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Abstract

Background: Vector-borne diseases cause a significant proportion of the overall burden of disease across
the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective
interventions for many of these diseases, a lack of resources prevents their effective control. Many existing
vector control interventions are known to be effective against multiple diseases, so combining vector control
programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable
disease reductions.

Discussion: The highly successful cross-disease integration of vaccine and mass drug administration programmes in
low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector
control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of
‘accidental’ cross-disease vector control suggest the potential of such an approach. Combining contemporary
high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions
and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of
the global population live in regions of the world at risk from one vector-borne disease, and more than half
the world’s population live in areas where at least two different vector-borne diseases pose a threat to health.
Combining information on co-endemicity with an assessment of the overlap of vector control methods
effective against these diseases allows us to highlight opportunities for such integration.

Summary: Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector
control. All four of these diseases overlap considerably in their distributions and there is a growing body of
evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their
vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by
large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall
health benefit using the limited funds available.
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Background
The global impact of vector-borne diseases
Vector-borne diseases impose a significant burden on
human health and economic development [1, 2]. Despite
the vast scale of the problem, effective interventions are
available to control many of these diseases and, therefore,
reducing their burden is an achievable public health goal.
Nearly 82 % of the global population live in areas at

risk from one vector-borne disease with over half living in
areas at risk of two or more of the major vector-borne

diseases (see Additional file 1 for further details). The
majority of this burden affects those living in low-income
countries where resources for disease control are limited.
Inhabitants of some parts of sub-Saharan Africa, south
Asia, and the Americas are at risk from five or more major
vector-borne diseases (Fig. 1). This overlap in the geo-
graphic distribution of the major vector-borne diseases
suggests it is possible to leverage control resources to
tackle these diseases simultaneously [3]. Herein, we iden-
tify the populations at risk of multiple major vector-borne
diseases to highlight and quantify the opportunity for inte-
grating vector control across these diseases.* Correspondence: nick.golding.research@gmail.com
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Integrating vector control methods
For many vector-borne diseases, vector control (targeting
the arthropods that transmit the disease) is a highly effect-
ive means of reducing transmission. For some diseases,
such as dengue and Chagas disease, vector control is the
only approach currently available [4].
Large-scale vector control programmes have previously

been responsible for the near-elimination of river blindness
from much of West Africa and for shrinking the range of
Chagas disease in South America [5, 6]. Vector control is
currently carried out on a massive scale for the control of
malaria, with long-lasting insecticidal nets (LLINs) and
indoor residual spraying of insecticides reducing the
burden of this disease in highly endemic parts of sub-
Saharan Africa [7, 8].
Although progress has been made in reducing vector-

borne disease endemicity, sustaining and advancing these
gains requires intensification of control efforts [9]. Vector-
borne disease control is hindered by dwindling financial
resources as well as other challenges such as development
of insecticide resistance [10]. Simultaneous deployment of
multiple vector control methods, some of which are not
based on insecticides, can reduce disease transmission
to far lower levels than those achieved using a single
intervention and help slow the development of insecticide
resistance, thereby providing cost-effective and sustainable
reductions in disease burden [11]. In areas with mul-
tiple vector species, insecticide resistance management

programmes should be adopted as soon as resistance is
detected in one vector species, although ideally such
programmes should be introduced before resistance
develops [12].
The simultaneous use of multiple methods is now the

preferred vector control strategy and forms a cornerstone
of integrated vector management – a best-practice frame-
work for sustainable and cost effective vector control [13].

Discussion
Integrating control across diseases
In addition to integrating multiple vector control methods
to target a single disease, simultaneously targeting multiple
diseases using the same vector control programme infra-
structure and possibly the same interventions has the po-
tential for economies of scale and scope and even greater
increases in cost-effectiveness. No large-scale vector control
programmes have trialled multi-disease vector control, but
several examples of ‘accidental’ control of vector-borne dis-
eases suggest the potential of this approach.
Campaigns to reduce the incidence of malaria in India

in the 1950s by indoor residual spraying of insecticides
are credited with drastically reducing the burden from
visceral leishmaniasis by killing its sand fly vectors as they
rested inside homes [14]. Similarly, the mass rollout of
LLINs in sub-Saharan Africa over the last decade is thought
to have reduced the incidence of lymphatic filariasis, since

Fig. 1 Combined global distribution of seven major vector-borne diseases for which integration of vector control programmes may be beneficial:
malaria, lymphatic filariasis, leishmaniasis, dengue, Japanese encephalitis, yellow fever, and Chagas disease. Colours indicate the number of
vector-borne diseases that pose a risk at each 5 × 5 km grid cell
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these diseases share the same mosquito vector in rural
areas [15].
Combining vector control activities across vector-borne

diseases has the potential to be more cost-effective than
parallel programmes. Cost savings would come both from
reducing the direct costs of deploying interventions and
from sharing the necessary support structures for these
control programmes.

Integrated vaccination and mass chemotherapy
This integration of disease control programmes is not
without precedent. For example, the initiation in 1974
of the Expanded Programme on Immunization was a
ground-breaking move to combine the control programmes
for several vaccine-preventable diseases into a single, large-
scale programme. By simultaneously deploying vaccines for
a range of diseases, and combining the support structures
required for large-scale immunization programmes, the
Expanded Programme on Immunization was able to slash
the costs of controlling each disease [16]. The subsequent
development and rollout of polyvalent vaccines has further
compounded these savings, enabling even cheaper and
more effective disease control. Indeed, these vaccine distri-
bution networks and other public health programmes have
already been used as a cost-effective and equitable method
for distributing LLINs [17, 18].
The successes of integrated vaccination programmes have

recently been mirrored in the integration of mass chemo-
therapy control programmes for a number of neglected
tropical diseases [19]. As with vector control, many of the
drugs used in mass chemotherapy are efficacious against
multiple diseases. The distribution mechanisms for these
drugs are very similar and they can safely be administered
together, meaning that cost savings can be made by admin-
istering multiple drugs in a single treatment round.

Identifying opportunities for integration
A crucial first step in assessing where and when an inte-
grated approach to vector-borne disease control is likely to
be effective is determining which interventions are effective
against which diseases. Robust experimental studies of the
effectiveness of vector control methods are unfortunately
scarce for most diseases other than malaria [20, 21]. How-
ever, the limited studies available suggest that many vector
control interventions are effective against several different
vector-borne diseases [22].
For example, the most obvious candidates for synergy

with malaria vector control methods are lymphatic filar-
iasis (spread by the same mosquito vectors as malaria
in rural Africa) and leishmaniasis (spread by the bite of
sand flies). There is good evidence for the efficacy of
insecticide-treated nets, screens, and curtains against both
of these diseases, as several of the main vector species
share the house-entering behaviour of the most important

malaria vectors [23, 24]. There is also limited evidence for
the effectiveness of these methods at controlling the mos-
quito vectors of dengue and yellow fever, and of Japanese
encephalitis [25–28]. Indoor residual spraying of insecti-
cides is likely to be effective against leishmaniasis and
lymphatic filariasis vectors [29, 30] and is known to be
highly effective at controlling the Triatomine bug vectors
of Chagas disease [31].
Larval source management is an effective (if not widely

used) tool for the control of malaria [32] and can be
combined with other vector control approaches for an
additive reduction in malaria burden [33]. Similarly, larval
control has been successfully combined with mass drug
administration for the control of lymphatic filariasis in
India [34]. Control of larval Aedes mosquitoes is a widely
used intervention for tackling dengue [35] and was historic-
ally a key tool in the elimination of both dengue and yellow
fever from Cuba and Panama [36].
Whilst insecticide treatment of nets, screens, and walls

are implemented at the household level, larval source
management must be targeted at the breeding sites of
the specific vector species of interest, necessitating different
procedures for different vectors. For example, application
of larvicides is appropriate for controlling Anopheles [33],
whereas polystyrene beads may be more effective for
the urban Culex vectors of lymphatic filariasis [34] and
the removal or larvicidal treatment of water containers
is more useful for the Aedes vectors of dengue and yellow
fever [35, 37]. Nevertheless, there are many situations
where Anopheles and Culex mosquitoes share the same
habitat [38, 39], and control operatives could reasonably
be tasked to treat or remove the distinct larval habitats of
several key species in a single programme, sharing many
of the costs of control. The development of larval control
products that are effective against multiple vectors could
enhance these cost savings. Evaluating the practical feasi-
bility and quantifying the cost-effectiveness of such cross-
disease integration of larval source management should be
considered in detail in future studies.
For many vector-borne diseases, improving the quality

of housing can be an effective method of disease control
[40, 41]. Whilst house improvement can mean different
things in different epidemiological situations (such as
screening roof spaces for malaria control [42, 43] versus
repairing plaster for Chagas disease [44, 45]), integrated
programmes that carry out multiple improvements could
be an effective approach for jointly controlling multiple
diseases.
The likely impacts of applying control methods simul-

taneously against multiple vectors are a cause of debate
amongst vector ecologists. However, a deliberate integra-
tion programme has so far never been applied operationally
or evaluated in a research context. Therefore, evaluation of
programmes targeting multiple vectors and diseases should
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be a priority for future research in order to determine
the effectiveness, cost-effectiveness, and feasibility of
this approach.

Summary
Quantifying the opportunity for integration of vector
control
Quantifying the potential for cross-disease integration of
vector control requires assessment of the overlap between
vector-borne diseases, both in terms of populations af-
fected and in the potential for integration of control.
Using contemporary high-resolution risk maps we esti-
mated the populations at risk from pairs of major vector-
borne diseases. Figure 2 compares these figures with vector
control methods that are likely to be effective against both
diseases. Malaria, leishmaniasis, lymphatic filariasis, and
dengue are prime candidates for joint control due to their
significant public health impact, broad global distribution
(populations at risk per pair of these diseases range between
1 and 2 billion people), and susceptibility to proven vector
control methods. Of the 3.9 billion people living in areas at
risk from at least two of the seven vector-borne diseases
considered here, 3.5 billion (90 %) inhabit regions where

two or more of these diseases are likely to be susceptible to
the same intervention.
These global maps indicate where diseases are likely to

overlap in their distributions, but diseases may not overlap
at finer scales if their vectors have distinct environmental
requirements. Large-scale cross-disease vector control
programmes would need to be adapted to local-scale
variation in order to best target the specific combination
of diseases present in at-risk communities. Planning a
large-scale programme of integrated vector control will
therefore require more detailed knowledge of the spatial
distribution of each disease, as well as their susceptibility
to available vector control methods. As with any vector
control programme, the interventions selected for control
would need to be tailored to the local environment as well
as to the vector species present. The operational effective-
ness of multi-disease vector control programmes must
then be evaluated in the field.
Whilst these hurdles mean that cross-disease integration

of vector control may not be feasible in all of these areas,
the scale of the potential public health gains is sufficiently
large to warrant serious attention and future research.
Given the limited funds available to control vector-borne
diseases [10], successfully reducing the burden of these

Fig. 2 Effective vector control interventions and joint population at risk of pairs of vector-borne diseases. To assess the potential for integrating
vector control between a pair of diseases, the two diseases in the diagonal cells are identified, followed by the cells where their rows and columns
intersect. Cells in the lower left give the number of people (in millions) living in areas at risk from a given pair of diseases. Cells in the upper-right list
vector control methods which may be effective against both diseases (see Additional file 1 for details). LLINs, Long-lasting insecticidal nets;
ITS, Insecticidal house screening or curtains; IRS, Indoor residual spraying of insecticides; LSM, Larval source management. Whilst some of
these vector control methods can be deployed in exactly the same way for multiple diseases (e.g. LLIN for malaria and lymphatic filariasis)
and can therefore be easily targeted at multiple diseases, others will require different procedures for different diseases (e.g. LSM for malaria
and dengue) and the potential for combined control will be more limited
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diseases requires new strategies to implement vector
control cost-effectively. Leveraging vector control pro-
grammes in a single framework to attack multiple dis-
eases promises a greater overall health benefit using the
funds available. Mapping the global distribution of the
populations suitable for cross-disease integration of vector
control is the first step in quantifying the potential public
health dividend.

Additional file

Additional file 1: Details of: selection of major vector-borne diseases
and vector control interventions for evaluation, compilation of risk
maps for these diseases, and calculation of joint population at risk
estimates. (DOCX 2809 kb)
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LLINs: Long-lasting insecticidal nets.
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