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ABSTRACT 

Human perception of sound arises from the transmission of action-potentials (APs) through
 
a neural network consisting of the auditory nerve and elements of the brain. Analysis of the
 
response properties of individual neurons provides information regarding how features of sounds
 
are coded in their firing patterns, and hints as to how higher brain centres may decode these
 
neural response patterns to produce a perception of sound. Auditory neurons differ in the
 
frequency of sound to which they respond most actively (their characteristic frequency), in
 
their spontaneous (zero input) response, and also in their onset and saturation thresholds.
 
Experiments have shown that neurons with low spontaneous rates show enhanced responses
 
to the envelopes of complex sounds, while fibres with higher spontaneous rates respond to the
 
temporal fine structure. In this paper, we determine an expression for the Cramer-Rao bound
 
for frequency estimation of the envelope and fine structure of complex sounds by groups of
 
neurons with parameterised response properties. The estimation variances are calculated for
 
some typical estimation tasks, and demonstrate how, in the examples studied, a combination
 
of low and high threshold fibres does not improve the estimation performance of a fictitious
 
'efficient' observer, but may improve the estimation performance of neural systems, such as
 
biological neural networks, which are based on the detection of dominant interspike times.
 

1. Introduction consequently tuned to a specific frequency, termed 
its 'characteristic frequency'. 

The auditory system forms a remarkably efficient The second section is a multi-layer neural net­
neural network for the processing of sound. An work which undertakes the bulk of the processing.
understanding of how this system can perform tasks It consists of the auditory nerve itself, and the au­
such as the separation of simultaneous sounds, the ditory areas of the brain stem and cortex. In this 
efficient processing of speech, and the identification paper, we will mainly be interested in the response
of speakers, will lead to advances in the design properties of the input layer of the network - the 
of artificial neural networks for similar tasks, and auditory nerve (AN). 
also aid in the design of hearing prostheses such as 

There are approximately 30,000 fibres in the au­
cochlear implants. Identification of the mechanisms 

ditory nerve. When sufficiently stimulated, anby which the auditory system codes properties of 
increase in a fibre's membrane's permeability to

sounds is a first step to such an understanding. 
sodium ions is initiated, and the corresponding in­

The auditory system can functionally be broken 
flux of sodium causes a sudden jump in its trans­

up into two major sections. The first section trans­
membrane potential known as a spike or action po­

duces sound waves into neural firing patterns, and 
tential (AP). Since these spikes are largely identical, 

comprises the outer, middle and inner parts of the "-..

it is generally accepted that sound properties are 
ear. The sound pressure waves cause vibrations of 

coded by the place (the characteristic frequency of
the eardrum which are then transmitted via the 

the neuron on which a spike occurs) and the timing
ossicles of the middle ear to fluid within the cochlea 

of the spikes. Thus, any theory of neural sound cod­
(inner ear). This results in travelling waves which ing must explain how the temporal (time-period) 
propagate along the surface of the basilar mem­ and/or spatial firing patterns are decoded to pro­
brane (BM). Analogous to a continuous filter bank, duce auditory percepts. Most do this by proposing 
the mechanical structure of the BM causes each 

that perceptual information is coded in one or an­
travelling wave to reach its maximum amplitude 

other aspect of the neural firing pattern, such as 
at a position determined by its frequency. Each the spike rate or the distribution of the interspike
auditory nerve fibre is excited by the vibration of times, measured across either a single neuron or a 
a narrow region of the basilar membrane, and is population of neurons. 
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than just their characteristic frequencies. They 
also differ in their spontaneous firing rates, and 
in their response thresholds. These response dif­
ferences suggest that auditory sound coding could 
be based on more than just the CF of the neurons. 
In fact, physiological experiments demonstrate that 
when stimulated by a complex sound, fibres with 
low spontaneous rates predominantly respond to 
the envelope, and those with high spontaneous rates 
to the fine temporal structure of the sound [1, 2]. 

The neural response thresholds are highly corre­
lated to the spontaneous rates [3, 4], but reasonably 
independent of characteristic frequency. Thus the 
brain stem receives information from fibres which 
may approximately be parameterised in a two­
dimensional response space - where one parameter 
represents characteristic frequency, and the other 
represents threshold. Much work has been done 
to understand how the responses of fibres with dif­
ferent characteristic frequencies are synthesised for 
the task of frequency estimation [5, 6, 7], but very 
little analysis has been applied to understanding 
the role that fibres with different thresholds play in 
the same task. 

In this paper we investigate the importance of 
having a multi-threshold system. This is achieved 
by generating a model of neural response to a 
complex sound, and investigating via Cramer-Rao 
bounds [8], and via the distribution of interspike 
times, the accuracy to which information about 
the frequencies within the sound may be estimated, 
based either on the output of high-threshold and/or 
low-threshold fibres. 

2. Signal and Network Models 

2.1. Signal Model 

Consider a common estimation task performed by 
the auditory system: the analysis of the frequency 
components of a speech signal. Such signals are 
composed of complex sounds which exhibit a num­
ber of resonances (formants), all modulated by a 
voicing pitch. Perceptual experiments show that if 
the actual fundamental of the voicing pitch is miss­
ing from the spectrum, then the estimated voice 
pitch corresponds to the smallest difference between 
the harmonics present. This is a well noted auditory 
phenomenon known as the "missing fundamental" 
[1, 9]. 

Here we explore the estimation of the voice pitch 
from the temporal characteristics of neural response 
for a signal where two harmonics of the voice pitch 
are present, but not the fundamental. 

The input to the neural network is taken to be 
the sound pressure wave passed through a linear 
filter, the cochlea. The filter characteristics of the 
cochlea to a 700 Hz tone is shown in Figure 1. 

Thus, the filtered signal s(t) is expressed as: 

s(t) = 1+L
2 

Asin(27fIi t + <Pi) (1) 
i=1 

where !l and h are the harmonic com­

ponents of the voice pitch present in the
 
filtered signal.
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Fig. 1: Filter characteristics of the cochlea to a 700 Hz tone. 

The task is to estimate the voice pitch, h - II, 
and its harmonics, h and II. This could be done 
either by estimating !l and h simultaneously and 
calculating the difference, or by introducing the 
h - II component to the signal via a nonlinear­
ity and estimating the voice pitch directly from the 
modified signal. 

2.2. Neural Network Model 

The response of neurons of the auditory nerve may 
be modelled by an inhomogeneous Poisson process 
[10], where the intensity (response rate) is described 
by means of a compressively nonlinear (sigmoidal) 
function, which is brought about by a number of 
nonlinearities involved in AP thresholding and gen­
eration. From the form of input-output curves de­
rived from physiological data [11] we take tanh(.) 
to be a suitable sigmoidal function. Although spon­
taneous rate is routinely used to classify fibre re­
sponses, a threshold shift can better explain the 
differing responses [12]. 

Thus the Poisson rate of the nth neuron, rn(t), 
may be described by: 

rn(t) = ro + tanh (an [s(t) - .8n]} (2) 

where s(t) is the cochlear filtered signal 
defined in the previous subsection. 
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Fig. 4: Ex. 2: Highly modulated set). Output values of the 
sigmoids with optimal thresholds for 600, 700 and loo Hz. 

largely unknown, however statistical methods can 
yield information about the ability of various neural 
structures to estimate properties of the sound. In 
turn, these abilities help shed light on likely mecha­
nisms for the information processing capabilities of 
the auditory system. 

One method of analysing the ability of various 
mechanisms to code parameters is via the applica­
tion of the Cramer-Rao Bound [8]. This permits 
a lower-bound to be given for the variance of the 
optimal unbiased estimator for the parameter in 
question. Of course, such an optimal estimator may 
not exist, or even be compatible with the structures 
of the auditory system. Such an analysis is still 
useful, however, because it can rule out mechanisms 
which do not convey the required information. 

The following Lemma is based on calculations 
performed in [13], for the estimation of a pure tone. 

Lemma 2.1 Consider an observation for durotion 
T of an inhomogeneous Poisson process with rote 
r(t, f, A). Then the Cromer-Rao inequality can be 
expressed as: 

1 1 [8r(t, f, A)] 2 diT 
uJ:S 0 r(t,f,A) 8f t 

This result can be extended to define the 
Fisher Information Matrix 1(8), for the esti­
mation of the unknown vector parameter 8 = 
[A 1,Wl'¢1,A2,W2,¢2]', where Ai,Wi,¢i are the pa­
rameters of s(t) as described in Equation 1. 

Lemma 2.2 Consider observations of a number 
of inhomogeneous Poisson processes, with rotes 
rn (t,8). In this case, the Cromer-Rao inequality 
can be expressed as: 

Remark 1: A standard result of Cramer-Rao the­
ory, shows that the information matrix of the com­
bined results of independent experiments equals the 
sum of the information matrices of each individual 
experiment. Thus, under the assumption of condi­
tional independence of auditory nerve responses, a 
calculation of the Fisher Information Matrix of the 
output of two or more neurons can be achieved by 
summing the individual matrices. This facilitates 
easy comparison of the output of various groups of 
fibres, and the ability to take the output of one 
fibre, and select the fibre which minimises the esti­
mator variances based on the combined information 
of both fibres. 

Thus, the evaluation of Lemma 2.2 where the 
response rates are taken from the neural and signal 
models of Section 2.1 and 2.2 enables calculation 
of bounds on estimator performance based on the 
outputs of a number of neurons. 

In the case of a sigmoidal response function (2), 
and sinusoidal signal model (1), the integral of (3) 
does not appear to be analytically tractable, and 
consequently it is not solvable for generalised con­
ditions. However, it is numerically solvable for any 
given parameters, and in a later section we nu­
merically investigate estimator variance for some 
representative situations. 

2.5. Interspike-Time Analysis 

Although the mechanisms by which the auditory 
system codes frequency are still largely unknown 
[14], it has been hypothesised that one method 
may be via the detection of dominant time-intervals 
between neural responses - effectively picking the 
period of the response waveform. This could be 
achieved via a series of delay lines and coincidence 
detectors [15, 16]. How would the thresholding neu­
rons effect this kind of system? 

Although the Cramer-Roo bounds of the previ­
ous sections can limit the variance of estimators 
based on neural responses, they can not indicate 
the degree to which the auditory system's variances 
follow the optimal bounds, and consequently are 
not necessarily an accurate measure of how useful 
the output of a selected neuron is to the auditory 
system. To investigate this question, we utilise the 
distribution of inter-spike times. 

Lemma 2.3 Consider an Inhomogeneous Poisson
 
Process with rote s(t), over the time interval [0, 1}
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2.3. Filtering Properties of the Neural Model 

Changing the steepness and position of the sig­
moidal tanh(.) allows the simulation of a range 
of neural responses with various onset and satu­
ration thresholds, and these nonlinear responses 
will attenuate or magnify various components of 
the sound spectrum. Fourier analysis can be used 
to find the threshold value that minimises a cost 
function which measures the relative magnitude of 
a specific frequency component at the output of the 
sigmoid. Such a cost function can include a penalty 
function which prevents the absolute magnitudes 
of the major components from being overly atten­
uated. 

For the estimation task described in Section 2.1, 
we are interested in the components at frequencies 
/J and h, and the missing fundamental of the voice 
pitch, h - It, and consequently perform the Fourier 
analysis described above to determine thresholds 
which accentuate each of these components. 

The relative magnitudes of the two voice-pitch 
harmonics present in s(t) will depend on their mag­
nitudes in the sound pressure wave and on the filter 
characteristics of the cochlea at the place of the 
fibre's input. It is therefore possible to have a range 
of modulation depths in the signal. Here we investi­
gate two signals with magnitudes chosen arbitrarily 
to produce a slightly modulated s(t) (Example 1) 
and a highly modulated s(t) (Example 2). 

Exam.ple 1: Slightly modulated s(t) 

Consider the signal and neural response: 

s(t) = 1 + ~ sin(271"600t) + ~ sin(271"700t) 

r(t) = 1 + tanh (10(s(t) - T)) 

where T is a threshold shift. 

Example 2: Highly modulated s(t) 

Consider a neural response the same as for Example 
1, but with the signal: 

s(t) = 1+ ~ sin(271"600t) + ~ sin(271"700t) 

For both examples, Fourier analysis of the output 
of each sigmoid was used to maximise the relative 
size of its components at the frequencies 600, 700 
and 100 Hz from among the parameterised sigmoid 
function: 

r(t) = tanh (1O(s(t) - T)) 

The optimal threshold values, T, are shown in 
Table 1. 

The sigmoids are shown in Figure 2, and the in­
put and output of the sigmoids and their Fourier 

Frequency (Hz) 600 700 100 
Ex. 1: Optimal T 1.73 1.00 1.75 
Ex. 2: Optimal T 0.97 1.00 1.68 

Table: 1: Optimal Thresholds for Examples 1 and 2 

transforms are shown in Figures 3 and 4. The im­
plications of the filtering properties of the sigmoidal 
nonlinearity will be investigated in the next section. 
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2.4. Cram.er-Rao Bounds for Neural Fre­
quency Estimation 

The auditory system takes the responses of some 
30,000 auditory nerve neurons, and can produce 
estimates of the amplitudes, Ai, and frequencies Wi 

of the Bound s(t). Exactly how this is achieved is 

1I 



Then the distribution of spikes occurring with a gap 
of r is: 

T 
D(r) = Jo - T 

s(t)s(t ~ r)dt 

[JoT s(t)dt] /2 

Remark 2: 
This distribution measures the frequency of 

spikes occurring with a time difference of r, regard­
less of the existence of spikes within the interval. 
It is consistent with the type of estimator proposed 
earlier in this section. An alternative expression 
for the distribution of inter-spike times can also be 
generated. 

The results of Lemma 2.3 are used in a later sec­
tion to calculate the effect of the sigmoidal nonlin­
earity on the interspike-time distribution. Similar 
to the Cramer-Rao bounds, the integral appears an­
alytically intractable, but can easily be calculated 
numerically for specific examples. 

3. Results 

In this section, the effect of various neural thresh­
olds on the frequency estimation task of Section 2.1 
is determined for the case of an efficient estimator, 
and also for an interspike-time based estimator. 

3.1. Estimation by an Efficient Estimator 

Analytical descriptions of the inner terms of the 
integral given in (3) are derived for a signal of the 
form expressed in (1). The integrals, however, ap­
pear not to be analytically tractable, and there­
fore numerical integration was implemented using 
an adaptive recursive Newton Cotes 8 panel rule. 
Cramer-Roo Bounds were calculated for Examples 
1 and 2 of Section 2.3, with all three possible com­
binations of low-threshold (T = 1.00) and high­
threshold (T = 1.80) sigmoid pairs (L+L, H+H 
and L+H). The bounds were evaluated over 20 ms 
(Table 2) and 100 ms (Table 3). 

Ex. T 600 Hz 700 Hz 100 Hz E 
1 

L+L 
H+H 
L+H 

7.24e-3 
4.32e-3 
5.38e-3 

1.73e-4 
3.77e-4 
2.31e-4 

7.80e-3 
5.05e-3 
5.97e-3 

1.52e-2 
9.75e-3 
1. 16e-2 

2 
L+L 
H+H 
L+H 

4.01e-4 
1.23e-3 
5.89e-4 

4.03e-4 
1.16e-3 
5.82e-4 

9.00e-4 
2.65e-3 
1.34e-3 

1.70e-3 
5.04e-3 
2.51e-3 

Table: 2: Cramer-Rao Bounds for Examples 1 and 2: 20 ms 

In some cases the low-threshold sigmoids pro­
duced the smallest bound, in others the high­
threshold, but in none of the examples studied did 
the combination of thresholds (L+H) produce the 

Ex. T 600 Hz 700 Hz 100 Hz E 
1 

L+L 
H+H 
L+H 

5.59e-5 
2.85e-5 
3.77e-5 

1.16e-6 
3.04e-6 
1.67e-6 

5.72e-5 
3.16e-5 
3.95e-5 

1.14e-4 
6.31e-5 
7.89e-5 

2 
L+L 
H+H 
L+H 

2.85e-6 
8.32e-6 
4.23e-6 

2.88e-6 
8.27e-6 
4.27e-6 

5.46e-6 
1.69e-5 
8.24e-6 

1.12e-5 
3.35e-5 
1.67e-5 

Table: 3: Cramer-Rao Bounds for Examples 1 and 2: 100 ms 

smallest error. This indicates that for the situations 
investigated, an 'efficient' estimator will operate 
best when the thresholds are identical, although dif­
ferent situations will have different optimal thresh­
olds, possibly validating the need for auditory nerve 
fibres with different onset and saturation thresh­
olds. 

3.2. Estimation from the Interspike-Time 
Distribution 

One possible mechanism for frequency estimation 
would be to utilise the interspike-time distribution 
as examined in Section 2.5 to measure the dominant 
interspike time observed between two fibres [17]. 
Figure 5 shows the relative frequency of occurrence 
of interspike times for Examples 1 and 2, with a 
low-threshold and a high-threshold sigmoid. 
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Fig. 5: Left: Ex. 1- Slightly modulated s(t). Interspike-time 
distribution for low-threshold (T = 1.0) and high-threshold 
(T = 1.8) sigmoids (top and bottom). Right: Ex. 2­
Highly modulated s(t). Interspike-time distribution for low­
threshold (T = 1.0) and high-threshold (T = 1.8) aigmoids 
(top and bottom). 

For both Examples 1 and 2, the interspike time 
corresponding to the weighted average of the peri­
ods resulting from the 600 and 700 Hz components 
of the signal is emphasised by the low-threshold 
sigmoids, and to the period of the 100 Hz "miss­
ing fundamental" by the high-threshold sigmoid. 



This suggests that for a system measuring inter­
spike times, a combination of low-threshold and 
high-threshold fibres is useful to estimate all three 
frequency components when using this estimation 
technique, particularly if further filtering is used to 
extract only one frequency per fibre (eg. [7]). 

4. Conclusion 

The neurons of the input layer of the auditory sys­
tem (the auditory nerve) may be parameterised in 
terms of their response properties including the fre­
quency of sound to which they best respond, and 
their response thresholds. For the task of frequency 
estimation, we have measured the importance of 
combining the output of auditory nerve neurons 
with differing thresholds . The resulting Cramer­
Rao bounds permit the calculation of frequency 
estimation variance for any given neural parame­
ters and show, for the calculated examples, that 
an 'efficient' observer of the output of two neurons 
may not necessarily benefit from a mixing of dif­
ferently thresholded neurons. However, it has been 
hypothesised that auditory frequency estimation is 
largely based on the detection of action potentials 
with suitably defined delays, and we demonstrate 
how combining the output of differently thresholded 
neurons may improve the frequency estimation ca­
pabilities of such a system. Due to the numerical 
nature of the calculations, these results are not cal­
culated parametrically, but are demonstrated for 
a number of specific examples. An open question 
is the extension of these results to a general case ­
thereby specifying conditions under which the com­
bined threshold responses are more useful than sin­
gle threshold responses, and conditions under which 
they are not. 
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