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Abstract: 

Study objectives: Sleep plays an important role in cardiometabolic health. While the 

importance of considering sleep as a multidimensional construct is widely appreciated, 

studies have largely focused on individual sleep characteristics. The association between 

actigraphy-derived sleep profiles and cardiometabolic health in healthy adults and children 

has not been examined.  

Methods: This study used actigraphy-measured sleep data collected between February 2015 

and March 2016 in the Child Health CheckPoint study. Participants wore actigraphy monitors 

(GENEActiv Original, Cambs, UK) on their non-dominant wrist for seven days and sleep 

characteristics (period, efficiency, timing and variability) were derived from raw actigraphy 

data. Actigraphy-derived sleep profiles of 1,043 Australian children aged 11-12 years and 

1337 adults were determined using K-means cluster analysis. The association between cluster 

membership and biomarkers of cardiometabolic health (blood pressure, body mass index, 

apolipoproteins, glycoprotein acetyls, composite metabolic syndrome severity score) were 

assessed using Generalised Estimating Equations, adjusting for geographic clustering, with 

sex, socioeconomic status, maturity stage (age for adults, pubertal status for children) and 

season of data collection as covariates. 

Results: Four actigraphy-derived sleep profiles were identified in both children and adults: 

Short sleepers, Late to bed, Long sleepers, and Overall good sleepers. The Overall good 

sleeper pattern (characterised by adequate sleep period time, high efficiency, early bedtime 

and low day-to-day variability) was associated with better cardiometabolic health in the 

majority of comparisons (80%). 
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Conclusion: Actigraphy-derived sleep profiles are associated with cardiometabolic health in 

adults and children. The Overall good sleeper pattern is associated with more favourable 

cardiometabolic health. 

  

Key words: Sleep, children, profiles, cardiometabolic health 
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The Statement of Significance  

While the importance of understanding the multidimensional nature of sleep is widely 

recognised, few studies have examined sleep as a multidimensional construct. This is the first 

study to determine the association between actigraphy-derived sleep profiles and 

cardiometabolic health in a community sample of adults and children. Four actigraphy-

derived sleep profiles were examined Short sleepers, Late to bed, Long sleepers, and Overall 

good sleepers. The Overall good sleeper pattern is associated with more favourable 

cardiometabolic health (blood pressure, body mass index, apolipoproteins, glycoprotein 

acetyls, composite metabolic syndrome severity score). Four characteristics of sleep 

examined (sleep period, midsleep, sleep efficiency, day-to-day variability) appear to play an 

important role in cardiometabolic health. Future efforts to improve population sleep need to 

consider all characteristics of sleep, rather than isolated variables.  
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Introduction: 

Cardiometabolic diseases are the leading cause of morbidity, mortality, and disability.
1, 2

 Several 

public health initiatives have been proposed and initiated to improve the detection, prevention and 

treatment of cardiometabolic risk factors, including obesity, hypertension, elevated blood glucose 

and cholesterol levels, and elevated inflammatory markers.
1
 While lifestyle behaviours, such as 

physical activity and diet, have long been recognised as important modifiable risk factors of 

cardiometabolic disease, sleep has recently been suggested as an equally important, modifiable risk 

factor.
3, 4

 

 

Sleep is thought to play an important role in regulating complex physiological processes that are 

critical for maintaining metabolic homeostasis.
5
 Short sleep duration, poor sleep quality, delayed 

sleep timing and variable sleep patterns are thought to adversely affect diet, activity levels and 

processes occurring in the hypothalamic–pituitary–adrenal axis (HPA), resulting in increased 

oxidative stress, systemic inflammation, endothelial dysfunction and sympathetic systemic 

activation.
6-8

 These changes manifest as raised inflammatory markers, hypertension, dyslipidemia 

and obesity, which are all known to increase cardiovascular risk. Given that cardiometabolic risk 

factors track into adulthood,
9-11

 it is important to understand how sleep may be associated with these 

risk factors both in adults and children. 

 

A number of methods have been used to assess cardiometabolic risk in adults and children.
12-16

 

Several studies use a “metabolic syndrome score”, a composite score of multiple biomarkers 

reflective of cardiometabolic risk. While there is currently no universal definition, Eisenmann
16

 

provides recommendations on a continuous score, which can be used for both adults and children. It 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsab014/6124580 by U

niversity of M
elbourne user on 24 M

arch 2021



Acc
ep

ted
 M

an
us

cri
pt

 

6 
 

has been shown to track from childhood to young adulthood
17-20

 and predict the development of type 

2 diabetes and cardiovascular disease (CVD) morbidities in adulthood.
21, 22

 Other cardiometabolic 

risk factors such as obesity, blood pressure, certain inflammatory markers (e.g. glycoprotein acetyls 

[GlycA]) and dyslipidemia (i.e. apolipoprotein B/A1 ratio [Apo B/A1]) are also of interest. This is 

particularly because these biomarkers are independent predictors of cardiometabolic diseases
23, 24

 and 

track into adulthood.
20

 

 

While body mass index (BMI) and blood pressure, measured in terms of systolic and diastolic blood 

pressure, are well-known measures of cardiovascular risk, GlycA and ApoB/A1 are relatively new 

and novel biomarkers, with few studies investigating links with sleep.
25-27

 High sensitivity C-reactive 

protein (hsCRP), which is commonly examined in sleep studies, is a marker of acute and (in adults) 

chronic inflammation. A recently described composite nuclear magnetic resonance (NMR) marker, 

GlycA, is suggested to better reflect chronic inflammation and in adults is predictive of 

cardiometabolic risk, however, there are few data from children and adolescents.
28, 29

 
30

 Recent 

studies also suggest GlycA is a strong predictor of future cardiovascular events,
24, 31

 incident type 2 

diabetes mellitus,
32

 and overall mortality,
24

 beyond traditional measures of inflammation, such as 

hsCRP.
33

 Apolipoproteins are structural and functional proteins of lipoprotein particles (e.g. LDL, 

HDL, vLDL) that have an important role in lipid metabolism.
34

 ApoB/A1 reflects the ratio of 

apolipoprotein A (the largest structural component of HDL and responsible for reverse cholesterol 

transport) and apolipoprotein B (the largest structural component of LDL and responsible for 

circulating cholesterol transport), and has been suggested to more accurately reflect cholesterol 

balance and potential athrogenic and anti-athrogenic particles.
34

 ApoB/A1 ratio has been reported an 

important predictor of cardiovascular risk, superior to conventional lipid profiles and tracks from 

childhood to adulthood.
35
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To date, few studies have examined the association between sleep and cardiometabolic risk, with 

most studies adopting a variable-based approach, and almost all focusing on sleep duration.
25

 While 

traditional variable-based approaches may provide insight into how isolated sleep characteristics are 

associated with cardiometabolic risk factors, analyses do not reflect the multidimensional nature of 

sleep. Given that sleep is a multidimensional construct, it is essential to adopt a “whole person 

approach” that considers all characteristics of sleep within the individual, particularly when 

considering population health.
36

   

 

In line with efforts to better understand sleep as a multidimensional construct and as a determinant of 

cardiometabolic health, the current study aimed to determine the association between actigraphy-

derived sleep profiles and cardiometabolic health of Australian children aged 11-12 years and their 

parents. In this study, we examined cardiometabolic health in terms of BMI and blood pressure, a 

continuous cardiometabolic risk score, and biomarkers of inflammation (GlycA) and dyslipidaemia 

(ApoB/A1). 

 

Methods: 

Data examined in this study were collected between February 2015 and March 2016 as part of the 

Child Health CheckPoint (CheckPoint) study, a one-off, comprehensive physical health and 

biomarker cross-sectional study nested between waves 6 and 7 of the Longitudinal Study of 

Australian Children (LSAC) at child age 11-12 years. The LSAC commenced in 2004 with the 

recruitment of two cohorts (B and K – the latter not relevant to this paper), which have since been 
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followed biennially 
37

. Further details of the CheckPoint study design and recruitment are outlined 

elsewhere.
38, 39

  

 

Ethics and Consent: The CheckPoint study protocol was approved by The Royal Children's 

Hospital Melbourne Human Research Ethics Committee (33225D) and the Australian Institute of 

Family Studies Ethics Committee (14-26). The attending parent/caregiver provided written informed 

consent for themselves and their child to participate in the study.  

 

Measures:  

Sleep 

Objectively-measured sleep characteristics were collected using tri-axial, wrist-worn GENEActiv 

accelerometers (Activinsights, Cambs, UK). This device has been used in previous studies to 

examine sleep of adults 
40

 and children.
41, 42

  The GENEActiv has been shown to be valid for 

measuring sleep duration and efficiency when compared to the Actiwatch 
43

 and polysomnography 
40

 

in adults, but not in children. GENEActiv-measured sleep duration correlate well with both sleep 

diary and self-reported sleep durations in children.
44

 Participants were included for analysis if they 

had at least four nights of sleep data recorded, had an average sleep time >200 min and at least one 

non-school night (Fri-Sat) of sleep data. Sleep characteristics were derived from raw accelerometer 

data and processed using Cobra custom software developed by co-author FF (available on request to 

FF). Details of data processing have been reported elsewhere.
45

 The van Hees 
40

 sleep algorithm was 

used to detect sleep and wake between self-reported bedtime and get up time, and collapsed into 1-

min epochs. Each minute was classified as sleep or wake if it contained a majority of sleep or wake 

5-s epochs, respectively. Minutes containing equal numbers of sleep and wake 5-s epochs were 

classified as sleep. Sleep onset was defined as the start of the first three consecutive minutes scored 
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as sleep. Sleep offset was defined as the end of the last five consecutive minutes scored as sleep. 

Sleep data for the first night were excluded, as recordings started at 2300. Further details of sleep 

data processing has been reported elsewhere.
45-47

 

 

Four actigraphy-derived sleep variables were used to develop sleep clusters. These included sleep 

period (the difference between sleep onset and offset), sleep timing (the midpoint between sleep 

onset and offset), day-to-day sleep variability (the coefficient of variation of sleep period) and sleep 

efficiency (the percent of minutes scored as sleep between onset and offset). These variables are 

poorly correlated (r<0.3 for children and r<0.2 for adults) and were selected to represent sleep 

duration, timing, variability and quality (respectively). Mooi and colleagues
48

 report that if highly 

correlated variables (r>0.9) are used in cluster analysis, specific aspects of these variables will be 

overrepresented. K-means cluster analysis was then used to identify sleep clusters. This process, 

summarized in the methods section and reported in detail elsewhere,
47

 identified four sleep clusters 

that were labelled Late to bed, Long sleeper, Short sleepers, and Overall good sleepers for both 

adults and children within the CheckPoint study.  

 

Cardiometabolic health 

We examined whether sleep cluster membership was associated with cardiometabolic health, 

considered in terms of cardiometabolic markers, anthropometric measures and a composite metabolic 

syndrome score.  

Cardiometabolic markers  

Semi-fasted venous blood samples were taken from consenting adults and children in the CheckPoint 

study. In some cases, participants declined to provide venous samples but provided capillary blood 

samples instead. Appropriately trained researchers or phlebotomists collected venous blood samples 
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within assessment centres. Samples were then processed within 2 h on-site and stored at −80°C prior 

to shipping in dry ice as a single batch to the Melbourne Children’s Bioresource Center (Murdoch 

Children’s Research Institute) for processing. Further detail of blood collection, storage, and 

processing has been reported elsewhere.
49

 Biomarkers examined in this study included 

concentrations of triglycerides, total cholesterol, HDL, LDL, ApoB/A1 and GlycA. Further detail as 

to how these measures were derived have been reported elsewhere.
29

 

 

Anthropometric measures 

Waist circumference was measured by trained research assistants with a steel anthropometric 

measuring tape (Lufkin Executive Diameter W606PM, Maryland) and assessed as the narrowest 

point between the 10th rib and iliac crest, or midpoint between if no visible narrowing. Two 

measures were taken, or a third (if the first two values differed by ≥1 cm), and the average was 

calculated. Height was assessed using a portable rigid stadiometer (Invicta IP0955, Leicester, UK). 

Two measures were taken, or a third (if the first two values differed by ≥0.5 cm), and the average 

was calculated. Weight was recorded via the InBody 230 Bioelectrical Impedance Analyser scales.
50

 

BMI (kg/m
2
) was determined and BMI z-score calculated for children using the Centers for Disease 

Control CDC reference dataset
49

. Waist circumference measures have been shown to have good 

intra-rater and inter-rater reliability >0.88.
51-53

 Similarly, the intra-rater and inter-rater reliability of 

BMI measures have been shown to be greater than 0.90.
54

 

Blood pressure 

Blood pressure was measured by a trained research assistant. Blood pressure cuff size was selected 

based on arm circumference. Readings were taken using the SphygmoCor
55

 automated blood 

pressure monitoring device after participants were seated for a minimum of three minutes of quiet 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsab014/6124580 by U

niversity of M
elbourne user on 24 M

arch 2021



Acc
ep

ted
 M

an
us

cri
pt

 

11 
 

rest. Automated blood pressure recordings in children, following similar protocols adopted in this 

study have been shown to have good intra-rater reliability (r=0.83-0.86).
56

 

  

Three blood pressure measures were considered: systolic blood pressure (SBP), diastolic blood 

pressure (DBP) and mean arterial pressure (MAP). Mean arterial pressure was determined using the 

following calculation: MAP = [SBP+(2*DBP)]/3 and was used to calculate a metabolic syndrome 

score.  

 

Metabolic syndrome severity score 

The metabolic syndrome is a cluster of cardiovascular risk factors that identify individuals who are 

more likely to develop future CVD and Type 2 diabetes.
21, 57

 While there is no standard method of 

assessing metabolic syndrome, methods that use binary cut-offs have been criticised, with growing 

research in favor of z-score calculations.
58

  

 

In the current study, a metabolic syndrome severity score (MetSS) was calculated to reflect metabolic 

syndrome severity. In line with Eisenmann’s recommendations,
16

 we used the sum of the z-scores of 

MAP, triglycerides, glucose, waist circumference, and HDL. Since HDL is inversely related to 

metabolic risk, it was subtracted. A higher score indicates a less favorable cardiometabolic profile. 

While an age- and sex- adjusted metabolic syndrome severity score has been recommended,
16

 we 

used an unadjusted score as our analysis adjusted for sex, children’s puberty stage, and adult’s age.  

Covariates 

Analyses were adjusted for socioeconomic position (SEP), sex, parental age, children’s puberty stage 

and season of data collection. SEP was operationalised using a composite measure consisting of self-

reported parental income, education and occupation, which was derived from the LSAC dataset.
59, 60
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Using this scale, higher scores represent higher socio-economic position. Puberty was assessed using 

the Puberty Development Scale, a validated questionnaire that requires participants to answer five 

questions, using a four-point scale, with higher overall score representing advanced pubertal 

development.
61, 62

 Season of data collection included all four seasons of the year: Summer 

(December-February), Autumn (March-May), Winter (June-August), Spring (September-November), 

as defined in Australia.  These covariates were selected as they have been associated with cluster 

membership and cardiovascular outcomes.
47

 The primary sampling unit of the original (LSAC) 

cohort was postal code, therefore we included an indication of which participants belonged to the 

same postal code.    

 

Statistical Analysis:  

All actigraphy variables were computed for each day. Measures of sleep duration, timing and quality, 

were averaged using a 5:2 weighting for a weeknight (Sunday–Thursday) and weekend (Friday–

Saturday).  

 

Details on how sleep clusters were developed have been reported elsewhere.
47

 Briefly, cluster 

analysis was performed for both adults and children separately using SPSS, Software version 25 and 

guided by methods outlined by Mooi and Sarstedt 
48

. Sleep variability data were normalised using 

log transformation and all sleep values standardised (using z-score) prior to analysis. The 

agglomerative hierarchical clusters method (using Ward’s method and squared Euclidean distance) 

was used to help determine the number of clusters. K-means cluster analysis was then used to 

determine specific sleep clusters. Given that cluster analysis is primarily exploratory in nature and 

practical considerations have been suggested to be of utmost importance when deciding on the 

number of clusters,
48

 we selected the optimal number of clusters by visualizing the hierarchical 
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cluster dendrogram (Supplement 1), considering the coefficient change in the hierarchical 

agglomerative schedule (Supplement 2), and the interpretability of K-means cluster solutions. 

Stability of clusters was assessed following the common approach outlined by Mooi and colleagues
48

 

whereby we repeated the cluster analysis on a random split of the original sample and compared the 

cluster centroids of the two solutions. One-way ANOVA did not find a significant difference in 

cluster centroids (p-value 0.7 for children and 0.2 for adults), suggesting a high degree of stability in 

the overall solution.  

 

Cardiometabolic markers were examined for normality through visual inspection of histogram plots 

and assessment of kurtosis. Skewed variables were assessed by visual inspection, assessment of 

kurtosis (>3) and skewness (>1) values and were normalised using log transformation (glycA for 

adults; glycA and ApoB/A1 for children). All outcome variables were standardised prior to analysis.  

 

The association between sleep cluster membership and cardiometabolic risk was assessed using 

Generalised Estimating Equation (GEE) in which standardised cardiometabolic risk measures were 

considered as dependent variables and cluster membership as predictor. Robust standard errors were 

used to account for the clustered sampling design of the study by adjusting for geographic clustering 

of observations by postal code. All outcome measures were normally distributed and modelled using 

a linear model, adjusted for sex, SEP, maturity stage (age for adults, puberty score for children) and 

season of data collection. P-values have been reported.  Since many comparisons were undertaken, 

Holm Sequential Bonferroni correction was performed to address the risk of capitalisation on chance.  
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Results: 

As presented in Figure 1, of the 1874 parent-child CheckPoint participants, 1043 children and 1337 

adults had complete sleep data available for cluster analysis. Table 1 presents a comparison of 

participants included and excluded for analysis. As shown, children included for analysis were 

younger, had less advanced pubertal status, were of higher SEP and lower BMI z-score compared to 

those excluded. Similar differences were observed for adults, except, those included for analysis 

were older than those excluded. There were no sex differences. 

 

Table 2 presents sample characteristics. Most participants were born in Australia and spoke English 

at home. Few were of Indigenous background. Sleep characteristics of the four actigraphy-derived 

sleep profiles examined are reported in Table 3. As presented, each cluster was named according to 

key sleep characteristics. Cluster names are provided as mnemonic labels only. Further details of 

sleep clusters and correlates have been reported elsewhere.
47

 

 

<<insert Figure 1 here>>  

<<Insert Table 1 here>> 

<<Insert Table 2 here>> 

<<Insert Table 3 here>> 

Adjusted GEE results for adults and children are presented in Table 4. As shown, cluster 

membership was significantly associated with MetSS, BMI and ApoB/A1 in adults and MetSS in 

children. Compared to Overall good sleepers, adults with a Late to bed sleep profile had a higher 

MetSS and BMI, while children with a Short Sleep profile had significantly higher MetSS, BMI and 

ApoB/A1. Adjusted marginal means are presented in Table 5 
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Figure 2 illustrates cluster membership and adjusted, standardised effect sizes for each 

cardiometabolic outcome measure. As shown, the Overall good sleeper pattern is associated with 

better cardiometabolic health in both adults and children. As illustrated, effect sizes are generally 

larger for adults, compared to children. 

 

<<Insert Table 4 here>> 

<<Insert Table 5 here>> 

<<Insert Figure 2 here>> 

Discussion: 

This is the first study to determine the association between actigraphy-derived sleep profiles and 

cardiometabolic risk in a community sample of adults and children. We examined cardiometabolic 

risk in terms of a continuous metabolic syndrome severity score, as well as traditional and novel 

biomarkers that have been shown to track into adulthood and predict the development of type 2 

diabetes and CVD morbidities in adulthood.
20-24

 We found that Overall good sleepers had better 

cardiometabolic health across a variety of individual and summary cardiometabolic indicators in both 

adults and children. The differences were most pronounced for MetSS in both adults and children, 

and for BMI and ApoB/A1 levels in adults.  

 

In our study, we found that MetSS (and to a lesser extent other cardiometabolic risk factors) was 

worse in the short sleep group in children and the late sleep group in adults. Short sleep and delayed 

sleep timing have been associated with poorer cardiometabolic health.
25, 36, 63-65

 Short sleep is thought 

to increase allostatic load, increase appetite for unhealthy foods and cause fatigue, which limits 

physical activity.
66, 67

 In contrast, delayed sleep timing is thought to provide fewer opportunities for physical 
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activity, greater opportunities for sedentary behaviours and may also be a marker of a generally 

chaotic lifestyle.
63, 68

 This may explain why the Late to bed adults (perhaps busy parents of children) 

in our sample are particularly prone to less favourable cardiometabolic health. These findings have important 

implications when considering sleep interventions to help improve cardiometabolic health- while it is 

important to consider all sleep characteristics, short sleep duration in children and delayed sleep 

timing in adults may be of particularly importance.  

 

Previous studies and interpretation of results 

Studies examining the association between sleep and cardiometabolic risk in non-clinical samples 

have typically adopted a variable-based approach and examined the role of isolated, or at the most 

two or three, often subjectively-measured sleep characteristics.
36

 Nevertheless, previous studies that 

have examined the role of sleep duration, quality, timing and variability tend to support findings in 

the current study. That is, sleep is a multidimensional construct and all characteristics of sleep are 

likely to play an important role in cardiometabolic health.  

 

Short sleep duration is thought to adversely affect cardiometabolic health via a number of 

mechanisms. One theory suggests that short sleep increases allostatic load and disrupts processes 

occurring in the hypothalamic–pituitary–adrenal axis and the autonomic sympathetico-adrenal 

system. This results in increased cortisol and catecholamine release, oxidative stress, systemic 

inflammation, endothelial dysfunction, sympathetic systemic activation and subsequent 

hypertension, dyslipidemia and obesity.
6, 7

  Another theory suggests that short sleep simply results in 

more time awake, particularly at night, and therefore greater time exposed to psychological stressors 

and unhealthy behaviours such as snacking on high-calorie foods, excess caffeine consumption and 
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sedentary screen-time activities.
69

 Supporting these hypotheses, systematic reviews suggest short 

sleep is associated with increased risk of metabolic syndrome
70

 in adults and adiposity
25, 71

 and 

hypertension
65, 72

 in both adults and children. While some studies report an association between short 

sleep duration and unfavourable blood lipid profiles and raised inflammatory markers, systematic 

reviews are yet to support this association.
25, 65

 

 

Sleep quality, such as sleep duration, is thought to play an important role in mediating inflammatory 

processes and regulating catecholamine and growth hormone levels.
11, 73

 Poor sleep quality has been 

associated with obesity,
74

 hypertension
11, 75

 and metabolic syndrome.
76

 However, sleep quality has 

been defined in a variety of ways including validated questionnaires, subjective rating scales and 

objective measures of sleep efficiency. Consistent with our measure of sleep efficiency, Feliciano 

and colleagues,
64

 in a study of 829 adolescents aged 13 years, reported higher sleep efficiency was 

associated with a more favorable cardiometabolic profile, measured in terms of a metabolic risk 

score, systolic blood pressure and HDL cholesterol levels.  

Sleep timing and variability are also thought to play an important role in cardiometabolic health. 

Observational studies consistently suggest that findings that shift workers are at an increased risk of 

cardiometabolic disease and deranged cardiometabolic markers are attributable to variable sleep 

schedules and circadian misalignment (i.e. sleep timing).
77

 Poor sleep timing has also been shown 

detrimental to children’s health. For example, Olds and colleagues,
68

 in a study of 2200 Australian 

children and adolescents, reported later bedtimes and rise time were associated with higher BMI, 

independent of sleep duration. The authors hypothesised that delayed sleep timing provided fewer 

opportunities for physical activity and greater opportunities for sedentary behaviours and increased 

calorie consumption (i.e. staying up late at night watching television and eating snacks). Indeed, 
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Golley and colleagues,
63

 in a study of the same 2200 Australian children and adolescents, reported 

delayed bedtimes were associated with a higher intake of energy-dense, nutrient-poor foods.  

To date, there are no studies, that we are aware of, that have applied cluster analysis to determine the 

association between sleep profiles and cardiometabolic health in adults and children. Although some 

studies attempt to decipher how different sleep characteristics are associated with different health 

outcomes, they generally only examine the effects of two or three different sleep characteristics, 

which are often measured subjectively.
36

 Of the few available studies
25, 64

 that have examined 

multiple characteristics of sleep, findings are consistent with the current study, that multiple 

characteristics of sleep may be important for health. 

Strengths and limitations 

To our knowledge this is the first population-based study to examine the association between 

actigraphy-derived sleep profiles and cardiometabolic health of adults and children, using objective, 

free-living sleep measures of duration, timing, quality and variability. Strengths include the objective 

examination of sleep via actigraphy and assessment of a wide range of standard and novel 

biomarkers in a large number of adults and children, as well as accounting for children’s pubertal 

stage, seasonal influences and sampling clustering. However, there are several methodological issues 

that also need to be considered. Firstly, although the GENEActiv monitor has been shown valid for 

measuring sleep when compared to polysomnography in adults,
40

 there are as yet no studies that have 

validated the monitor against polysomnography in children. Secondly, the narrow age range for 

children (11-12 years) precludes generalisation to other childhood ages and SEP. Thirdly, this study 

is cross-sectional and hence we are unable to infer causality. Fourth, we examined sleep clusters 

based on four sleep characteristics (duration, timing, variability and quality), each operationalised by 

a single variable (sleep period, midsleep, coefficient of variation and sleep efficiency). While this is a 

standard approach, it must be noted that there are a number of potentially different sleep 
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characteristics and variables that may be assessed (e.g. number of night-time awakenings). Further, 

although clusters were developed using a heuristic approach, guided by a recent review which 

suggested sleep duration, quality, timing, and variability are important sleep characteristics for the of 

health children,
25

 a model-based approach could have also been used.
36

 This study only examines 

adults and children in the CheckPoint study who had complete sleep data available and who agreed 

to have blood samples take, blood pressure assessed and/or body mass index calculated. It is also 

important to note that participants included in the current study were Australian children aged 11-12 

year and adults (mean age 43 years), who were of higher SES and lower BMI compared to those 

excluded from the analysis. Results are therefore no longer representative of Australian children 

(aged 11-12 years) and their parents and cannot used to make generalisations to other childhood and 

adult age groups as well as other cultures and SES groups. Lastly, we acknowledge that testing more 

than one hypothesis increases the chances of significant findings. While there are tests to correct for 

multiplicity, they were not appropriate for the current study as outcomes were correlated.  

Meaning and implications for clinicians and policy makers and areas in need of future 

research: 

The findings of this study suggest that patterns of sleep (sleep period, quality, timing and variability) 

play an important role in cardiometabolic health. An Overall good sleep pattern is desirable for 

favourable cardiometabolic health. For example, compared to Overall good sleepers, adults in the 

Late to bed group was associated with a 0.29 SD increase in BMI (approximately 1.7 kg/m
2
), while 

children in the Short sleep group was associated with a 0.18 SD increase in BMI (approximately 0.6 

kg/m
2
). Our study moves beyond the traditional approach of examining individual self-report sleep 

characteristics and provides a more holistic view of population sleep. Further research is however 

needed to determine the relative importance of each sleep characteristics and to determine how sleep 

as a component of the 24-h day affects cardiometabolic health.  
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Figures 

 

Figure 1: Flow diagram of participants included for analysis 

 

Figure 2: Visual representation of standardised β coefficients for GEE analysis, adjusted for sex, age 

(for parents), pubertal stage (for children), socioeconomic position, season of data collection.   
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Table 1: Comparison of CheckPoint children and adults included and excluded for analyses 

Children      

  Included  Excluded P-value 

 Age (years)     

   n 1043  831  

   Mean (SD) 12.0 (0.4)  12.1 (0.4) 0.000 

 Sex     

   n 1043  831  

   % (males) 50%   53% 0.244 

 Pubertal stage     

   n 963  757  

   Mean (SD) 2.1(0.6)  2.2(0.620) 0.040 

 SEP     

    n 1038  829  

    Mean (SD) 0.23 (1.02)  0.11 (0.96) 0.009 

 BMI z-score     

   n 1043  828  

   Mean (SD) 
 

0.39 (1.14)  0.60 (1.15) 0.000 

Adults      

 Age (years)     

   n 1337  537  

   Mean (SD) 44.0 (5.1)  43.2 (5.6) 0.003 

 Sex     

   n 1337  537  

   % (males) 13%  12% 0.205 

 SEP     

    n 1331  533  

    Mean (SD) 0.21 (0.99)  0.09 (0.98) 0.015 

 BMI (kg/m
2
)     

   n 1330  527  

   Mean (SD) 27.4 (5.9)  28.9 (6.5) 0.000 
SEP=Socioeconomic position; BMI=body mass index 
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Table 2: Sample characteristics 

 Children Parents 

Characteristics 

Values are %, unless indicated 
  

Demographic 
 

  

    Age in years, mean (SD) 12.0 (0.4) 44.0 (5.1) 

    Sex (% males) 50 13 

    SEP, mean (SD) 0.23 (1.02) 0.21 (0.99) 

    Not born in Australia 0.8 19.7 

    Speak a language other than English at home 7.6 9.3 

    Parent is of Indigenous background 0.8 0.8 

Season of data collection (%)   

    Summer 24.1 25.0 

    Autumn 20.9 19.7 

    Winter 27.2 27.3 

    Spring 27.8 28.0 

Remoteness of area of residence   

    Highly accessible 54.6 42.6 

    Accessible 27.0 21.1 

    Moderate 15.0 11.7 

    Remote 1.7 1.3 

    Very remote 0.7 0.5 

    Not determined 0.7 0.5 
   

 

SEP=Socioeconomic position; BMI=body mass index. Remoteness of area of residence was derived using the 

Accessibility/Remoteness Index of Australia (ARIA) remoteness area code
49
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Table 3: Sleep characteristics of clusters 

 All Cluster 1 Cluster 2  Cluster 3 Cluster 4  

  Short 

sleepers  

Late to bed  Long sleepers  Overall good 

sleepers 

Children      

n 1043 284 (27%) 182 (17%) 254 (24%) 323 (31%) 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Efficiency (%) 86.0 4.7 88.9
 

3.3 85.0
 

4.2 81.4
 

4.1 87.6 3.2 

Time in bed (min) 544 43 505 33 541 38 577 37 552 29 

Midsleep (24-hr:min) 2:35 48 2:30 34 3:46 38 2:15 33 2:16 36 

Variability (%) 10.4 5.3 12.6 4.5 13.8  5.6 11.2
 
 4.8 5.8 1.8 

Bedtime (24-hr:min) 21:59 52 22:18 41 22:54 46 21:26 35 21:40 38 

Rise time (24-hr:min) 7:24 50 7:37 36 8:33 44 7:17 39 7:10 37 

Adults       

n 1337 347 (26%) 269 (20%) 297 (22%) 424 (32%) 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Efficiency (%) 85.8 6.8 87.7
 

4.8 86.6
 

5.3 78.1
 

6.7 89.1 4.6 

Time in bed (min) 497 54 464 42 473 47 544 47 508 42 

Midsleep (24-hr:min) 2:51 52 2:12 45 3:46 38 2:58 46 2:45 36 

Variability (%) 9.6 5.9 11.2 5.1 15.0 6.4 9.4 5.0 5.0 2.2 

Bedtime (24-hr:min) 22:41 60 22:24 58 23:41 61 22:25 49 22:33 44 

Rise time (24-hr:min) 7:02 58 6:09 44 7:43 45 7:31 55 6:59 39 
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Table 4: Adjusted GEE analysis to determine the association between cluster membership and standardised cardiometabolic health in children and 

adults 

 

Children             

 
MetSS (P-value: 0.003) BMI (P-value: 0.135) SBP (P-value: 0.766) DBP (P-value: 0.526) 

ApoB/A1 (P-value: 

0.065) 
GlycA (P-value: 0.414)  

Cluster β(95% CI) P-

value 

β(95% CI) P-

value 

β(95% CI) P-

value 

β(95% CI) P-

value 

β(95% CI) P-

value 

β(95% CI) P-

value 

Short sleepers 0.32(0.12,0.51) 0.001 0.18(0.01,0.34) 0.035 0.07(-0.08,0.22) 0.360 0.05(-0.13,0.22) 0.606 0.26(0.06,0.46) 0.011 
0.15(-

0.06,0.36) 
0.163 

Late to bed 
-0.05(-

0.29,0.20) 
0.715 

0.01(-

0.18,0.20) 
0.937 

-0.01(-

0.20,0.18) 
0.923 

-0.01(-

0.22,0.20) 
0.915 

0.07(-

0.17,0.30) 
0.569 

0.12(-

0.12,0.35) 
0.331 

Long sleepers 0.09(-0.11,0.28) 0.388 
0.11(-
0.04,0.26) 

0.161 0.01(-0.16,0.17) 0.953 
-0.09(-
0.26,0.08) 

0.314 
0.09(-
0.11,0.29) 

0.366 
0.14(-
0.05,0.34) 

0.149 

Adults             

 MetSS (P-value: 0.009) BMI (P-value: 0.001) SBP (P-value: 0.062) DBP (P-value: 0.629) ApoB/A1 (P-value: 0.038) GlycA (P-value: 0.055)  

Cluster β(95% CI) P-value β(95% CI) P-value β(95% CI) P-value β(95% CI) P-value β(95% CI) P-value β(95% CI) P-value 

Short sleepers 0.02(-0.13,0.17) 0.814 
0.12(-

0.01,0.26) 
0.072 0.10(-0.03,0.24) 0.133 0.07(-0.06,0.20) 0.284 

-0.10(-

0.25,0.05) 
0.189 

-0.08(-

0.24,0.08) 
0.346 

Late to bed 0.28(0.10,0.47) 0.003 0.29(0.15,0.44) <0.001 0.13(-0.04,0.29) 0.131 0.05(-0.11,0.21) 0.554 
0.13(-
0.02,0.29) 

0.099 
0.08(-
0.07,0.23) 

0.274 

Long sleepers 0.12(-0.04,0.28) 0.130 0.13(0.00,0.26) 0.051 
-0.06(-

0.21,0.08) 
0.384 

-0.02(-

0.17,0.12) 
0.749 

0.09(-

0.07,0.24) 
0.262 

0.15(-

0.02,0.32) 
0.091 

Reference group: Overall good sleepers; Overall significance indicated P-value beside headings.  

95% CI= 95% confidence interval; MetSS= Metabolic syndrome severity score; BMI= body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; ApoB/A1: 

Apolipoprotein B/A1; GlycA: glycoprotein acetyls 

Bolded text: P-values that remained significant following Holm Sequential Bonferroni adjustment have been bolded. 
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 Table 5: Adjusted estimated marginal means for each cardiometabolic health outcome measure, according to sleep cluster  

Children       

  MetSS BMI (kg/m
2
) SBP (mmHg) DBP (mmHg) ApoB/A1 (g/L) GlycA (mmol/L) 

Sleep cluster Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) 

Short sleep 0.71(0.28,1.15) 19.2(18.8,19.6) 108.3(107.3,109.2) 62.7(62.0,63.5) 0.48(0.46,0.49) 0.99(0.96,1.01) 

Late to bed -0.32(-0.85,0.21) 18.9(18.4,19.4) 107.6(106.5,108.8) 62.4(61.5,63.4) 0.46(0.44,0.48) 0.98(0.96,1.00) 

Long sleep 0.06(-0.35,0.46) 18.9(18.5,19.3) 107.8(106.8,108.7) 62.0(61.2,62.7) 0.46(0.45,0.48) 0.98(0.97,1.00) 

Good sleep -0.19(-0.57,0.19) 18.6(18.3,18.9) 107.7(106.3,108.6) 62.5(61.8,63.2) 0.45(0.44,0.47) 0.97(0.95,0.98) 

       

Adults        

  MetSS BMI (kg/m
2
) SBP (mmHg) DBP (mmHg) ApoB/A1 (g/L) GlycA (mmol/L) 

Sleep cluster Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) 

Short sleep 1.02(0.60,1.44) 27.9(27.3,28.6) 122.7(121.5,124.0) 74.7(73.8,75.7) 0.55(0.53,0.57) 1.05(1.02,1.07) 

Late to bed 1.89(1.35,2.43) 28.9(28.2,29.7) 123.1(121.3,124.8) 74.5(73.4,75.7) 0.59(0.56,0.61) 1.07(1.05,1.10) 

Long sleep 1.36(0.89,1.83) 28.0(27.3,28.6) 120.6(119.1,122.2) 73.9(72.8,75.0) 0.58(0.56,0.60) 1.09(1.06,1.12) 

Good sleep 0.96(0.56,1.36) 27.2(26.5,27.8) 121.5(120.0,122.9) 74.1(73.2,75.0) 0.57(0.55,0.59) 1.06(1.04,1.09) 

95% CI= 95% confidence interval; MetSS= Metabolic syndrome severity score; BMI= body mass index; SBP: systolic blood pressure; DBP: diastolic blood 

pressure; ApoB/A1: Apolipoprotein B/A1; GlycA: glycoprotein acetyls 
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Figure 1 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsab014/6124580 by U

niversity of M
elbourne user on 24 M

arch 2021



Acc
ep

ted
 M

an
us

cri
pt

 

33 
 

Figure 2 
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