RESEARCH PAPER

Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9–bZIP20 pathway

Li Sun1,2,*, Dong-Wei Di1,*, Guangjie Li1, Herbert J. Kronzucker3,4, Xiangyu Wu5 and Weiming Shi1,†,*

1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, Jiangsu 210008, China
2 State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
3 School of Agriculture and Food, University of Melbourne, Parkville, VIC 3010, Australia
4 Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
5 Key Lab of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China

* These authors contributed equally to this work.
† Correspondence: wmshi@issas.ac.cn

Received 26 September 2019; Editorial decision 31 January 2020; Accepted 11 February 2020

Editor: Hideki Takahashi, Michigan State University, USA

Abstract

Ammonium (NH₄⁺) is one of the principal nitrogen (N) sources in soils, but is typically toxic already at intermediate concentrations. The phytohormone abscisic acid (ABA) plays a pivotal role in responses to environmental stresses. However, the role of ABA under high-NH₄⁺ stress in rice (Oryza sativa L.) is only marginally understood. Here, we report that elevated NH₄⁺ can significantly accelerate tissue ABA accumulation. Mutants with high (Osaba8ox) and low levels of ABA (Osphs3-1) exhibit elevated tolerance or sensitivity to high-NH₄⁺ stress, respectively. Furthermore, ABA can decrease NH₄⁺-induced oxidative damage and tissue NH₄⁺ accumulation by enhancing antioxidant and glutamine synthetase (GS)/glutamate synthetase (GOGAT) enzyme activities. Using RNA sequencing and quantitative real-time PCR approaches, we ascertain that two genes, OsSAPK9 and OsbZIP20, are induced both by high NH₄⁺ and by ABA. Our data indicate that OsSAPK9 interacts with OsbZIP20, and can phosphorylate OsbZIP20 and activate its function. When OsSAPK9 or OsbZIP20 are knocked out in rice, ABA-mediated antioxidant and GS/GOGAT activity enhancement under high-NH₄⁺ stress disappear, and the two mutants are more sensitive to high-NH₄⁺ stress compared with their wild types. Taken together, our results suggest that ABA plays a positive role in regulating the OsSAPK9–OsbZIP20 pathway in rice to increase tolerance to high-NH₄⁺ stress.

Keywords: ABA, ammonium assimilation, antioxidant activity, high ammonium stress, OsbZIP20, OsSAPK9.

Introduction

Nitrate (NO₃⁻) and ammonium (NH₄⁺) are the two major inorganic nitrogen (N) forms accessed by plant roots. Although NH₄⁺ is frequently absorbed by roots more readily, and its assimilation requires less energy than that of NO₃⁻, excessive NH₄⁺ is toxic to plants (Britto et al., 2001; Kronzucker et al., 2001; Britto and Kronzucker, 2002; Li et al., 2014). Under
high-NH_4^+ stress, the roots, as the site of initial stress perception, undergo a series of physiological, cellular, and morphological changes, including inhibition of root growth and gravitropism (Li et al., 2010; Zou et al., 2012, 2013; Di et al., 2018). Several physiological mechanisms have been proposed to explain NH_4^+ toxicity, and these have included rhizosphere acidification, ionic imbalance, carbon metabolism disturbance, energy consumption, and hormone alteration (Britto and Kronzucker, 2002; Di et al., 2018). Many components of the stress syndrome, however, remain unclear.

NH_4^+ toxicity takes place when plants accumulate high tissue levels of free NH_4^+, resulting from both excessive NH_4^+ exposure and disturbance of NH_4^+ assimilation in plant cells (Barker and Corey, 1991; Bittsánszky et al., 2015). Therefore, the capacity for NH_4^+ assimilation, mediated by glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH), is viewed as critical in the detoxification of excessive NH_4^+ (Miflin and Habash, 2002; Hoa et al., 2003; Skopelitis et al., 2006). Knockout of the genes encoding these enzymes results in increased free NH_4^+ accumulation in plant tissue (Tabuchi et al., 2005; Tamura et al., 2010, 2011; Funayama et al., 2013). Plant species with higher GS activity accumulate less free NH_4^+ and are indeed more tolerant to high NH_4^+ (Cruz et al., 2006; Omari et al., 2010). A recent study in Arabidopsis thaliana revealed that AtNRT1.1 negatively regulates NH_4^+ tolerance by inhibiting the activities of GS, GOGAT, and GDH through a nitrate-independent pathway, and knockout of AtNRT1.1 enhances NH_4^+ assimilation and reduces free NH_4^+ accumulation in nrt1.1 mutants (Jian et al., 2018). Clearly, therefore, the regulation of NH_4^+ assimilation under high NH_4^+ warrants further study.

It is well known that reactive oxygen species (ROS) are generated under various environmental stresses, and that high levels of ROS induce oxidative damage and then injury and programmed cell death (Mittler and Blumwald, 2015). Excessive NH_4^+ accumulation in plant cells has been reported to induce high levels of H_2O_2 and oxidative stress in the roots of A. thaliana, tomato, and rice (Patterson et al., 2010; Fernández-Crespo et al., 2015; Xie et al., 2015). Moreover, NH_4^+ also up-regulates the activities of antioxidant enzymes, including catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD), all active in scavenging ROS and relieving oxidative stress (Nimptsch and Pfumgacher, 2007; Wang et al., 2008; Patterson et al., 2010; Xie et al., 2015). Recently, the heme–heme oxygenase OsSE5 has been reported to regulate root growth under high-NH_4^+ stress by activating antioxidant enzymes, namely ascorbate peroxidase (APX), CAT, and SOD, and overexpression of OsSE5 in A. thaliana increases NH_4^+ tolerance (Xie et al., 2015). Concurrent overexpression of OsGSl.1 and OsGS2 leads to increased accumulation of glutathione (GSH), a powerful non-enzymatic antioxidant, and reduced ROS accumulation under high NH_4^+ (James et al., 2018).

The phytohormone abscisic acid (ABA) plays a pivotal role in coordinating responses to environmental cues (Yamaguchi–Shinozaki and Shinozaki, 2005, 2006). Several studies have suggested a possible interaction between NH_4^+ and ABA. In rice, NH_4^+ supply enhances ABA content under drought stress, which, in turn, increases water uptake and is associated with increased drought tolerance (Ding et al., 2016). Moreover, the latter report also showed that ABA transport from roots to shoots increases under NH_4^+ supply (Peuke et al., 1998). Our previous study in A. thaliana identified a plastid metalloprotease AMOS1/EGY1 as an important intersection point of NH_4^+ and ABA (Li et al., 2012). Transcriptome analysis shows that 90% of NH_4^+–activated genes are regulated by AMOS1/EGY1, and a large portion of them carry a core motif of an ABA-responsive element in their promoters (Li et al., 2012). Thus, the ABA signaling pathway is deeply involved in the NH_4^+ response.

Under environmental stress, ABA content is elevated, which consequently activates the ABA signaling pathway and triggers physiological reactions affecting stress resistance (Mittler and Blumwald, 2015). ABA binds to the receptor RCR/PRY/PYLS, and then binds to protein phosphate 2C (PP2C), inhibiting its enzymatic activity and dissociating the PP2C–SNF1–related protein kinase 2 (SnRK2) complex. Subsequently, auto-phosphorylated SnRK2s can activate downstream transcription factors (TFs) and then induce transcription of key genes including those coding for ion channels and late embryogenesis abundant (LEA) proteins (Ma et al., 2009; Soon et al., 2012; Zhang et al., 2019). Of the regulated TFs, the basic leucine zipper (bZIP) TF family has been investigated with special attention in rice and Arabidopsis, due to the synergistic regulation between ABA and environmental stress (Kim, 2006; Nijhawan et al., 2008). In rice, there are 89 bZIPs, and these have been classified into 13 groups (A, B, C, D, E, F, G, H, I, J, K, L, and S) (Nijhawan et al., 2008). Of these, OsZIP66 (Hobo et al., 1999), OsbZIP23 (Xiang et al., 2008), OsbZIP46 (Tang et al., 2012), OsbZIP72 (Lu et al., 2009), OsbZIP12/OsbABF1 (Hossain et al., 2010), OsAB15 (Zou et al., 2008), and OsbZIP71 (Liu et al., 2012) have been reported to regulate osmotic stress responses via ABA signal transduction. Nevertheless, whether the interaction of ABA signaling and OsbZIP is involved in the response to high-NH_4^+ stress remains unclear.

Here, we analyzed gene expression, enzyme activities, metabolites, and the physiological processes in ABA-related mutants and their wild types under high-NH_4^+ stress. We aimed to explore: (i) whether ABA functions in response to high-NH_4^+ stress; (ii) which physiological processes are involved; and (iii) which members of the ABA signaling pathway are involved. Our results provide new understanding of the involvement of ABA signaling in response to high-NH_4^+ stress.

Materials and methods

Plant materials and growth conditions

Seeds were surface-sterilized with 1% sodium hypochlorite for 10 min, washed extensively with distilled water, and then germinated in distilled water at 28 °C for 2 d. The treatment solution was applied as described in Sun et al. (2017), and the solutions containing 1 mM and 7.5 mM (NH_4SO_4) were designated as normal ammonium (NA) and high ammonium (HA), respectively. Solutions were exchanged every 12 h to ensure that plants remained at a nutritional steady state in the hydroponic system. Samples (three biological replicates) of roots were taken after the imposition of N excess treatments 12 h later, frozen immediately, and stored at –80 °C for associated analyses.
Determination of \(\text{H}_2\text{O}_2 \) content

Determination of \(\text{H}_2\text{O}_2 \) content was performed according to Liu et al. (2010). Roots used in measurements of \(\text{H}_2\text{O}_2 \) content were stored in liquid nitrogen immediately after harvesting. \(\text{H}_2\text{O}_2 \) concentrations were calculated using a standard curve prepared with known concentrations of \(\text{H}_2\text{O}_2 \).

Free \(\text{NH}_4^+ \) content determination

Roots were collected and desorbed with 10 mM CaSO\textsubscript{4} for 5 min, to remove extracellular \(\text{NH}_4^+ \). Free \(\text{NH}_4^+ \) contents were determined as previously described (Sun et al., 2017).

Determination of glutamine and glutamate contents

A 0.5 g aliquot (FW) of roots was frozen in liquid nitrogen immediately after each treatment. Then, 10 ml of 50% ethanol solution (containing 0.01 mM HCl) was added and placed in a water bath at 4°C and subjected to ultrasound for 30 min. Then, centrifugation took place at 12,000 rpm at 4°C for 5 min, and ~1 ml of extract was filtered using a 0.22 \(\mu \)m filter membrane and then placed in a SYKAM Amino Acid Analyzer for further analysis (Sykam, Germany).

Malondialdehyde (MDA) contents and antioxidant enzyme assays

MDA contents were measured according to the method of Heath and Packer (1968). The SOD activity in roots was estimated by monitoring the inhibition of the photochemical reduction of nitroblue tetrazolium (NBT) according to the method of Giannopolitis and Ries (1977). CAT activity of root was assayed from the rate of \(\text{H}_2\text{O}_2 \) decomposition as measured by the decrease of absorbance at 240 nm, following the procedure of Aebi (1984). APX activity in roots was assayed according to Chance and Maehly (1955), and the activity was determined by monitoring the increase of absorbance at 470 nm.

Estimation of proline and soluble sugar contents

Root samples (1 g) were extracted in 3% sulfosalicylic acid, and the proline content was estimated following the method of Dey et al. (2016), using acid-ninhydrin reagent. The proline content was calculated from a standard curve plotted against \(\text{t}-\text{proline} \) (0–100 \(\mu \)g). Total soluble sugar content was estimated following the method described by Dey et al. (2016). The total sugar content was estimated from a standard curve plotted using 0–100 \(\mu \)g of glucose.

\(\text{NH}_4^+ \) assimilation enzyme analysis

For the GS, GOGAT, and GDH enzyme activities, crude root extracts were collected and enzyme activities were determined according to previous methods (Jian et al., 2018).

Transactivation assay

The transactivation assay was performed according to the methods described by Hossain et al. (2010). The yeast strain Y2HGold (Clontech) was used to test for the presence of an activation domain in the gene. For the transcription activation assay, sequences containing the full-length cDNA of OsbZIP20 were fused in-frame with pGBK7 to construct pGBK7-OsbZIP20. The construct was transformed into yeast strain Y2HGold. The empty pGBK7 vector was also transformed into yeast cells as negative controls. The transformants were incubated on SD/Leu-/Trp-/+His+2 mM 3-AT for 2–3 d at 30°C.

Yeast one-hybrid assay

To analyze the G-box- or ABRE-binding activity of OsbZIP20, the construct was inserted into pHS2 vectors (Clontech). In addition to the HIS2 minimal promoter in the pHS2 expression vector, we synthesized oligonucleotide sequences that fused four tandem repeat copies of the G-box (5’-CACGTTG-3’) or ABRE (5’-GTACGTTGTC-3’). This G-box or ABRE was annealed and ligated to form four tandem copies and inserted into the pHS2 vector that had been digested with the same enzymes, and the fusion construct was pHS2::G-box or pHS2::ABRE. The full-length cDNA of OsbZIP20 was synthesized and introduced into pGADT7 (Clontech) to construct the pGADT7-OsbZIP20 vector. These plasmids (pGADT7-OsbZIP20 and pHS2::G-box or pHS2::ABRE) were transformed into the yeast strain Y2HGold (Clontech) carrying the reporter gene HIS2 and used for the binding experiment with yeast. Samples were grown on selective medium plates SD/Leu-/Trp-/+His+2 mM 3-AT for 2–3 d at 30°C.

Two-hybrid system assay

The full-length cDNAs of OsbZIP20 and OsSAPK8/9/10 were synthesized and introduced into pGADT7 and pGBK7T7, respectively (Clontech). The plasmids pGBK7T7 and pGADT7 were each transformed into Y2HGold acting as the control. pGBK7T7-OsSAPK8/9/10+pGADT7-OsbZIP20 were transformed into Y2HGold. Empty pGADT7 and pGBK7T7 vectors were also transformed into yeast cells as negative controls. The transformants were incubated on SD/Leu-/Trp-/+His+2 mM 3-AT at 30°C for 2–3 d.

BiFC analyses

The full-length cDNAs of OsbZIP20 and OsSAPK9 without stop codons were synthesized and introduced into serial pGreen-pSAT1 vectors containing either N- or C-terminal enhanced yellow fluorescent protein (eYFP) fragments and introduced into Agrobacterium as described previously (Hou et al., 2010). Three-week-old Nicotiana benthamiana leaves were agroinfiltrated with agrobacterial cells containing the indicated constructs. Two days after incubation, fluorescence was analyzed by confocal microscopy.

In vitro kinase assay

The in vitro kinase assay was performed according to the methods described by Dey et al. (2016). The recombinant pRSET plasmid (Invitrogen) containing the 1086 bp coding sequence (CDS) of OsSAPK9 in XhoI and EcoRI restriction sites, transformed, and expressed in pLysE cells with induction by 0.5 mM IPTG. The expressed proteins were purified in the native condition and used for the in vitro kinase assay. In vitro phosphorylation of the generic substrate histone III (Sigma) was performed as described previously. In vitro phosphorylation of OsbZIP20 was performed by incubating the individual reaction mixture for 40 min at 25°C following the above-mentioned protocol. The products were fractionated by SDS–PAGE and visualized by autoradiography.

Quantitative real-time PCR

Total RNA was extracted from shoots and roots harvested at the specified time points with TRIzol reagent (Invitrogen, USA) and treated with RNase-free DNase I (Promega). Total RNA (2 \(\mu \)g) was used for reverse transcription with M-MLV Reverse Transcriptase (Promega), and the cDNA samples were diluted 2-fold. For quantitative real-time PCR (qRT-PCR), triplicate quantitative assays were performed on each cDNA dilution with ChamQ SYBR qPCR MasterMix (Q311-02, Vazyme Biotech Co., Ltd), and a CFX Manager sequence detection system according to the following protocol: denaturation at 95°C for 30 s for initiation; denaturation at 95°C for 10 s; and 40 cycles of amplification, annealing, and extension at 55°C/60°C for 30 s. The specificity of the amplification was ascertained using a melting curve performed from 65°C to 95°C, as
well as sequencing of the amplification. Three independent replications were performed per experiment, and the means and corresponding SEs were calculated. The OsActin1 gene was used as a normalization control. Primer sequences are also listed in Supplementary Table S1 at JXB online.

Phos-tag SDS–PAGE assays

The peptide fragment (CCTGLDYGDDPFTGLSP) of hZIP20 was used to immunize rabbits, and antisera was collected to determine the titer. For phos-tag SDS–PAGE assays, the nuclear protein of roots (200 mg FW) was obtained using a Nuclear Extraction Kit (BB-3154-1, BestBio). Nuclear protein was then used for phos-tag SDS–PAGE by the SuperSep™ Phos-tag™ Kit (198–17981, Wako). All experiments were completed following the supplier’s operation manual. Coomassie Brilliant Blue staining was used to normalize protein amounts.

Statistical analysis

All statistical analyses were performed using Prism 6 software (GraphPad Software), and one- or two-way ANOVA was performed. *P*<0.05 was set as the significance cut-off. All values were presented as means ±SD.

Results

Higher endogenous ABA enhances NH$_4^+$ tolerance in rice

Our previous RNA sequencing (RNA-seq) analysis showed that the transcript levels of ABA biosynthesis genes in roots were up-regulated by high NH$_4^+$ (Sun et al., 2017). Here, we show, using qRT-PCR, that genes involved in ABA biosynthesis were up-regulated 3.5- to 9.7-fold following high-NH$_4^+$ treatment (Fig. 1A). To investigate the role of ABA under high-NH$_4^+$ stress in rice, a pharmacological investigation was carried out by using exogenous ABA and fluorine (Flu; ABA biosynthesis inhibitor), and then root length and fresh weight were determined (Fig. 1B–D). Our results reveal that maximum primary root length and root fresh weight when grown were higher or lower, respectively, compared with their back-ground control and high NH$_4^+$. To sum up, ABA plays a protective role in the root growth inhibition brought about by high NH$_4^+$. These results indicate that higher endogenous ABA can reduce oxidative damage by decreasing ROS content under NH$_4^+$ stress (Fig. 1E).

To further examine the function of ABA, a mutant high in endogenous ABA, aba8ox3, and a mutant low in endogenous ABA, phs3, were used (Fig. 2A; Supplementary Fig. S1) (Fang et al., 2008; Cai et al., 2015). Endogenous ABA content determination showed that aba8ox3 and phs3 contained more or less ABA compared, respectively, with their back-grounds under control and high-NH$_4^+$ conditions (Fig. 2B). Similar to ABA or Flu supplementation, the relative maximum primary root length and root fresh weight under the high-NH$_4^+$ treatment in aba8ox3 (98.9% and 97.3%) and in phs3 (41.9% and 35.7%) were higher or lower, respectively, compared with their back-grounds (60% and 57.8% in ZH11; 57.1% and 57.2% in Nip) (Fig. 2). To sum up, ABA plays a protective role in the root growth inhibition brought about by high NH$_4^+$.

Endogenous ABA improves NH$_4^+$ tolerance by strengthening NH$_4^+$ assimilation

To dissect the reason for improved NH$_4^+$ tolerance by increasing endogenous ABA, we first determined free NH$_4^+$ contents in roots. Our data show that high NH$_4^+$ induces free NH$_4^+$ accumulation in wild-type roots, and that it increases in phs3 and decreases in aba8ox3 (Fig. 3A). Subsequently, we tested the enzyme activities of GS, GOGAT, and GDH under control and high NH$_4^+$. The activities of these enzyme exhibited no differences between aba8ox3, phs3, and their backgrounds under control conditions (Fig. 3B–D). However, when examining relative GS, GOGAT, and GDH activities (high NH$_4^+$/control), activities were 129.4, 135.6, and 93.3% in aba8ox3, and 37.2%, 14.7, and 29.3% in phs3 compared with the back-ground ZH11 (81.1, 64.2, and 85.4%) and Nip (85.5, 58.3, and 92.0%, respectively) (Fig. 3B–D). A similar promotion or inhibition of enzyme activities involved in NH$_4^+$ assimilation was observed when exogenous ABA or Flu were applied (Supplementary Fig. S2). Overall, the data indicate that ABA can accelerate NH$_4^+$ assimilation by activating the enzyme activities of GS, GOGAT, and GDH under high-NH$_4^+$ stress and that root growth can be maintained under high-NH$_4^+$ stress.

Higher endogenous ABA reduces cell damage by up-regulating antioxidant activities at high NH$_4^+$

Stresses are frequently associated with the generation of ROS, such as H$_2$O$_2$, and ROS build-up, in turn, leads to lipid peroxidation, which results in the production of MDA (Dey et al., 2016). MDA is a stress-specific molecular marker that is indicative of the extent of membrane injury and cell and tissue damage. To determine whether high-NH$_4^+$ stress also induces ROS generation and whether ABA is involved in this, we measured H$_2$O$_2$ and MDA contents in aba8ox3, phs3, and their backgrounds under control and high-NH$_4^+$ stress. Our data show increases in H$_2$O$_2$ and MDA contents in all tested materials under high NH$_4^+$. However, increases were less in aba8ox3 and more in phs3 after NH$_4^+$ treatment, indicating that higher endogenous ABA can reduce oxidative damage by decreasing ROS content under NH$_4^+$ stress (Fig. 4A–D).

Furthermore, we also determined the enzyme activities of several antioxidant enzymes, including SOD, APX, and CAT, in aba8ox3, phs3, and their backgrounds under control and high-NH$_4^+$ stress. Our results show that the SOD, APX, and CAT enzyme activities can be induced in the wild types (ZH11 and Nip) by high NH$_4^+$. This induction was strengthened in aba8ox3, and was weakened in phs3 (Fig. 4E–J). Taken together, the data clearly reveal that ABA can reduce oxidative damage induced by ROS by increasing antioxidant enzyme activities.

Endogenous ABA up-regulates OsbZIP20 under high-NH$_4^+$ stress

Our previous reports revealed that a key gene involved in ABA signaling, namely OsbZIP20, was up-regulated by high NH$_4^+$ (Sun et al., 2017). To further unravel the function of endogenous ABA under high NH$_4^+$, we analyzed the transcription...
of OsbZIP20 under NH$_4^+$ stress by qRT-PCR. Our data show that the relative transcription levels of OsbZIP20 under high NH$_4^+$ were 6-fold higher compared with control, and transcription was further induced at higher concentrations of NH$_4^+$ (Fig. 5A). Moreover, the induction of OsbZIP20 was increased in the aba8ox3 mutant, and was decreased in the phs3 mutant (Fig. 5B). These results indicate that OsbZIP20 is involved in the response to high-NH$_4^+$ stress by an ABA-dependent pathway.

OsbZIP20 combines with the G-box and ABREs and interacts with OsSAPK9 in vitro and in vivo

To test whether OsbZIP20 is an effective OsbZIP TF, the yeast one-hybrid (Y1H) system was used to determine the transactivation activity of OsbZIP20. The AREB/ABF TF-binding sites, ABRE (ACGTGG/TC) and G-box (CACGTG), were introduced into the pHIS2 vector, and the full-length coding sequence of OsbZIP20 was introduced into the pGADT7 vector (Fig. 6A). The yeast strain Y1Hgold co-transformed with pHIS2-G-box or pHIS2-ABRE+pGADT7 (negative controls) failed to grow on SD/Leu-/Trp-/His+2 mM 3-AT plates (Fig. 6B). The results indicate that OsbZIP20 can bind to the G-box and ABREs in yeast. Then, we used the yeast two-hybrid (Y2H) system to identify the transactivation activity of OsbZIP20. The transformants grew well on the SD/Trp-/Leu- plates (Fig. 6C). However, when transferred to SD/Leu-/Trp-/His+2 mM 3-AT plates, both pGBK7-OsbZIP20 and negative control failed to grow, indicating that OsbZIP20 had no transactivation activity (Fig. 6C).

The activation of many AREB/ABF proteins requires the phosphorylation by SnRK2 (also referred to as ABA-activated protein kinase, SAPK, in rice) protein kinases (Fujita et al., 2013). To identify the interaction between OsbZIP20 and OsSAPKs in plants, we then performed Y2H system assays. Our results show that, when cultured on the SD/Leu-/Trp-/His+2 mM 3-AT plates, only transformants of pGBK7-OsSAPK9+pGADT7-OsbZIP20 grew well compared with pGBK7-OsSAPK8+pGADT7-OsbZIP20, pGBK7-OsSAPK10+pGADT7-OsbZIP20, and the negative control (Fig. 6D). To confirm the interaction, bimolecular fluorescence complementation (BiFC) analyses were performed in tobacco...
Role of abscisic acid in ammonium (NH_4^+) toxicity tolerance

Our data show that YFP was reconstituted when the CDSs of OsSAPK9 and OsbZIP20 were co-expressed (Fig. 6E). In contrast, OsSAPK9–nYFP and cYFP, or nYFP and cYFP–OsbZIP20, did not result in fluorescence (Fig. 6E), suggesting that OsSAPK9 and OsbZIP20 interaction is specific. These results suggested that only OsSAPK9 could interact with OsbZIP20 in vivo and in vitro.

OsSAPK9 can phosphorylate OsbZIP20 in vivo and in vitro

To further investigate how OsSAPK9 interacts with OsbZIP20, we purified the OsSAPK9 and OsbZIP20 proteins in the E. coli system (Fig. 7A). Our results verified that OsSAPK9 can phosphorylate OsbZIP20 (Fig. 7A). Furthermore, to investigate
the role of ABA in the phosphorylation of OsbZIP20 by OsSAPK9, we analyzed the phosphorylation of bZIP20 by phos-tag SDS–PAGE in Nip and in the OsSAPK9 knockout mutant (Figs 7B, 8A). Our results show that ABA can induce the expression of OsbZIP20, and a new phosphorylated band of OsbZIP20, and that these inductions do not occur in the knockout mutant sapk9 (Figs 7B, 8A). Overall, these data reveal that the activity of OsbZIP20 can be activated by the

Fig. 4. Higher endogenous ABA up-regulates antioxidant activities under high-NH$_4^+$ stress. (A and B) H$_2$O$_2$ contents; (C and D) MDA contents; (E and F) CAT activity; (G and H) SOD activity; and (I and J) APX activity of aba8ox3 and its background ZH11, and phs3 and its background Nip, grown in normal-NH$_4^+$ (NA) and high-NH$_4^+$ (HA) medium. Five-day-old seedlings were transferred to treatment medium for another 10 d and then roots were collected for examination. Data are analyzed by two-way ANOVA following Duncan’s test (n=3). Error bars with different letters represent a statistical difference (P<0.05, Duncan’s test).

Fig. 5. OsbZIP20 is involved in the response to high NH$_4^+$ stress. (A) Transcript levels of OsbZIP20 in Nip under different concentrations of NH$_4^+$; 5-day-old seedling were transferred to media containing different concentrations of NH$_4^+$ (1, 2.5, 5, 7.5, 10, and 20 mM) for another 12 h, and then roots were collected for RNA extraction and qPCR analysis. (B) Transcript levels of OsbZIP20 in aba8ox3, phs3, and their backgrounds ZH11 and Nip under high-NH$_4^+$ (HA) conditions. Five-day-old seedling were transferred to normal-NH$_4^+$ (NA) and HA media for another 12 h, and then roots were collected for RNA extraction and qPCR analysis. Data are the means of three biological replicates; Error bars indicate ±SD. **P<0.01 and ***P<0.001 (t-test).
phosphorylation of OsSAPK9 and that ABA can promote this phosphorylation in an OsSAPK9-dependent manner.

bzip20 and sapk9 mutants show higher sensitivity to high NH4+ stress, accompanied by higher free NH4+ and H2O2 accumulation in tissue

To further analyze OsbZIP20 and OsSAPK9 function under high-NH4+ stress, knockout mutants (sapk9 and bzip20) were constructed by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (Fig. 8A). Sequence analysis showed there was a single base C deletion in the first exon of sapk9 and a 20 base deletion in the third exon of bzip20, respectively, which resulted in gene inactivation (Fig. 8A). We then observed the phenotypes of sapk9 and bzip20 under control and high-NH4+ conditions. There was no difference among Nip, sapk9, and bzip20 under control conditions, whereas the high NH4+ inhibited root growth
in all genotypes, with greater inhibition in sapk9 and bzip20 (Fig. 8B–D). Exogenous ABA could rescue root growth in Nip, but not in sapk9 and bzip20 (Fig. 8C, D). These results indicate that OsSAPK9 and OsbZIP20 were involved in high NH4+ response via an ABA-dependent pathway.

To further test the roles of OsSAPK9 and OsbZIP20 in response to high-NH4+ stress, we then measured the free NH4+ content in all genotypes under control and high NH4+ conditions. All genotypes grown in control solution exhibited similar free NH4+ accumulation. However, the free NH4+ accumulation increased 1.18-fold in Nip, 4.23-fold in sapk9, and 4.15-fold in bzip20 compared with the control condition (Fig. 8E). With the addition of exogenous ABA to high-NH4+ solutions, compared with the high-NH4+ condition, the free NH4+ accumulation decreased 37.7%, but only 5.4% and 13.4% in sapk9 and bzip20, respectively (Fig. 8E).

H2O2 contents in roots varied slightly among the Nip and mutants in the control condition and were 0.53, 1.81, and 1.52 times higher in Nip, sapk9, and bzip20, respectively, under high NH4+ compared with control (Fig. 8F). Consistently, the MDA concentrations were also increased in sapk9 and bzip20 compared with Nip under high-NH4+ stress (Fig. 8G). Exogenous ABA inhibited the accumulation of H2O2 and MDA in Nip roots, but not in sapk9 and bzip20 roots (Fig. 8E, G). To sum up, OsSAPK9 and OsbZIP20 were involved in the high-NH4+ response through regulating free NH4+ and H2O2 accumulation in roots.

Fig. 8. OsSAPK9 and OsbZIP20 knockout increases sensitivity to high NH4+. (A) Mutation sites of sapk9 and bzip20 mutants generated by CRISPR/Cas9; (B) Phenotypes of sapk9 and bzip20 grown on normal-NH4+ (NA) and high-NH4+ (HA) medium; (C and D) maximum primary root length (C); and root fresh weight (D). Five-day-old seedlings were transferred to treatment medium for another 10 d (n=10). (E) Free NH4+ contents; (F) H2O2 contents; and (G) MDA contents of sapk9, bzip20, and Nip grown in NA and HA media. Five-day-old seedling were transferred to NA and HA media for another 10 d, and then roots were collected for examination. Scale bar=5 cm. Data are analyzed by two-way ANOVA following Duncan’s test (n=3). Error bars with different letters represent a statistical difference (P<0.05, Duncan’s test).
OsSAPK9 and OsbZIP20 function under high-\(\text{NH}_4^+\) stress by enhancing \(\text{NH}_4^+\) assimilation and antioxidant activity

Under control conditions, GS and GOGAT activities were slightly lower in sapk9 and bzip20 than in Nip, in roots (Fig. 9A, B). The GS and GOGAT activities decreased in Nip roots under high-\(\text{NH}_4^+\) stress and more so in sapk9 and bzip20 mutants under the same high-\(\text{NH}_4^+\) conditions (Fig. 9A, B). The activity of GDH was slightly higher in Nip than in sapk9 and bzip20 roots under control conditions (Fig. 9C). High \(\text{NH}_4^+\) reduced GDH activity by 5.2% in Nip but to a greater extent in sapk9 and bzip20, where it decreased by 17.1% and 23.3%, respectively (Fig. 9C). Consistently, the accumulation of Glu and Gln induced by high \(\text{NH}_4^+\) was also reduced in the sapk9 and bzip20 mutants (Supplementary Fig. S3).

Only mild differences in SOD, CAT, and APX activities were observed in roots of Nip, sapk9, and bzip20 (Fig. 9D–F). However, the activities of SOD, CAT, and APX were increased 29.7, 21.9, and 42.6% in Nip under high-\(\text{NH}_4^+\) conditions, respectively, while they were not increased in sapk9 and bzip20 (Fig. 9D–F). Furthermore, exogenous ABA application can obviously promote the activities of these enzymes, including GS, GOGAT, GDH, SOD, CAT, and APX under high-\(\text{NH}_4^+\) stress in Nip, and this promotion was reduced or even disappeared in sapk9 and bzip20 (Fig. 9). Taken together, these results suggest that OsSAPK9 and OsbZIP20 have a positive role in the activities of \(\text{NH}_4^+\) assimilation and antioxidant enzymes in response to high-\(\text{NH}_4^+\) stress via an ABA-dependent pathway.

Discussion

ABA is involved in the response to \(\text{NH}_4^+\) stress by enhancing \(\text{NH}_4^+\) assimilation and antioxidant enzyme activities

The plant hormone ABA plays a key role in a broad array of adaptive stress responses to environmental stimuli in plants (Cutler et al., 2010; Raghavendra et al., 2010; Weiner et al., 2010). Many studies have revealed that \(\text{NH}_4^+\) can regulate ABA biosynthesis and transport (Peuke et al., 1998; Li et al., 2012; Ding et al., 2016). In A. thaliana, transcriptome analysis revealed that many genes induced by high \(\text{NH}_4^+\) contain the core motif of the ABARE in their promoters, indicating that ABA signaling is involved in the response to high \(\text{NH}_4^+\) (Li et al., 2012). However, how ABA signaling regulates \(\text{NH}_4^+\) stress in rice has remained unknown. Here, we identify that ABA positively regulates \(\text{NH}_4^+\) tolerance. This conclusion is supported by physiological, pharmacological, and genetic evidence.

First, in addition to root growth inhibition (Fig. 1B–D), it was observed that high \(\text{NH}_4^+\) up-regulated transcription of ABA biosynthesis genes (Fig. 1A). Subsequent results revealed that high \(\text{NH}_4^+\) increased ABA content in roots (Fig. 1E). A similar induction was also observed in A. thaliana (Li et al., 2012). To unravel the mechanism of ABA action under high-\(\text{NH}_4^+\) stress, we adopted a pharmacological approach using applications of exogenous ABA and Flu, an inhibitor of ABA biosynthesis (Yoshioka et al., 1998). As expected, the treatment with ABA and Flu resulted in a decrease or increase in the inhibition of root growth induced by high \(\text{NH}_4^+\) stress, respectively (Fig. 1B–D). Consistent with this, a mutant with higher endogenous levels of ABA, aba8ox3, and one with lower levels, psh3, were tolerant and sensitive to high-\(\text{NH}_4^+\) treatment, respectively (Fang et al., 2008; Cai et al., 2015) (Fig. 2A–C). To sum up, our results suggest that ABA plays a significant positive role in the response to high-\(\text{NH}_4^+\) stress.

Secondly, it has been proposed that a plant’s tolerance to high \(\text{NH}_4^+\) is related to its capacity for \(\text{NH}_4^+\) assimilation (Cruz et al., 2006; Liu and von Wirén, 2017). However, our results show that high-\(\text{NH}_4^+\) stress can inhibit the activities of key enzymes of \(\text{NH}_4^+\) assimilation, including GS, GOGAT, and GDH in roots; that is, primary \(\text{NH}_4^+\) assimilation is functionally impaired in roots under high \(\text{NH}_4^+\) (Fig. 3). Our results also show, however, that high-\(\text{NH}_4^+\) treatment up-regulates the transcription of genes encoding \(\text{NH}_4^+\) assimilation enzymes in roots, namely OsGS1.2 and OsNADH-GOGAT1, and that these inductions are enhanced in aba8ox3 and weakened in psh3, while they do not occur in sapk9 and bzip20 (Supplementary Figs S4, S5). This shows that differential regulation of \(\text{NH}_4^+\) assimilation takes place transcriptionally and post-transcriptionally in rice and that the OsSAPK9–OsbZIP20 pathway is involved in this regulation. The results are in agreement with previous reports in A. thaliana, showing that the regulation of GS/GOGAT enzymes by \(\text{NH}_4^+\) can occur differentially at levels of transcription, post-transcription, and post-translation (Thomsen et al., 2014; Guan et al., 2016; Jian et al., 2018).

In rice roots, OsGS1.2 and OsNADH–GOGAT1 are expressed abundantly in the surface cell layers of roots, namely in the cells of the epidermis and the exodermis, and this can protect the remainder of the root tissue from high-\(\text{NH}_4^+\) toxicity (Kronzucker et al., 2001; Ishiyama et al., 2003, 2004; Tabuchi et al., 2007; Hachiya et al., 2012). Gln, the major product of \(\text{NH}_4^+\) assimilation and the principal organic N form involved in long-distance N transport in the xylem, can be transported to the cortex and the central cylinder (Fukumotora and Chino, 1982; Lea et al., 2007). While ABA biosynthesis in roots mainly occurs in the pericycle (Boursiace et al., 2013), in such cases, once \(\text{NH}_4^+\) is taken up by the roots, ABA may be rapidly transported to the surface of roots and enhance the catalytic activities of OsGS1.2 and OsNADH–GOGAT1, mediated by the OsSAPK9–OsbZIP20 pathway, protecting roots from the effects of high \(\text{NH}_4^+\). In line with this assumption, our results show that addition of exogenous ABA in roots can increase GS and GOGAT activities in roots, especially under high-\(\text{NH}_4^+\) stress, and that the effect of exogenous ABA on GS/GOGAT enzyme activities was weakened or even disappeared (Fig. 9; Supplementary Fig. S2). Furthermore, overexpression of OsGS1.1 and OsGS1.2 under the control of the Cauliflower mosaic virus (CaMV) 35S promoter resulted in increased GS activities but also increased sensitivity to abiotic stress and poor plant growth, revealing that higher expression of OsGS1.1 and OsGS1.2 in all tissues would disturb the normal nutrient metabolism and signaling pathway (Cai et al., 2009). In contrast, co-overexpression of OsGS1.1/OsGS2 was associated with enhanced tolerance to abiotic stresses and yield improvement.
These incompatible phenotypes might be due to an imbalance in C/N metabolism (Bao et al., 2014). It is to be expected that the abiotic tolerance and yield improvement resulting from overexpression of GS furthermore depends on higher GOGAT activity, sufficient supply of ATP and NADH, and 2-oxoglutarate from C metabolism. Taking these results together, manipulating ABA signaling to enhance GS/GOGAT and GDH enzyme activities in situ appears a promising strategy to increase NH$_4$+ assimilation under abiotic stresses.

Thirdly, it is well known that environmental stresses induce oxidative stress and lead to higher accumulation of ROS (Mittler et al., 2011). Moreover, high-NH$_4$+ treatment has also been reported to augment ROS, especially H$_2$O$_2$ in roots, pointing to a role for ROS in high-NH$_4$+–induced root growth inhibition (Liu and von Wirén, 2017; Li et al., 2019). To protect cells from oxidative damage by overaccumulated ROS, plants have evolved a sophisticated antioxidant defense apparatus to scavenge ROS, including enzymatic and non-enzymatic systems (Apel and Hirt, 2004; Mittler et al., 2004; Conde et al., 2011). In our study, high-NH$_4$+ stress-induced SOD, APX, and CAT activities in osaba8ox3 were significantly higher than those in the wild type.
type and in *osphs3* (Fig. 4E–J). These results reveal that ABA can enhance the activities of antioxidant enzymes, including SOD, APX, and CAT, followed by reduced ROS accumulation, which results in decreased oxidative damage to roots.

In addition, many plants accumulate compatible solutes for maintaining membrane integrity and scavenging ROS in response to osmotic adjustment (Hong et al., 2000; Couée et al., 2006). Soluble sugars act as osmo-protectants, maintaining cell turgor, and protect the integrity of cell membranes (Couée et al., 2006). Endogenous sugar availability can feed the oxidative pentose phosphate pathway, leading to additional ROS scavenging (Couée et al., 2006). Moreover, exogenous sucrose feeding has been shown to increase SOD, CAT, and APX activities in wheat under salt stress conditions (Yan et al., 2012) and in *A. thaliana* following atrazine treatment (Ramel et al., 2009). Upon NH$_4^+$ stress imposition, higher contents of soluble sugars were accumulated in *aba8ox3* compared with *osphs3* (Supplementary Fig. S6). Another important class of smaller molecules known as ‘compatible osmolyte’ includes proline. Proline has a key role in protecting against oxidative stress by scavenging of ROS (Hong et al., 2000; Sorkhoh et al., 2012; Yan et al., 2012). Proline accumulation was closely associated with an increase in ammonium concentration, while high-NH$_4^+$-induced proline accumulation was also involved in regulating antioxidative activity and osmotic adjustment in white clover (*Trifolium repense* L.) (Kim et al., 2004). In our study, higher contents of proline were accumulated in *osaba8ox3* compared with the wild type and *phs3* under high-NH$_4^+$ stress. To sum up, ABA-induced osmolyte accumulation in roots is another possible ABA-mediated resistance mechanism to high NH$_4^+$ (Supplementary Fig. S6). Additionally, GS overexpression also resulted in a reduction of ROS and MDA levels under abiotic stress by enhancing the activities of antioxidative enzymes, including SOD (Lee et al., 2013; Molina-Rueda et al., 2013; Molina-Rueda and Kirby, 2015; James et al., 2018). Glu is required for the synthesis of proline and GSH, while co-overexpression of *OsGS1.1* and *OsGS2* in rice led to greater accumulation of proline and less MDA under drought and salt stresses (James et al., 2018). Mutation of GS in *L. usitatisana* plants led to significantly lower proline levels under drought stress (Díaz et al., 2010). Hence, NH$_4^+$ assimilation is clearly linked to antioxidative activity under high-NH$_4^+$ stress, and ABA appears to be involved in this.

The OsSAPK9–OsbZIP20 pathway is an important positive regulatory system for ABA signaling under NH$_4^+$ stress

ABA-responsive gene expression is directly regulated by TFs that recognize and bind to cis-elements in the promoter regions upstream of their target genes (Fujita et al., 2011). bZIP TFs play important roles in the ABA/stress signaling pathway (Kim, 2006; Nijhawan et al., 2008), and these have been designated as ABFs or AREBs (Yamaguchi-Shinozaki and Shinozaki, 2005), but little is known about their functions in rice under high-NH$_4^+$ stress. Of the 13 rice bZIP TF groups, Groups A, C, and S participate in abiotic stress signaling (Nijhawan et al., 2008). Nevertheless, rice has six members in Group C; namely OsbZIP15, OsbZIP20, OsbZIP33, OsbZIP52, OsbZIP58, and OsbZIP88, and, of these, OsbZIP20, OsbZIP33, and OsbZIP88 responded to salt and drought stress, while only OsbZIP20 was induced under high NH$_4^+$, indicating that OsbZIP20 plays a special role under NH$_4^+$ stress (Fig. 5; Supplementary Figs S7, S8) (Nijhawan et al., 2008; Sun et al., 2017). OsbZIP20 is a typical member of the Group C bZIP family, but has no transactivation activity (Fig. 6C), while it can bind the G-box or ABRE (Fig. 6B), which are ubiquitously found in the promoters of plant genes regulated by environmental signals (Nijhawan et al., 2008). Moreover, OsbZIP20 transcript was significantly higher or lower in *aba8ox3* or *phs3* under high-NH$_4^+$ stress, respectively, compared with their wild types (Fig. 5B), while the OsbZIP20 transcript was significantly induced under different high-NH$_4^+$ conditions, suggesting that OsbZIP20 is involved in the response to high NH$_4^+$ via an ABA-dependent pathway (Fig. 5A). Furthermore, the promotion of NH$_4^+$ assimilation and antioxidant enzymes by exogenous ABA was decreased or even disappeared in *bzip20* (Fig. 9). However, when we analyzed the promoters (~2000 bp) of genes encoding NH$_4^+$ assimilation enzymes in roots, there were no bZIP20-binding cis-elements. Thus, we conjectured that OsbZIP20 participates in the NH$_4^+$ stress pathway indirectly, by regulating the activities of NH$_4^+$ assimilation and antioxidant enzymes, and the detailed mechanism affecting the enzyme activities of GS/GOGAT by OsbZIP20 should be investigated in future studies. The ABA-dependent phosphorylation of the ABF/AREBs is indispensable for its activation. The ABA-dependent activation of ABF/AREB proteins requires phosphorylation by SnRK2 protein kinases (Furihata et al., 2006; Fujii et al., 2007). In rice, 10 SnRK2 members, designated as OsSAPK1–OsSAPK10 (ABA-activated protein kinase 1–10), have been identified, which are activated by hyperosmotic stress, and Subclass III SnRK2s, including OsSAPK8, 9, and 10, which are also induced by ABA (Kobayashi et al., 2004; Dey et al., 2016). OsSAPK8, OsSAPK9, and OsSAPK10, which possess both autophosphorylation and transphosphorylation activities, control AREB/ABFs in ABA-responsive gene expression under osmotic stress conditions (Fujita et al., 2011; Dey et al., 2016). As OsbZIP20 does not possess transactivation activity and is involved in the ABA response, we analyzed the interaction of OsbZIP20 and OsSAPK8, 9, and 10, which function in response to ABA (Fig. 6C). We demonstrate that only OsSAPK9 can interact with OsbZIP20 *in vitro* and *in vivo*, and that OsSAPK9 also phosphorylated OsbZIP20, and subsequently might activate its function (Fig. 6D–F). Furthermore, when we analyzed the phosphorylation of OsbZIP20 *in vivo*, we found that there were four phosphorylated protein bands in the control conditions, and exogenous supply of ABA could induce a new phosphorylated protein band, showing that ABA can further induce the phosphorylation of OsbZIP20 (Fig. 7B). Moreover, this new phosphorylated band disappeared in the *sak9* mutant, revealing the role of OsSAPK9 in ABA-induced phosphorylation of OsbZIP20 (Fig. 7B). Previous work had shown that OsSAPK9 is located in the cytosol and the nucleus, similar to other SnRK2 family members (Mao et al., 2010; Tian et al., 2013; Dey et al., 2016), and we also detected the nuclear localization signal (NLS) in the OsbZIP20 amino acid
ggesting that the interaction between OsSAPK9 and OsbZIP20 occurs in the nucleus. However, a significant signal was also detected in the cytosol, as shown in Fig. 6E, indicating that the interaction between OsSAPK9 and OsbZIP20 may also occur in the cytosol. Another working hypothesis is that OsSAPK9 phosphorylates and activates OsbZIP20 in the cytosol, and then the activated OsbZIP20 is transferred to the nucleus to regulate the transcription of downstream genes involved in acclimation to environmental stress. A similar phenomenon has been reported in previous studies, showing that phosphorylation was responsible for light-modulated GBF2 translocation from the cytosol to the nucleus (Harter et al., 1994; Terzaghi et al., 1997). Clearly, future studies will have to be designed to unravel the possible role of phosphorylation of OsbZIP20 by OsSAPK9 and whether a transfer of activated OsbZIP20 to the nucleus takes place. Our results also suggest that ABA can induce the expression of OsbZIP20 and that OsSAPK9 is involved in this process. Taken together, our data suggest that the initiation of the interaction between OsSAPK9 and bZIP20 can occur without ABA or NH4+, but that exogenous ABA can significantly enhance the transcription of SAPK9 and bZIP20 and phosphorylation of bZIP20.

In addition, OsSAPK9 was induced by high NH4+, and the induction was further intensified by applications of endogenous ABA (Supplementary Fig. S9). OsSAPK9 has also been reported to phosphorylate OsbZIP23 in response to drought stress (Dey et al., 2016), implying that OsSAPK9-mediated antioxidant activity augmentation is a more general mechanism in response to abiotic stress (Battaglia et al., 2008; Yoshida et al., 2010). The expression of OsLEA genes can be induced by exogenous ABA (Wang et al., 2012). There are 34 OsLEA genes in the rice genome, while only 16 of them are induced by exogenous ABA (Wang et al., 2007). As shown in Supplementary Fig. S10, upon imposition of high-NH4+ stress, much higher expression levels of these genes are induced in osaba8ox3 compared with the wild type and phs3. The up-regulated OsLEA genes belonged to group 3, which has been suggested to function in the preservation of protein and membrane structure during various abiotic stresses (Duan and Cai, 2012). Hence, the regulation of the OsLEA3 group by OsSAPK9 and OsZIP20 warrants further study in the future.

In conclusion, our study shows that the increase of antioxidant enzyme activities and of NH4+ assimilation are active responses to a high-NH4+ challenge and are associated with higher endogenous ABA. Moreover, in the process, the OsSAPK9–OsZIP20 pathway plays a critical regulatory role (Fig. 10). The understanding of the tolerance mechanism to high NH4+ involving the OsSAPK9–OsZIP20 pathway induced by higher endogenous ABA is of great importance to confronting this significant agronomic problem.

Supplementary data

Supplementary data are available at JXB online.

Fig. S1. Relative transcription of ABA8OX3 in aba8ox3 and CRTISO in phs3.

Fig. S2. Exogenous ABA and an ABA inhibitor alter the activities of NH4+ assimilation enzymes.

Fig. S3. Glu and Gln contents in sapk9 and bzip20 mutants after high-NH4+ treatment.

Fig. S4. Transcript expression analysis of genes encoding NH4+ assimilation enzymes by qRT-PCR in aba8ox3 and phs3 mutants.

Fig. S5. Transcript expression analysis of genes encoding NH4+ assimilation enzymes by qRT-PCR in sapk9 and bzip20 mutants.
Fig. S6. Proline and soluble sugar contents of roots in osabaRox3 and osphs3 under high NH4+.

Fig. S7. Sequences analysis of OsbZIP20 with OsbZIP52 and AtbZIP9.

Fig. S8. Phosphorylation site prediction in OsbZIP20 by the GPS 2.1 program.

Fig. S9. OsSAPK9 is involved in the response to high NH4+.

Fig. S10. Relative transcript levels of LEA genes in ababox3 and phs3 under normal and high-NH4+ conditions

Table S1. Primers used in this study

Acknowledgements

abox3 and phs3 mutants are from Professor Guohui Zhu (South China Agricultural University) and Professor Chengcai Chu (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences), respectively. We thank Professor Lixing Yuan (South China Agricultural University) for technical support and helpful discussions. This research was financially supported by the National Natural Science Foundation of China (31430095, 31572205, and 31601823) and the University of Melbourne.

References

Guan M, de Bang TC, Pedersen C, Schjoerring JK. 2016. Cytosolic glutamine synthetase Gln1:2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity. Plant Physiology 171, 1921–1933.

James D, Borphukan B, Fartyal D, et al. 2018. Concurrent overexpression of OsGS1;1 and OsGS2;1 genes in transgenic rice (Oryza sativa L.) impact on tolerance to abiotic stresses. Frontiers in Plant Science 9, 786.

Li Q, Li BH, Kronzucker HJ, Shi WM. 2010. Root growth inhibition by NH₄⁺ in Arabidopsis is mediated by the root tip and is linked to NH₄⁺ efflux and GMPase activity. Plant, Cell & Environment 33, 1529–1542.

Zou N, Li BH, Dong GQ, Kronzucker HJ, Shi WM. 2012. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis. Journal of Experimental Botany 63, 3777–3788.
Author/s:
Sun, L; Di, D-W; Li, G; Kronzucker, HJ; Wu, X; Shi, W

Title:
Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway

Date:
2020-07-25

Citation:

Persistent Link:
http://hdl.handle.net/11343/271678

File Description:
Published version

License:
CC BY