Poster 215
ELECTROPHONICALLY DRIVEN SINGLE UNIT RESPONSES OF THE ANTEROVENTRAL COCHLEAR NUCLEUS IN CAT
N. A. Morrison, M. Brown and G. M. Clark
Australian Bionic Ear and Hearing Research Institute, East Melbourne 3002, Victoria, Australia

Electrical stimulation of the cochlea results in both direct and electrophonic excitation of auditory nerve fibres. It has been proposed that electrophonic stimulation results from the creation of a mechanical disturbance on the basilar membrane which has properties similar those resulting from acoustic stimuli. Auditory nerve compound action potential (CAP) forward masking studies show the level of frequency specific electrophonic stimulation is highly correlated with the spectral energy of the electrical stimulus waveform. The level of spectral energy in pulsatile biphasic electrical stimuli decreases toward low frequencies suggesting the level of electrophonic stimulation will be diminished in the low frequency region of the cochlea. This proposed diminished input has important implications for the application of electrophonic stimulation in cochlear implant patients who have some low frequency residual hearing. Due to low frequency limitations of CAP forward masking studies, single unit responses in the anteroventral cochlear nucleus (AVCN) to pulsatile biphasic electrical stimuli were investigated to directly assess the level of electrophonic stimulation in the low frequency region of the cochlea. Five adult cats were anaesthetised with pentobarbital sodium (Nembutal; 45 mg/kg i.p.) and maintained with supplemental doses i.v. Following a dorsal exposure of the AVCN, animals were unilaterally implanted with a feline version of the Melbourne/Cochlear scala tympani electrode array. Single unit responses were recorded through KCl filled micropipettes advanced dorsoventrally through the anterior part of the AVCN. Following acoustic characterisation of isolated unit responses, intracochlear bipolar electrical stimuli between 25 and 500 μs per phase were presented over an intensity range of 0 to 54 dB (re 1 μA). The electrophonic component of unit responses was separated from that of the direct electrical response based on response latency. The electrophonic response shows clear phase-locked activity in all low characteristic frequency (< 2.5 kHz) units (N = 9). Fast Fourier transforms of the response histograms revealed the frequency components of the electrophonic stimulus to which the units are responding. These frequencies corresponded to the maximum spectral input of the electrical stimulus with respect to the units frequency threshold tuning curve. Furthermore, the input-output functions of the electrophonic response showed similar properties to those of acoustic stimuli. An important finding of this study showed that the absolute level of the low frequency electrophonic response was far greater than that predicted from the forward masking studies. These results suggest a possible non-linear transduction process for the low frequency component of the electrophonic input.


Poster 216
ACUTE STUDY ON THE NEURONAL EXCITABILITY OF THE COCHLEAR NUCLEUS OF GUINEA PIG FOLLOWING ELECTRICAL STIMULATION
Xuguang Liu, Greg McPhee, H. Lee Seldon and Graeme M. Clark
Department of Otolaryngology, The University of Melbourne, Bionic Ear and Hearing Research Institute

To help deaf patients who cannot benefit from the cochlear implant due to interruption of the auditory nerve, a central auditory prosthesis has been developed to directly stimulate the cochlear nucleus in the brainstem. To examine the safety of this prosthesis guinea pig cochlear nuclei were stimulated acutely with bipolar surface electrodes using charge balanced biphasic current pulses at rates of 250, 500 or 1000 Hz and charge intensities of 1.8, 2.8, 3.5 or 7.1 μC/phase cm⁻². The electrically evoked auditory brainstem response (EABR) was used to monitor neuronal excitability of the cochlear nuclei following this acute six hours electrical stimulation. The animals were anaesthetised with ketamine hydrochloride (40 mg/kg i.p.) and xylazine (3.8 mg/kg i.p.) and the respiration rate and body temperature were monitored during the experiment. The amplitudes and latencies of the EABR waves were measured and compared among the before, during and after stimulation. The results showed that during and after electrical stimulation, no change was found in the EABR waveform, dynamic ranges and threshold with up to six hours direct continuous stimulation of the cochlear nucleus. No significant change was found between pre- and post-stimulation in the EABR amplitudes and latencies. However, a slight temporary decrease in the amplitude of the EABR waves during stimulation was observed during the highest charge density (7.1 μC/phase cm⁻²) stimulation at 30 - 60 minutes. The reduction in the amplitudes of the EABR waves showed a stronger correlation with the stimulus current, charge/phase and charge density than threshold. These results suggest that acute bipolar surface electrical stimulation at rates up to 1000 Hz and for charge density up to 7.1 μC/phase cm⁻² are safe for neuronal excitability of the cochlear nucleus in guinea pigs.

Author/s:
Morrison, N. A.; Brown, M.; Clark, Graeme M.

Title:
Electrophonically driven single unit responses of the anteroventral cochlear nucleus in cat [Abstract]

Date:
1996

Citation:

Persistent Link:
http://hdl.handle.net/11343/27495

File Description:
Electrophonically driven single unit responses of the anteroventral cochlear nucleus in cat [Abstract]

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.