PEAK-SPLITTING IN THE RESPONSE OF THE LEaky
INTEGRATE-AND-FIRE NEURON MODEL TO LOW-FREQUENCY
PERIODIC INPUTS

Levin Kuhlmann1,2,*, Anthony Burkitt2, and Graeme M. Clark1,2

1 Department of Otolaryngology, The University of Melbourne, Royal Victorian Eye and
Ear Hospital, 32 Gisborne Street, East Melbourne, VIC 3002, Australia
2 The Bionic Ear Institute, 384-388 Albert Street, East Melbourne, VIC 3002, Australia
* l.kuhlmann@medoto.unimelb.edu.au

Abstract - The cause of peak-splitting in the output phase distribution of the leaky
integrate-and-fire single neuron model in response to low-frequency periodic nerve fibre
inputs is analyzed. It is found that peak-splitting largely arises from an increase of the
spiking-rate of individual nerve fibre inputs, or from an increase in amplitude of individual
input excitatory postsynaptic potentials, or both. These findings add another dimension
to the understanding of how peak-splitting arises in the phase histograms of the responses
of neurons in the auditory pathway, given that peak-splitting is typically thought to arise as a
result of the non-linear dynamics of the basilar membrane and the hair cells. This research
has implications for the understanding of the temporal code in the auditory pathway.

Index Terms - auditory pathway, leaky integrate-and-fire neuron model, peak-splitting,
temporal coding

I. INTRODUCTION

When stimulating auditory nerve (AN) fibres with
a low-frequency (\(\leq 1 \text{ kHz} \)) tonic sound stimulus, in
most cases there is only a single peak in a phase
histogram constructed on the period of the low-
frequency tone [1]. In some cases, however, when
the stimulus intensity is increased, two or even three
peaks can be seen in the phase histogram [1]. Peak-
splitting is the term given to this peak multiplication
that occurs within a phase histogram when there is an
increase in intensity of a low-frequency tonic sound
stimulus [1], [2], [3]. The work done on peak-splitting
in the auditory pathway has concentrated on inner
hair cells (IHCs) of the cochlear [4], [5] and AN fi-
bres [1], [2], [3], [4], [6], [7], [8], [9].
An understanding of the causes of peak-splitting in
these cell types is slowly being elucidated. Cody and
Mountain [5] have demonstrated that peak-splitting
in low-frequency responses of IHCs arises from the
mechanical input to the IHC, i.e. the vibrations of the
basilar membrane (BM) relative to the tectorial
membrane. Furthermore, the IHCs provide the in-
puts to AN fibres and so it is clear that AN fibre low-

II. METHODS

II.1. Neural Model

The analysis presented here considers a single neu-
ron with \(N \) independent inputs (afferent fibres) as-
sumed to have the same synaptic response amplitude,
\(a \), and time course, \(s(t) \). The time course of an input
at the site of spike generation is described by the
synaptic response function \(u(t) \) for the LIF neuron
model. The membrane potential is assumed to be re-
set to its initial value at time \(t = 0 \), \(V(0) = v_0 \), after
an AP has been generated. An AP is produced only
when the membrane potential exceeds the threshold,
\(V_{\text{th}} \), which has a potential difference with the reset
potential of \(\theta = V_{\text{th}} - v_0 \). After an AP has been
generated there is an absolute refractory period, \(\tau_r \),
during which no APs can be generated. The mem-
brane potential is the sum of the input EPSPs
\[V(t) = v_0 + Na s(t), \quad s(t) = \sum_{m=1}^{\infty} a(t - t_m), \quad (1) \]

where the index \(m \) denotes the \(m \text{th} \) input AP from the particular fibre, whose time of arrival is \(t_m \) \((0 < t_1 < t_2 < \ldots < t_m < \ldots)\). The rate of the input AP arrival times is discussed in the following section. The synaptic response function, \(u(t) \), is
\[u(t) = \begin{cases} e^{-t/\tau} & \text{for } t \geq 0, \\ 0 & \text{for } t < 0, \end{cases} \quad (2) \]

where \(\tau \) is the decay time constant of the membrane potential. Consequently the membrane potential has a discontinuous jump of size \(a \) upon the arrival of an EPSP and then decays exponentially between inputs. The decay of the EPSP across the membrane means that the contribution from EPSPs that arrive earlier have partially decayed by the time that later EPSPs arrive. In this study the voltage scale is set so that \(v_0 = 0 \).

II.2. Synaptic Input

In this study it is assumed that the input spiking-rate on each of the input fibres is identical. The time-dependent rate of arrival of input spikes at a synapse is periodic with period \(T \) and initial phase \(t_0 \).

\[\lambda(t) = p \left(\sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma^2} \exp \left(-\frac{(t - kT + t_0)^2}{2\sigma^2} \right) \right), \quad (3) \]

where, for a single fibre, \(p \) is the time-averaged input spiking-rate per period and \(\sigma \) is the standard deviation (S.D.) of the Gaussians. The synchronization index (SI - a measure of the degree of locking to a phase of the period of the input \([10]\)) of the above spiking-rate function, denoted \(S \), can be calculated as follows \([11]\),
\[S = \exp \left(-\frac{2\pi^2\sigma^2}{T^2} \right), \quad (4) \]

This expression for \(S \) can be calculated by dividing the first complex Fourier coefficient of \(\lambda(t) \) by the zeroth complex Fourier coefficient of \(\lambda(t) \). The period, \(T \), and the S.D. of the Gaussians, \(\sigma \), can be varied independently to provide the desired \(S \) value. The use of the term “period” (or “frequency” \(f = \frac{1}{T} \)) here and throughout the analysis refers to this periodic modulation of the spiking-rate of the inputs. Furthermore, for the sake of using conventional terms, the average spiking-rate per input can be defined as \(\lambda_{in} = \frac{p}{T} \).

This input spiking-rate function, Equation (3), represents an inhomogeneous Poisson process \([12]\).

II.3. Output of the Model

Now that the neural model and its synaptic inputs have been defined, the output of the model can be evaluated by using the following methods developed by Burkitt and Clark \([13],\ [14],\ [15]\). Based on a description of the membrane potential and the synaptic inputs, one can now temporally integrate the synaptic inputs and the probability density of the membrane potential can be obtained in the Gaussian approximation. Using a generalization of the renewal equation, the probability density of the membrane potential and the probability density of the membrane potential conditional on the initial phase of the inputs can be used to evaluate the conditional first-passage time density (equivalent to the interspike interval distribution conditional on the initial phase of the inputs). The output of the model, the phase distribution (synonymous with the phase histogram), can then be evaluated. The phase distribution is the stationary solution to a phase transition density defined by the periodic wrapping of the conditional first-passage time densities \([15],\ [16]\). As a result of obtaining the phase distribution, the SI of the model’s output can be evaluated numerically \([10]\).

III. RESULTS

Peak-splitting was observable in the output phase distributions of the LIF neuron model. It arose as a result of an increase in the average spiking-rate per period of the input, \(p \). Fig. 1 demonstrates the appearance of peak-splitting in the output phase distribution as a result of this increase of average input spiking-rate. The ordinate represents the spike phase density, \(\chi(t_\phi) \) (where \(t_\phi \) is the phase at which an AP is produced), and the abcissa represents the time for one stimulus period. All model parameter values are given in the figure caption. In Fig. 1(a) and (b) the average spiking-rate per input is \(\lambda_{in} = 300 \) and 800 spikes/s respectively (i.e. \(p = 1 \) and 4 spikes/period), the output SI is \(S_{out} = 0.95 \) and 0.57 respectively and the average output spiking-rate is \(\lambda_{out} = 50.81 \) and 282.04 spikes/s respectively. As the input spiking-rate increases, the phase distribution spreads to the right and eventually the original peak splits into two, with the two resulting peaks being 1.61 ms apart.

Peak-splitting was also found to occur by increasing EPSP amplitude, \(a \), while keeping the average spiking-rate per input fixed. Fig. 2 demonstrates the appearance of peak-splitting in the output phase distribution as a result of an increase in \(a \). The ordinate represents the spike phase density, \(\chi(t_\phi) \), and the abcissa represents the time for one stimulus period. All model parameter values are given in the figure caption. For Fig. 2(a) and (b) the EPSP amplitude is \(a = 0.05 \) and 0.25 respectively, the output SI is \(S_{out} = 0.95 \) and 0.55 respectively and the average output spiking-rate is \(\lambda_{out} = 50.81 \) and 531.39 spikes/s respectively. As the EPSP amplitude increases, the phase distribution spreads to the right and eventually the original peak splits into two, with the two resulting peaks being 1.24 ms apart.

IV. DISCUSSION

As was demonstrated in Fig. 1 and Fig. 2 peak-splitting in the output of the model was shown to
Fig. 1. Plots of phase distributions demonstrating the appearance of peak-splitting as a result of an increase in average spiking-rate per input. The ordinate represents the spike phase density, $\chi(t_\phi)$, and the abcissa represents the time for one stimulus period, measured in milliseconds (ms). The neural parameter values are, $N = 20$ inputs, $a = 0.05$, $\theta = 1$, $r_i = 1$ ms and $\tau = 2$ ms. The input parameter values are, $T = 5$ ms and $S_{in} = 0.5$. For (a) and (b) the average spiking-rate per input is $\lambda_{in} = 300$ and 800 spikes/s respectively (i.e. $p = 1.5$ and 4 spikes/period)), the output SI is $S_{out} = 0.92$ and 0.57 respectively and the average output spiking-rate is $\lambda_{out} = 50.81$ and 282.04 spikes/s respectively.

Fig. 2. Plots of phase distributions demonstrating the appearance of peak-splitting in the output phase distribution as a result of an increase in the EPSP amplitude, a. The ordinate represents the spike phase density, $\chi(t_\phi)$, and the abcissa represents the time for one stimulus period, measured in milliseconds (ms). The neural parameter values are, $N = 20$ inputs, $\theta = 1$, $r_i = 1$ ms and $\tau = 2$ ms. The input parameter values are, $T = 5$ ms, $\lambda_{in} = 300$ spikes/s ($p = 1.5$ spikes/period) and $S_{in} = 0.5$. For (a) and (b) the EPSP amplitude is $a = 0.05$ and 0.25 respectively, the output SI is $S_{out} = 0.95$ and 0.55 respectively and the average output spiking-rate is $\lambda_{out} = 50.81$ and 531.39 spikes/s respectively.

occur as a result of an increase in the average spiking-rate per input, λ_{in}, and an increase in the EPSP amplitude of the inputs, a, respectively. An increase in the average spiking-rate per input, λ_{in}, effectively corresponds to an increase in stimulus intensity. As is shown in Fig. 1 for a stimulus frequency of 200 Hz, a seemingly unrealistic value for the average spiking-rate per input is used. In Fig. 1 an average spiking-rate per input of $\lambda_{in} = 800$ spikes/s is required for peak-splitting to occur. Clearly, as a result of the typical refractory period of a neuron (of the order of 1 ms (see [17] for a review), such a value for the average input spiking-rate does not appear realistic. However, given the design of the LIF neuron model presented here, the total number of input spikes per second, i.e. $N \times \lambda_{in}$, ultimately determines the output response. Thus it is possible that the peak-split response seen in Fig. 1 may arise in a situation where there are more inputs than in Fig. 1 and the spiking-rate of individual inputs increases in a realistic manner such that the total number of input spikes per second is the same as in Fig. 1. In Fig. 2, where the occurrence of peak-splitting is demonstrated for an increase in EPSP amplitude, seemingly realistic values of the EPSP amplitude relative to the size of the cell’s threshold are required for peak-splitting to occur. In Fig. 2 the value of a for which peak splitting occurs is one quarter of the threshold. Considering that the neural model represents a CN neuron, such a value for the EPSP amplitude appears to be realistic [18], [19].

The height, shape and number of the peaks in the phase distribution depends on several of the parameters of the model. The height and shape of each peak depends largely on the parameters that determine the SI of the output (results not presented here). The number of peaks depends on the average input
spiking-rate and input EPSP amplitude, as is discussed in this section, where an increase in the values of these parameters acts to increase the probability that the model neuron will spike more than once per period. The relative position of the peaks in the phase distribution may correspond to higher order harmonics of the input frequency.

V. CONCLUSION

As was discussed in the introduction, peak-splitting research has concentrated on IHCs [4], [5] and AN fibres [1], [2], [3], [4], [6], [7], [8], [9]. These studies have primarily demonstrated that the peak-splitting in response to low-frequency tones that occurs in BM vibrations is preserved in the response of IHCs and AN fibres. In the present study, it seems clear that peak-splitting can be generated in a CN neuron’s response to low-frequency tones not only in this situation, but also in the situation where there is no peak-splitting in BM vibrations or the input AN fibre responses, but rather by an increase in the EPSP amplitude, or both the EPSP amplitude and the average spiking-rate, of the input AN fibres. This idea warrants further investigation using a compartmental model of CN neurons of the type used by Rothman et al. [18], [19]. In fact Rothman et al. noted that peak-splitting occurred in their model when each input was superthreshold. This is consistent with the work presented here where large amplitude, but not necessarily superthreshold, EPSPs are required to induce peak-splitting.

Much is known about the way that components of the auditory pathway code sounds in the times of their responses. However, the role that peak-splitting plays in temporal coding in the auditory pathway is not quite clear. It is hoped that future studies will help to elucidate this role.

VI. ACKNOWLEDGEMENTS

The authors would like to thank A. Paolini and B. Uragun for their useful comments on the manuscript.

References

Author/s:
KUHLMANN, L; BURKITT, AN; CLARK, GM

Title:
Peak-Splitting in the Response of the Leaky Integrate-and-Fire Neuron Model to Low-Frequency Periodic Inputs

Date:
2001

Citation:

Persistent Link:
http://hdl.handle.net/11343/27084

File Description:
Peak-splitting in the response of the leaky integrate-and-fire neuron model to low-frequency periodic inputs