UF2 encoding strategy, providing an additional signal to an unvoiced consonant, provided improved speech perception benefit for hearing-impaired adults and children using the Tickle Talker.

The results of the ABx speech feature discrimination testing indicate that the device is flexible enough to present different speech features, including cues to voicing or vowel formant frequencies (first or second), which can be easily discriminated in the tactile display presented to users without additional cues from lipreading or aided residual hearing. The drop in perception of vowel F2 frequency with the advanced encoders would be anticipated, since the entire range of F2 frequencies previously presented over eight electrodes was now telescoped onto only six electrodes.

The results of the speech perception testing with profoundly hearing-impaired adults and children show that the device can target particular speech cues (ie, in this case, encoding of initial consonant voicing), which are unavailable from lipreading, and can provide clear tactile cues to improve perception of these features. These cues can then be used to improve overall speech perception, as shown by the results of the open-set word test.

In summary, severely and profoundly hearing-impaired adults and children can use the output from the improved Tickle Talker to increase their speech perception ability when using the tactile device in combination with lipreading or lipreading plus aided residual hearing. The encoding hardware is flexible, and different encoding schemes can be used to provide specific speech features in the tactile display, which can be easily discriminated by users. Further studies are under way to improve the cosmetic appearance and reliability of the hardware prior to a commercial release of the device. In addition, studies will identify appropriate means of training users of the device. The ability of subjects to use the device for tactile-alone perception of words and sentences will also be evaluated, and if possible, appropriate encoding strategies for this level of benefit will be developed.

REFERENCES


SPEECH SELF-MONITORING BY CHILDREN USING AN ELECTROTACTILE SPEECH PROCESSOR

K. L. GALVIN, BSc, DAUD; R. S. C. COWAN, PhD, DAUD; J. Z. SARANT, BSc, DAUD; E. A. TOBEY, PhD; P. J. BLAMEY, PhD; G. M. CLARK, PhD, FRACS

From The Bionic Ear Institute (Galvin, Sarant), the Cooperative Research Centre for Cochlear Implant, Speech and Hearing Research (Cowan, Blamey, Clark), the Department of Otolaryngology and the Human Communication Research Centre, University of Melbourne (Cowan, Clark), Melbourne, Australia, and the Department of Otolaryngology, Louisiana State University Medical Center, New Orleans, Louisiana (Tobey).

INTRODUCTION

For the profoundly and severely-to-profoundly hearing-impaired child, lipreading and hearing aids are not always sufficient to develop adequate speech perception and production skills. Tactile devices have been investigated as a source of supplementary speech information, with most research focusing on speech perception benefits. However, speech production difficulties are also a major issue for these children, and research into tactile devices should include investigation of the option to use them as speech production aids. This paper will present the results from an initial examination of the suitability of one tactile device for speech production monitoring.

METHOD

The Tickle Talker was developed by the University of Melbourne and consists of a speech processor, a ring handset, and a microphone. Eight electrodes, positioned on each side of the four finger rings, stimulate the digital nerve bundles. The speech processor, based on the Nucleus cochlear implant speech processor, presents the fundamental frequency of speech, the second formant frequency of speech, an indication of the presence of high-frequency information, and an unvoiced signal. Earlier studies have shown speech perception benefits for children using the Tickle Talker with aided residual
hearing and/or lipreading.1

The six subjects of this study were profoundly hearing-impaired, with onset of deafness between birth and 2 years, and were between 11 years 4 months and 16 years 9 months of age. The children had received weekly speech perception training with the Tickle Talker during the school term for at least 18 months. However, no speech production training with the tactile information had been provided. The children were video-recorded speaking with the Tickle Talker on (device-on) and with the Tickle Talker off (device-off) during a conversation between each child and a research audiologist. The 12 speech samples (six subjects by 2 conditions) were orthographically transcribed. The first 50 words of each sample were discarded, and the next 100 original words phonemically transcribed by means of a narrow transcription method. The number of vowels, consonants, and overall phonemes correctly articulated in each sample was calculated. A χ² analysis of 2 by 2 contingency tables was carried out to assess the significance of differences in the frequencies of correct and incorrect vowels, consonants, and phonemes in the device-on and device-off conditions for each subject.

RESULTS

The analysis indicated significant improvements in the accuracy of device-on articulation for subjects 1, 8, and 16. Subject 1 significantly improved (p < .03) on the accuracy of device-on articulation of initial consonants and initial phonemes (see Figure, A). The device-off errors of this subject included consonant deletion (most common), voicing, devoicing, stopping, and frication, and all of these errors were reduced in the device-on condition. Subject 8 significantly improved (p < .04) on the accuracy of device-on articulation of total vowels, total consonants, initial consonants, total phonemes, and initial phonemes (see Figure, B). The most common device-off vowel errors for subject 8 were shortening, reduction, nasalization, elongation, and, to a lesser extent, deletion, with the incidence of reduction and deletion decreasing in the device-on condition. In subject 8’s device-off articulation of total consonants, deletion, backing, voicing, and no sound were the most common errors, and all were reduced in the device-on condition. The incidence of deletion, voicing, and backing also decreased in this subject’s device-on articulation of initial consonants. Subject 16 significantly improved (p < .02) on the accuracy of device-on articulation of total vowels and medial phonemes (see Figure, C). This subject also improved on the device-on articulation of total phonemes (p < .059). The most common device-off vowel errors made by this subject were shortening, nasalization, and reduction, with shortening errors on medial vowels and reduction errors on initial and medial vowels decreasing in the device-on condition. The decrease in the incidence of vowel shortening, vowel reduction, and, to a lesser extent, consonant deletion, consonant voicing, and consonant backing in the device-on condition by subject 16 resulted in a significant improvement in the articulation of medial phonemes.
DISCUSSION

The results of this study suggest that the Tickle Talker may be useful for some subjects as an aid to the self-monitoring of articulation. The significant improvements shown by three of the subjects will be considered in light of the information transmitted by the device. The most common device-off error of subjects 1 and 8, consonant deletion, was reduced in the device-on speech of both subjects. The durational and spectral cues to consonant manner and the high-frequency information provided by the Tickle Talker may have contributed to this improvement. Subjects 1 and 8 also reduced the incidence of device-on initial consonant voicing errors, perhaps through use of the unvoiced signal provided by the Tickle Talker. Subjects 8 and 16 both decreased the incidence of vowel reduction errors when the tactile information was present. This may have been achieved by using electrode position to monitor second formant frequency. Subject 16 was also able to reduce the incidence of vowel shortening in device-on articulation, and may have used the durational information easily available through the Tickle Talker to make this improvement.

The lack of significant improvement shown by subjects 5, 6, and 7 also merits examination, in an attempt to establish if certain individuals will be more likely to use the Tickle Talker in the self-monitoring of articulation. Variables such as the subjects’ device-off articulation performance, their levels and use of aided hearing, and their ability to use the tactile information in speech perception may be relevant to this question. The device-off articulation performance of the subjects may indicate varying scope for improvement. Subject 8, with the poorest total phoneme articulation score (28.8%), showed the most device-on articulation improvements. However, after subject 8, subject 5 had the poorest total phoneme articulation score (34.7%), yet showed no significant device-on improvements. In addition, significant device-on articulation improvements were made by subject 1, who had the highest device-off phoneme articulation score (67.9%). Use of the tactile information in articulation self-monitoring does not appear to be predictable from device-off articulation score.

The aided residual hearing of the subjects may be relevant, as those receiving less auditory information may make more use of the tactile information in articulation self-monitoring. Subject 16, who received no auditory feedback, showed some significant articulation improvements. However, subject 5, whose aided hearing levels were vibrotactile, did not show any improvements. In addition, subject 8, who showed significant device-on articulation improvements, had aided thresholds that were not consistently poorer across the frequencies than those of subjects 6 and 7, who showed no improvements. Further to the issue of aided hearing levels is the subjects’ use of their hearing as an indication of actual auditory discrimination ability. Auditory-alone scores on the Bamford-Kowal-Bench (BKB) Sentence Test are only available for subject 8 (10% and 26%, on two separate occasions) and subject 1 (0%). These scores suggest that the hearing thresholds of these two subjects do not reflect their actual poor levels of auditory discrimination. It appears that along with aided hearing thresholds, the subject’s use of aided residual hearing in speech perception may be relevant when predicting the use of the Tickle Talker in articulation self-monitoring.

Previous studies have shown variation between subjects in their use of the Tickle Talker to benefit speech perception, and similar variation is likely for speech production. Scores on the BKB Test of the six subjects in the evaluation periods prior to and following the collection of the speech production samples indicate their use of the tactile information in speech perception. The greatest improvements in perception when the Tickle Talker was used were shown by subjects 8 and 16, with at least one improvement each over 22%. Subject 1 improved by an average of 12% when using the Tickle Talker. It is possible that subjects 1, 8, and 16 were more aware of and able to use the tactile information in speech production, as well as in speech perception.

It may be suggested that some benefits to speech production from use of the tactile information may be integrated into the speech of the subject with experience, and will not be evident in a device-on versus device-off comparison. Subjects 5 (5 years 1 month) and 6 (3 years 9 months) had received more experience with the device than subjects 8 (2 years 10 months) and 16 (1 year 6 months). However, subject 1 (4 years 10 months) had extensive experience, yet still showed significant improvements in device-on articulation. It is not therefore possible to conclude that subjects 5 and 6 have integrated articulation improvements into their device-off speech production.

Although no one factor accounts for only three subjects’ showing significant improvements in articulation, the results support the potential of the Tickle Talker as a speech production device. Further training aimed specifically at the use of the tactile information in speech production monitoring with a larger subject group will provide further information on the full potential of the device to the speech production benefits of hearing-impaired children.

REFERENCES


VIBROTACTILE DEVICES FOR THE DEAF: ARE THEY OUT OF TOUCH?

B. L. Richardson, PhD; M. A. Symmons, BA(HONS)

From the Department of Psychology, Monash University, Churchill, Australia.

Failure to produce a tactile device to substitute for hearing (especially speech recognition) has been attributed mostly to tactile masking. However, data are presented here indicating that the skin can be used to localize sounds, and to selectively
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s: 
Galvin, K. L.; Cowan, R. S. C.; Sarant, J. Z.; Tobey, E. A.; Blamey, P. J.; Clark, Graeme M.

Title: 
Speech self-monitoring by children using an electrotactile speech processor

Date: 
1995

Citation: 

Persistent Link: 
http://hdl.handle.net/11343/27425

File Description: 
Speech self-monitoring by children using an electrotactile speech processor

Terms and Conditions: 
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.