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Abstract

Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms
and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed
and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly
hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts
arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been
used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data
acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation
damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data
acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the
heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D
tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots
exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first
published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and
metalloid distribution in radiation-sensitive, biological samples.
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Introduction

The uptake of metal(loid)s, whether acting as micronutrients or

contaminants, is a process of major importance in biological

systems. Molecular biology techniques such as fluorescent protein

tagging and immunohistological staining allow the expression of

key metal(loid) transporters to be imaged [e.g. 1]. Yet in order to

assess the function of candidate transporters, the localisation of the

metal(loid)s within the relevant tissue must also be determined.

The analytical challenges of imaging low metal(loid) concentra-

tions in a biologically relevant state are considerable, especially

when the specimen is susceptible to radiation damage [for review

see 2]. In the case of plant roots investigated here, the highly-

hydrated nature of the root poses a challenge due to dehydration,

and also compounds the issue of radiation damage due to the

potential mobility of metal(loid)s in aqueous environments.

Approaches using spectroscopic techniques such as scanning

electron microscopy coupled with energy dispersive x-ray

detection (SEM-EDX), particle induced x-ray emission (PIXE)

or secondary ion mass spectrometry (SIMS) require considerable

sample preparation in order to obtain cross sections for analysis.

This is because all these techniques are inherently surface sensitive,

and determining the distribution of elements across root tissues

therefore requires the analysis of cross sections. Dehydration of the

sample, and often resin-embedding, is generally required before or

after sectioning. However, such sample preparation procedures

have the potential to introduce artifacts due to metal(loid)

redistribution [e.g. 3]. An exception could be provided by cryo-

stage spectroscopic techniques such as cryo-SEM-EDX [e.g. 4] but

although these minimise the risk of artifacts they also generally

lack the necessary sensitivity due to increased bremsstrahlung

background.

Synchrotron-based x-ray fluorescence microtomography can

image metal(loid) distributions with high sensitivity and requires

minimal specimen preparation thanks to the penetrating nature of

hard x-rays [5]. In order to image elemental distributions in cross

section the specimen is scanned along a transect. The sample is

then rotated by a small angle and the process repeated numerous

times to obtain sinograms, the raw input data for tomographic

analyses. A 2D ‘virtual’ cross section can then be reconstructed

using any one of a number of algorithms [6]. Multiple elements

are imaged simultaneously. However, this has traditionally

required significant data acquisition time. Bleuet et al. [7] recently

indicated that collection of one such virtual cross-section for a 200-
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mm diameter object assuming 90 projections, a 1 mm scanning step

and a typical dwell of 1 s per pixel would require at least 5 hours

(not including overhead times due to stage motion and detector

read-out). While this analysis time has not proven prohibitive for

plant parts inherently low in water content such as seeds [8,9], the

situation is different in the case of highly hydrated samples such as

plants roots. In this case, the samples are in fact likely to suffer

from both radiation damage and changes in shape caused by

dehydration. As a consequence, studies conducted in plants using

these techniques have employed dried samples. This is the case for

the study conducted by Blute et al. [10] who used this technique to

assess the distribution and speciation of As associated with Fe

plaques in the roots of Typha latifolia (cattail). Likewise, freeze dried

specimens were used by McNear et al. [11] to investigated the

distribution of Ni in Alyssum murale. In this case the authors pointed

out that ‘attempts were made to image ‘‘fresh’’ plant tissues using

fluorescent CMT; however, it was found that shock freezing and

partial drying was required because the high power density of the

microfocused x-ray beam caused motion associated with dehy-

dration in ‘‘live’’ Alyssum plant tissue which compromised

reconstruction of the tomograms’ McNear et al. [11].

Recent advantages in fluorescence detection technology have

the potential to overcome these limitations due to vastly improve

acquisition performance [12]. Recently, we have demonstrated

that, using the recently developed Maia detector, megapixel

elemental images of Ordeum vulgare (barley) grains could be

collected in comparable times as for conventional detector

technologies but with lateral definition improved approximately

100 times (as compared to previous synchrotron studies [e.g. 13]).

The Maia detector system is a new generation of x-ray

fluorescence detectors developed jointly by CSIRO (Australia)

and BNL (USA). Maia uses an annular array of 384 silicon-diode

detectors positioned in a backscatter geometry to subtend a large

(,1.3 sr) solid-angle and to achieve high count-rate capacity [14].

Maia is designed for ‘on-the-fly’ (continuous) scanning, using a

nuclear physics approach to data acquisition that results in

essentially zero overheads. Consequently, transit times per pixel

can be as short as ,50 ms with a count rate capacity greater than

10 M/s [15].

In this study we used the Maia to assess the distribution of two

widespread metal contaminants in plant roots. A number of

approaches were tested and we report, to our knowledge for the

first time, the distribution of Ni and Zn across hydrated plant roots

exposed to environmentally relevant metal concentrations for

short periods of time.

Results and Discussion

Initially we attempted to collect 3D tomograms by acquiring a

series of 2D maps over 100 angles spaced over 360u. A full 360-

degree range was chosen to probe self-absorption effects, but

measurements over the second half of the range were made unique

by offsetting them by 1.8-degrees relative to the first. The sampling

interval was 262 mm with a transit time of 2.6 ms. A complete

series of 2D projections required ca. 5 hours. Six of these

projections are reported in Fig. 1, where the onset of beam

damage is evident after approximately 75 projections (271.8u). The

damage was revealed by the appearance of a concentrated band of

Zn (magenta) which became increasingly marked as the acquisi-

tion progressed. This structure was initially not observed in the

Compton signal (green) indicating no significant mass-loss [16] or

light-element (H, C, N, O) redistribution. This indicates that the x-

ray beam is most likely the key factor responsible for the observed

damage rather than dehydration of the sample during analysis.

However, by the end of the tomographic series mass loss, and

consequently loss of structural integrity of the root, is also

apparent, as a restriction in correspondence of the area of Zn

accumulation is also evident. Tomographic reconstruction using

the first 50 projections, which did not appear to suffer from beam-

induced damage, showed that metal distribution was not well

resolved, consistent with insufficient angular sampling (see

Supplementary Movie 2). It should be noted here, that only a

small portion of the root volume was analyzed (40 mm in the

vertical direction). As beam damaged occurred even when such a

limited volume was investigated, we abandoned the idea of

collecting 3D tomograms as exploring a smaller volume would

have produced information not very dissimilar from what can be

obtained from 2D tomograms.

Therefore, in order to reduce beam damage we resorted to the

acquisition of 2D virtual cross sections. Although single slice

tomography does not reduce the local dose delivered to the

specimen, it reduces the secondary exposure, as well as the total

time required for data acquisition. Furthermore, as the root cells

are typically around 20–100 mm long, this approach substantially

reduces the total dose delivered to each cell in comparison to the

3D approach above. A single transect was scanned as the sample

was rotated from 0u to 360u in 200 steps. A full rotation was used

so as to enable assessment of beam damage and self absorption by

the specimen. The sampling interval was 2 mm and two transit

times were tested on each root (7.8 ms and 3.9 ms, with

corresponding acquisition times of about 14 and 9 min). The

analyses were conducted at a distance of ca. 1.5 mm to 2.0 mm

from the root tip. Results are reported in Fig. 2. The 2D elemental

maps, collected after the tomographic data, show the distributions

of Zn (upper) and Ni (lower) and the Compton signal, which

indicates the distribution of the lighter elements and thereby the

location of the capillary and root structure. In both the Zn and Ni-

treated roots, metal redistribution from x-ray beam induced

damage is clearly evident in the areas where the slower tomograms

were collected (upper arrows in Fig. 2a, d). Interestingly, in this

case the damage was evidenced by a loss of Zn/Ni at the point of

analysis which is in contrast with what observed when 3D

Figure 1. Zinc (magenta) x-ray fluorescence maps of the same
V. unguiculata root volume collected at 6 orientations. The
Compton signal is in green. The scale box is 50 mm wide by 20 mm tall.
The onset of beam-induced damage can be seen from the maps
collected at 271.8u onwards (all 100 frames available as Supplemen-
tary Movie 1 online).
doi:10.1371/journal.pone.0020626.g001
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tomography was attempted (Fig. 1). This different manifestation of

beam damage deserves further investigation. There was no sign of

beam damage for the shorter pixel transit time (lower arrows in

Fig. 2a, d) either in terms of metal redistribution or mass loss. This

indicates that we were able to beat the onset of radiation damage.

Accordingly, the sinograms and tomographic reconstructions in

Fig 2 are derived from the faster measurements.

The 2D distribution of Zn and Ni clearly differ and provide

important information regarding the active areas of metal uptake

(Fig. 2a, d). However a detailed understanding of the metal

distributions across the roots is only possible from the reconstruct-

ed cross sections (Fig. 2c, f). This is because, due to the penetration

of the x-ray beam, fluorescence is emitted from the whole volume

in the path of the beam. Consequently the 2D image represents a

planar compression of the root volume. The reconstructed cross

sections show Ni accumulation mainly in the cortex and Zn

localisation within distinct cells in the rhizodermis, outer cortex,

and stele. This latter localisation could be due to high

concentrations in xylem vessels. These reconstructions could

suggest that the endodermis restricts the uptake of Ni more than

it does Zn. This is in line with the metabolical requirement of these

two metals. While adequate concentrations of Zn in plants are in

the order of 10 to 100 mg/g, Ni requirements are much lower

(generally below 1 mg/g). The information provided by the 2D

map, however, suggests that the cross section distribution of Zn

and Ni could also be caused by the differential pattern of Ni/Zn

distribution in the root tip area (Fig. 2a, d). In fact, Zn seems to be

accumulated at the root tip which could indicate a strong activity

of Zn transporters in this area. From the root tip, Zn seems to be

efficiently loaded in the xylem vessel for translocation to the shoot.

In contrast, the concentrations of Ni at the root tip are much

smaller indicating a more limited uptake in this region.

These observed distributions for Ni and Zn assist in elucidating

the mechanisms of their rhizotoxicity. For Zn, there was

substantial accumulation in the root apex with subsequent

transport through the stele. Interestingly, excess Zn has previously

been reported to have detrimental effects on both cell division and

cell elongation in the root tip [17,18]. Similarly, Rout and Das

[19] reported that the major toxic effect observed in Zn-toxic

plants occurs in the nuclei of root tip cells. The distribution of Zn

observed in the present study would tend to support these

hypotheses regarding the importance of the root apex in Zn

toxicity. In contrast to Zn, Ni tended to accumulate mainly in

cortical cells with reduced concentrations found in the stele

(Figure 2). In a review of the literature, Chen et al. [20] suggested

that Ni was likely toxic due to indirect effects, such as interference

with nutrient uptake or possibly by inducing oxidative stress. Once

again, the data from the present study regarding the distribution of

Ni in fresh, hydrated roots would tend to support this hypothesis,

although further work is clearly required. Interestingly, this

observation regarding the distribution of Ni is similar to that

reported by Seregin et al. [21] who studied several plant species

exposed to toxic levels of Ni and reported that Ni often

accumulates at the endodermis in non-hyperaccumulating plants.

The 2D maps indicate that Zn uptake was greater than that of Ni,

this result is in line with measured Zn concentrations reaching

1.1 mmol/g and Ni reaching 0.73 mmol/g (fresh root basis). These

root tissue concentrations are similar to those reported elsewhere

Figure 2. 2D maps for Zn (a) and Ni (d) are reported in magenta; the intensity of the signal is proportional to the intensity of the
colour. The Compton signal is in green. Scans of 200 rotations acquired over 360u were used to generate the sinograms and tomographic
reconstructions for Zn (b & c) and Ni (e & f). White scale bars are 100 mm.
doi:10.1371/journal.pone.0020626.g002
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for other species grown in toxic solutions. For example, assuming

cowpea roots are ca. 90% water (data not presented), these values

compare well to those of 4.3 mmol/g (dry weight) for roots of bean

(Phaseolus vulgaris L.) [22] and approximately 34 mmol/g (dry

weight) for roots of maize (Zea mays L.) [23]. Similarly, roots of

beans grown in solutions containing 13.5 mM Zn contained a Zn

tissue concentration of 9 mmol/g (dry weight) [24].

Although the application of x-ray fluorescence microtomogra-

phy to biological samples has been reported previously, this work

shows the first example of this technique applied to hydrated

specimens of extreme radiation sensitivity. It should be noted here

that interesting alternative approaches based on the use of glass

polycapillary half-lenses have been developed. These systems have

been used to realize a confocal detection scheme, in fluorescence

mode, able to provide 3D and internal 2D elemental mapping

[25]. However, this specialized setup is not widely available and

still needs to be assessed for hydrated biological samples.

The results reported here have been made possible by recent

developments in detector technology that have increased detection

efficiency by an order of magnitude and reduced per-pixel

overheads to negligible levels. The collection of the faster 2D

tomograms reported in Fig. 2 delivered approximately 90 kGy to

the sample (estimated following [26]). Beam-induced metal

redistribution was evident after a radiation dose of only

180 kGy. The extremely low level of this damage threshold is

likely to be due to the high motility of metal(loid)s within the

hydrated root. Recent high-resolution 3D fluorescence tomogra-

phy of the diatom Cyclotella meneghiniana [27] reports an imaging

dose of 50 MGy [12], almost 300 times the present work. Use of

the Maia detector for imaging Cyclotella would enable the imaging

dose to be reduced by a factor of 30–50 to around 1 MGy. It is

evident that the use of this new generation of fast detectors is

essential for performing analysis on highly hydrated biological

samples before the onset of significant beam damage and

dehydration. Indeed, fast detection is vital for the minimisation

of motion artifacts when imaging this type of sample. With further

developments in detector performance [12] it can be envisaged

that in vivo applications of x-ray fluorescence microtomography for

biological samples will provide a powerful spectroscopic tool

complementing in situ molecular biology imaging techniques.

Materials and Methods

Plant growth
Seeds of cowpea (Vigna unguiculata (L.) Walp. cv. white Caloona)

were germinated in rolls of paper towel placed vertically in tap water

for 3 d. During this germination period, the seeds were transported

to the Australian Synchrotron, Melbourne, Australia. Glass beakers

(600 mL) were placed into a water bath heated to 26uC and filled to

the brim with 650 mL of 1 mM CaCl2 and 5 mM H3BO3. Perspex

strips, each with seven seedlings, were placed on top of the beakers

and the seedlings grown for 12 to 18 h in order to acclimatise. The

seedlings were then transferred to other beakers which contained

the metal of interest in addition to the basal 1 mM CaCl2 and 5 mM

H3BO3. Two metals were investigated, these being 5 mM Ni and

40 mM Zn (both for 24 h exposure). These concentrations have

been shown to reduce growth by ca. 70 to 90% for a 48-h exposure

period [28]. The metals were added using appropriate volumes of a

6.5 mM stock solution (NiCl2.6H2O or ZnSO4.7H2O). All solutions

were continuously aerated. The pH of the nutrient solutions was not

adjusted, although the average value upon harvest (5.4) was slightly

lower than upon mixing (5.6). Modelling with GeoChem-EZ [29]

indicated that the free ion (i.e. Ni2+ or Zn2+) accounted for ca.

$98% of the total Ni or Zn in all solutions.

To allow assessment of the bulk metal concentration in the

apical tissues of the roots, seedlings were grown for 24 h in Ni- or

Zn-containing solutions. For each treatment, ca. 50 seedlings were

harvested, and their root apices (ca. 150 mg fresh mass) digested

using 5:1 nitric/perchloric acid, with Merck extra pure nitric acid.

The roots were placed into 5 mL volumetric flasks and 1 mL of

acid added. Following digestion, the samples were diluted to 5 mL

using deionized water before analysis by inductively coupled

plasma mass spectrometry.

Tomographic setup
Synchrotron-based x-ray fluorescence microtomography was

performed at the X-ray Fluorescence Microscopy (XFM) beamline

at the Australian Synchrotron [30]. This beamline uses an in-

vacuum undulator to produce a brilliant x-ray beam from which

the 15.6 keV x-rays were selected using a Si(111) monochromator.

A Kirkpatrick-Baez mirror pair was used to focus the beam to a

spot slightly smaller than 262 mm. Specimen translations were

performed using a pair of crossed linear stages. Roots were

mounted (inside their capillaries, for the tomographic measure-

ments) onto a pin which was in turn attached to a small pair of

stages that were used to bring the root to the rotation centre.

Rotation was achieved using a 200 step/rev stepper motor in full-

step mode.

Elemental maps were collected using the Maia detector system.

The Maia detector uses an annular array of 384 1-mm2 silicon-

diode detectors positioned in the backscatter geometry so as to

subtend a very large 1.3-steradian solid-angle and to achieve high

count-rate capacity [14]. The Maia detector is backed up by a

massively-parallel FPGA processor which can perform real-time

analysis to output a stream of x-ray events characterised by x-ray

energy, time-over-threshold, and detector identity. This x-ray

event-mode stream joins with a pixel event-mode stream which is

used to identify the locations of the pixel boundaries in the

scanned images. Acquisition with this system is essentially

overhead-free, enabling routine acquisition on the fly with pixel

dwell times down to 50 msec.

Tomographic analysis
Root samples, prepared as described above, were harvested,

quickly rinsed, and inserted in a polyimide capillary partially filled

with water. The capillary (internal diameter 860 mm, wall

thickness 25 mm) was sealed with wax in order to create a moist

chamber, and immediately mounted and centred on the rotation

stage. The analyses were conducted at a distance approximately

1.5 to 2.0 mm from the root tip.

3D tomograms were acquired by collecting 2D micro x-ray

fluorescence (m-XRF) maps over 100 angles spaced over 360u. The

area mapped extended to 40 mm in the vertical direction and

1.5 mm in the horizontal axis. A full 360-degree range was chosen

to probe self-absorption effects, but measurements over the second

half of the range were made unique by offsetting them by 1.8-

degrees relative to the first (i.e., measurements were made at 3.6-

degree intervals over two separate ranges, from 0–180 degrees and

from 181.8–361.8 degrees). The sampling interval was 262 mm

with a transit time of 2.6 ms.

2D tomograms were acquired by scanning a single transect in

order to obtain m-XRF line scans over 200 angles (from 0u to

360u). A full rotation was used so as to enable assessment of beam

damage and self absorption by the specimen. The sampling

interval was 2 mm and two transit times were tested on each root

(7.8 ms and 3.9 ms, with corresponding acquisition times of about

14 and 9 min). At the end of the 2D tomograms, m-XRF maps

were collected over an area extending 2.5 mm from the root tip in

Fluorescence Microtomography of Biological Samples
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order to assess whether beam damage had occurred. In this case

the sampling interval was 262 mm with a transit time of 3.9 ms.

The XRF events were analysed using GeoPIXE [31,32] which

employs the Dynamic Analysis algorithm to remove backgrounds

and resolve overlapping peaks to generate a rotation series of

projected elemental maps. Self absorption effects were found to be

insignificant by direct observation of the various elemental

sinograms. This result comes as no surprise, as the absorption

lengths in water for Cu and Zn Ka-fluorescence are around

1 mm. Had there been significant distributions of lighter elements

such as K and Ca, however, self-absorption corrections would

have been required, as the relevant attenuation length drops below

70 mm. The elemental projections were aligned by using the

strong, unambiguous Compton scattering signal produced by the

capillary. Tomographic reconstructions were performed using an

implementation of the GridRec algorithm (http://cars9.uchicago.

edu/software/idl/tomography.html) interfaced with the IDL

programming language (http://www.ittvis.com/). Spatial resolu-

tion is estimated to be around 4 mm (2 pixels) due to limitations in

the projection alignment process.

Supporting Information

Movie S1 Zinc (magenta) x-ray fluorescence maps of V.

unguiculata root volume collected at 100 orientations. The

Compton signal is in green.

(WMV)

Movie S2 Tomographic reconstructions of Zn (magenta)

distribution in a V. unguiculata root. The Compton signal is in

green. Twenty consecutive virtual cross sections are presented.

(WMV)
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24. Ruano A, Poschenrieder C, Barceló J (1988) Growth and biomass partitioning in

zinc-toxic bush beans. J Plant Nutr 11: 577–588.
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