinicians are truly interested in information that pertains to the following:

1. How low the T level is (as an absolute value in preference to an interval if possible).
2. The lowest T level the laboratory is able to detect.
3. Accurate clinical guidance as to what the level indicates often in the form of a clinical note.

Variations as to what levels are considered “ideal” exist among international guidelines. This has prompted the need for advisory offering recommendations on the optimal levels and timing of tests. In this study, we aimed to determine the current standards of T reporting from pathology laboratories across Australia. Further, we aimed to review the current guidelines in T monitoring in the setting of ADT.

2. Materials and methods

2.1. Survey of pathology laboratories

A list of registered pathology laboratories in Australia and New Zealand was obtained from business listings and the register at the Royal College of Pathologists of Australasia. Laboratories were contacted and enrolled into the current study, and laboratory reporting data were collected via a phone survey. Questions were directed to a senior laboratory staff member, and in the case that the member of staff was unable to give a verbal response, the questions were sent to them via e-mail. The corresponding answers were entered into the survey template and returned by e-mail. Data collected from each participating laboratory included the following: laboratory information (region/city) and T testing information (manufacturer and analyzer utilized, T assay utilized, T units reported, T reference intervals, lowest reported T value, and lowest detectable T value). In addition to this laboratory-specific data, the awareness of T-lowering medication and reporting standards in this population were assessed.

2.2. Construction of a clinical reporting guideline to be issued with reports of serum T

We performed a systematic search to identify all locoregional reporting guidelines for T. Specifically, we aimed to identify articles that outlined the reporting strategies and recommended frequency of T in patients on ADT. To obtain relevant articles, we...
systematically searched Web of Science (including MEDLINE), EMBASE, and Cochrane. The following search terms were used: “prostate cancer” (/exp, prostat* ca*, prostat* neo*), “testosterone” (/exp, testoster*), “androgen deprivation” (/exp, andro*, depriv*, castrat*), +/- “survival” (/exp, surviv*). In addition, we systematically searched national and international urological, oncological, and pathology bodies’ databases and documentation for respective guidelines. These guidelines were reviewed for recommendations on T testing and T reporting by pathology laboratories.

2.3. Statistical analysis

Survey data were collated into an Excel 2007 spreadsheet (Microsoft Excel, Redmond, CA, USA). Minimal statistical analysis
was performed. Available data were reported as frequencies unless otherwise specified.

3. Results

3.1. Reporting

The data from the survey of pathology laboratories are outlined in Table 1. On assessment of reporting standards, all laboratories reported T intervals and clinical guidelines in a similar fashion with the focus on “normal” T levels. A typical example of how T levels are currently reported is included in Fig. 1. No laboratory reported castrate levels of T or the lowest level that the respective assay was able to achieve. Further, within these pathology T reports, no clinical guidelines were appended to guide clinicians treating men with PC.

3.2. Current guidelines and recommendations for reporting T in men on ADT

From our systematic search strategy, we identified 78 articles relevant for assessment (Fig. 2). Of these articles, we identified eight recommendations regarding T testing in patients on ADT. Pertinent guidelines were identified from the National Comprehensive Cancer Network,7 the European Association of Urology,8 the Canadian Urological Association,9 and the American Urological Association.10 Their respective recommendations are summarized in Table 2.

3.3. Construction of a clinical reporting guideline to be issued with reports of serum T

After examining current reporting by international guidelines, a proposed T reporting schema may include the following (example template is highlighted in Fig. 3):

1. Absolute level of T in the designated units.
2. Reference intervals for the normal male.
3. Lowest interval and highest values obtained by the respective assay (e.g., <0.4—100 nmol/L).
4. Pertinent clinical guidelines at the bottom of the report to state that “international guidelines recommend a serum testosterone level to be at least <0.7 nmol/L or <1 nmol/L in the setting of androgen deprivation for prostate cancer.”8
5. Recommendations for repeat testing in the setting of ADT for PC: it would be reasonable to test serum T at least 6 monthly or when a rise in serum PSA and/or clinical progression occurs while on ADT.

4. Discussion

A significant proportion of PC patients present with advanced disease.11 In these patients, assessment of T levels during the early stages of ADT is critical in ensuring appropriate treatment of PC. Furthermore, during ADT treatment, T monitoring may assist in ensuring acceptable castration or the diagnosis of castrate-resistant PC. Despite increasing evidence, the optimal role and frequency of monitoring of T are not clear. The pertinent findings of the current study are multiple. First, we outlined the heterogeneity and loss of pertinent data when T values are reported by pathology laboratories. Further, we identified the significant variation in recommendations for T monitoring from the major urological and oncological authoritative bodies.

While T does not directly cause prostate dysplasia, it is considered imperative for the growth and progression of PC.12,13
Physiologically, T has three endogenous sources in the male, predominantly from the Leydig cells in the testis and small amounts from the zona reticularis in the adrenal glands and specific PC cells. Only 1–2% of T circulates in the blood freely, constituting the active form of the hormone, which is able to bind to androgen receptors. The remaining T is bound to plasma proteins, predominantly to sex hormone binding globulin and weakly to albumin, in a reversible manner, becoming biologically active in certain tissues. Hormonal therapies influence the binding of T to sex hormone binding globulin, thereby altering the biologically active fraction of T. As a consequence, laboratories correct for sex hormone binding globulin when reporting free T. T samples are best taken in the morning when circulating T levels are highest, with most laboratories using the method of automated chemiluminescent immunoassays or similar principles.

The findings of the current study highlight the limitations of the current format of pathology reporting of serum T in the context of PC patients, which thus requires re-evaluation. Our study illustrates that in Australia, low serum T levels are typically reported as below threshold values that are significant for a diagnosis of hypogonadism (e.g., <12.0 nmol/L), rather than as an absolute measure. In the setting of PC, castration was typically achieved by means of bilateral orchietomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or bilateral orchiectomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-rele...


Author/s:
Cabarkapa, S; Perera, M; Sikaris, K; O’Brien, JS; Bolton, DM; Lawrentschuk, N

Title:
Reporting and ideal testosterone levels in men undergoing androgen deprivation for prostate cancer-time for a rethink?

Date:
2018-03-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/257302

File Description:
published version

License:
CC BY-NC-ND