Electrical stimulation of the auditory nerve: the influence of electrode position on neural excitation

1990

http://hdl.handle.net/11343/26836

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.
ELECTRICAL STIMULATION OF THE AUDITORY NERVE: THE INFLUENCE OF ELECTRODE POSITION ON NEURAL EXCITATION

Shin-ichi Hatsushika1, R.K. Shepherd2, G.M. Clark2 and Sotaro Funasaka1

1Department of Otorhinolaryngology, Tokyo Medical College, Tokyo, Japan; 2Department of Otolaryngology, University of Melbourne, Parkville, Victoria, Australia

Introduction

Improved speech recognition among cochlear implant patients would appear to be dependent on a number of factors including improved speech processing strategies and an improvement in the effectiveness of electrically stimulating residual auditory nerve fibers (i.e. lower thresholds, wider dynamic ranges and more localized current spread).

Previous human temporal bone studies have shown that free fit scala tympani electrode

![Diagram of electrode array locations within the scala tympani](image)

Fig. 1. The electrode array locations within the scala tympani in the present study. O: the outer wall of the scala tympani; M: the middle of the scala tympani; R: adjacent to Rosenthal's canal; D: adjacent to the peripheral dendrites.

This work was supported in part by NIH Contract No. 1-NS-7-2342 and a grant from the Australian NH & MRC.

Address for correspondence: Shin-ichi Hatsushika, Department of Otorhinolaryngology, Tokyo Medical College Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan

Otorhinolaryngology, Head & Neck Surgery, pp. 1137-1141
© 1990 Kugler & Ghedini Publications, Amsterdam, Berkeley, Milano
arrays generally lay along the outer wall of the scala tympani. Therefore, there is a relatively large distance between the electrode array and the residual neural elements within Rosenthal's canal.

In the present study, we systematically varied the location of the electrode within the scala tympani to examine the influence of electrode position on neural excitation.

Materials and methods

Electrically evoked auditory brainstem responses (EABRs) were recorded from six chronic kanamycin deafened cats. EABRs were evoked via bipolar stimulation, using the Cochlear Pty. Ltd. banded electrode array. EABRs were recorded with the array placed in four locations within the scala tympani: the outer wall (O); middle of the scala (M); adjacent to Rosenthal's canal (R); and adjacent to peripheral dendrites (D) (Fig. 1).

Electrical stimulation was provided by an optically isolated, charge-balanced biphasic current source with a variable current level of less than 2.0 mA, and a pulse width of 0.2 msec/phase. Stimuli were presented at a rate of 33 pulses per second. Each response was amplified and filtered (150 Hz to 3 kHz). Five hundred responses were averaged. EABR thresholds, and amplitudes versus stimulus current (input-output function) were determined for wave IV (approx. 2.5 - 3.0 msec) of the EABR.

On completing the EABR study, each animal was sacrificed for cochlear histopathology.
Electrical stimulation of the auditory nerve

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.3
0.2
0.1

TIME (mSEC)

Fig. 2. An example of a set of EABRs for biphasic current pulses of 0.1 to 2.0 mA at 0.2 msec per phase. Growth responses data were obtained by measuring the N4-P4 wave at approx 2.5-3.0 msec. These responses were recorded using stimulus artifact suppression circuitry.

Results

Cochlear histopathology

Table 1 contains a summary of the histopathological results for the six cochleas in this study. Insertion trauma was not observed and hair cells were completely absent in all cochleas. The structure of the organ of Corti was generally absent in the lower cochlear turns, however, was usually evident more apically. The percentage survival of peripheral dendrites and spiral ganglion cells increased towards the cochlear apex.

Auditory brainstem responses

A typical set of EABRs - recorded from a deafened cat - is shown in Fig. 2 for 0.2 msec duration biphasic current pulses varying from 0.1 mA to 2.0 mA. These responses represent a volley of afferent activity along the auditory brainstem following direct electrical excitation of the auditory nerve fibers.

EABR input-output functions for all animals in this study are illustrated in Fig. 3. This figure demonstrates the influence of electrode position on both EABR threshold and supra threshold responses. EABR thresholds were significantly reduced as the electrode array was moved from the outer wall of the scala tympani to a location closer to the neural elements (Dendrites and Rosenthal's canal; Fig. 3). These changes in the location of the stimulating
Fig. 3. EABR input-output functions for all chronically deafened cats with four array locations within the scala tympani at bipolar stimulation.
Electrical stimulation of the auditory nerve

Electrical stimulation of the auditory nerve
electrode also resulted in a reduction in the gradient of the EABR input-output function and
therefore an increase in the effective dynamic range.

Such position dependent changes in the EABR were consistently observed among all
animals examined although there were significant variations in the extent of neural histop­
pathology (Table I).

Discussion

Future improvements in the performance of patients using cochlear implants may depend
on repositioning the location of the electrode array within the scala tympani. In the present
study, EABR thresholds were significantly reduced and the effective dynamic range increas­
ed as the electrode array was positioned closer to the residual nerve fibers. Therefore, it is
of importance to consider the position of the electrode array in relation to the neural elements
being stimulated.

These results showed that there was little difference in EABR thresholds and dynamic
ranges when an array was placed either adjacent to the peripheral dendrites or Rosenthal’s
channel. This was the case even when the percentage of the peripheral dendrite survival was
low (e.g. cat 472, Fig. 3). We would expect that such changes in the threshold and the
dynamic range of a cochlear implant would be reflected in an improvement in the clinical
performance of cochlear implant patients. We consider that the placement of a scala tympani
electrode array close to the peripheral dendrites would, in practice, be difficult to achieve
while minimizing insertion trauma. From the results of the present study, we feel that the
optimum placement of such an electrode array would be close to the modiolus.

Acknowledgements

We thank Drs. Y.C. Tong and S.A. Xu for their contributions to this work. R.E. Millard, J. Xu, J.E.
McNaughtan and D.J. Cook provided technical support for which we are most grateful.

References

 McNaughtan JE, Bloom DM, Kakulas BA, Siejka S: The histopathology of the human temporal bone
 and auditory central nervous system following cochlear implantation in a patient - Correlation with