
A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Biometrics 64, 1–25 DOI: 10.1111/j.1541-0420.2005.00454.x

December 2008

A bivariate joint frailty model with mixture framework for survival analysis of

recurrent events with dependent censoring and cure fraction

Richard Tawiah

School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.

School of Psychology, University of New South Wales, Sydney NSW 2052, Australia.

and

Geoffrey J. McLachlan

Department of Mathematics, University of Queensland, St. Lucia QLD 4072, Australia.

and

Shu-Kay Ng

School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.

email: s.ng@griffith.edu.au

Summary: In the study of multiple failure time data with recurrent clinical endpoints, the classical independent

censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with

a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a

tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to

death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring

and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the

hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear

mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the

incidence and the latency parts and it further accounts for the possibility of cure after each recurrence. It includes the

joint frailty model and other related models as special cases. An EM-type algorithm is developed to provide residual

maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is

investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from

two colorectal cancer studies to illustrate its practical value.
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1. Introduction

Data on recurrent events such as multiple tumor relapses on the same patient are frequently

observed in biomedical studies. In many clinical applications, analysis of such data are of

interest, to respond to questions that provide scientific approaches for investigating the

relative effect of new therapies on disease progression or examine the prognosis of the disease

evolution process. Several statistical techniques, including the Andersen-Gill model, the

frailty models and the marginal models are often used to analyze these data. These models

are built on a classical assumption in survival analysis that stipulates that the observed

recurrent disease (or clinical) events are independent of any phenomenon (e.g. death, loss

to follow-up, end of study) that induces right censoring in the data. This assumption is

only realistic in situations where the observed recurrent disease events have negligible or

no effect on the censoring phenomenon. However, merely considering this assumption can

be statistically inappropriate and too restrictive in practice, because dependent censoring

(also known as informative censoring) can also arise in many situations. For example, in

cardiovascular disease studies in which patients undergo repeated heart attacks, dependent

censoring occurs when right censoring is completely or partly caused by a terminal event

(e.g. death) that is correlated with the occurrences of heart attacks or in other words, when

the occurrences of the heart attacks increase the risk of death.

Due to the advent and the use of effective medicines and advanced technologies in modern

healthcare systems, there has been an increasing number of patients who get cured (or

who at least survive for a long time) from many chronic diseases such as cancer (López-

Cheda et al., 2017). Therefore, the possibility of a tangible fraction of cured patients is

sometimes of concern in the analysis of recurrent event data from recent biomedical studies.

In recent times, efforts have been made to present statistical models to handle cure fraction in

recurrent event data. An example is the class of two-component mixture based cure frailty
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models (Rondeau et al., 2011; Tawiah et al., 2019a) which employ the logistic model to

accommodate cure fraction and a random effect survival model (i.e. standard frailty model)

to model the latency distribution of failure times (e.g. gap or calendar times) in the uncured

patient. Although, cure fraction and dependent censoring may possibly arise together, this

class of models, however, did not incorporate these two features in tandem. Some studies

(Huang and Wolfe 2002; Liu et al., 2004; Huang and Liu 2007; Chen et al., 2012) have

made some amount of contribution to propose methods to handle dependent censoring in

different kinds of survival data by means of joint frailty models, which employ a shared frailty

term in the hazard function for the failure of interest and the censoring phenomenon, to

induce their dependence. Instead, Ghosh and Lin (2003) used semiparametric joint models,

wherein the marginal distribution of the failure process and dependent censoring time is

formulated through scale-change models. Nonetheless, these studies did not consider cure

fraction in their proposed methods. Dependent censoring has been considered in conjunction

with cure fraction in some few studies published in recent times, see the works of Liu et al.

(2016), Liu et al. (2017) and Bernhardt (2016), for example. Liu et al. (2017) and Bernhardt

(2016) did not consider recurrent event data, but Liu et al. (2016) did and carried out

estimation on an integrated likelihood, obtained by integrating out the frailties by means of

the Gaussian quadrature method. The model of Liu et al. (2016) does not allow individuals

who have one or more disease events to have a chance of being cured after each occurrence.

In some biomedical data sets, patients with long-term censored times following one or more

recurrences can be observed. A typical case is the data set from the colorectal cancer hospital

readmission study (Gonzalez et al., 2005); about 9.7% of the patients had at least one

recurrence followed by censored failure times that exceed 1000 days, approximately 2.7 years.

In this regard, it is important to allow flexibility in how cure fraction is modelled in recurrent

event data, in order to consider the possibility of cure after each recurrence. Furthermore,
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their model employed a common frailty term that is shared by the hazard functions for

recurrent disease events and death to account for dependent censoring in the joint intensity

function of the uncured patients. The use of a shared frailty can be a limitation because it

forces the frailties to be the same for the failure times of recurrent events and death, which

may not fit well in some applications. Moreover, the shared frailty only permits positive

associations. However, in some situations negative associations exist among paired survival

times (Xue and Brookmeyer 1996). As an example, suppose patients may be admitted into a

hospital several times for the same disease. The association between hospital stay and death

can be negative since a long hospital stay implies a severe episode for a patient, who is more

likely to die shortly after discharge.

Motivated by these concerns, our present study aims to develop a more general mixture

cure model that considers a bivariate frailty, viz two possibly correlated random effects in the

latency component, to jointly model the dependence between the hazard rates of recurrent

events and death in the proportion of uncured patients. The model, further accounts for

frailty effect in the incidence (logistic) part, that explains the patient-specific unobservable

characteristics (frailties) that affect the cure probability. Moreover, the model considers all

observations in the incidence and the latency components and it allows patients with one

or more events to have a chance of being cured after each event. This approach increases

statistical power (Rondeau et al., 2011), compared to the alternative procedure that restrict

the incidence part to the first event and ignore subsequent ones.

To present an estimation procedure for our model, we use the residual maximum likelihood

(REML) method (McGilchrist 1993). This method arises from the spirit of the generalized

linear mixed model (GLMM) methodology, in which the fixed effect and the random effect

terms are estimated alike, by maximizing a BLUP-type log-likelihood, analogous to the

maximum penalized partial likelihood approach (Ripatti and Palmgren 2000), while the
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variance component parameters are obtained through estimating equations formed from the

first order derivative of the REML log-likelihood. For semiparametric survival models that

involve cure fraction, the application of the GLMM method is not straightforward, because

the underlying complete-data likelihood involves missing data and also, the unspecified

baseline survival function of the uncured patients does not cancel out from the likelihood.

Because the EM algorithm is very suitable for dealing with incompleteness or missing data

problems (Ng 2013), we adopt it to implement the GLMM method for estimation of our

model. To examine the performance of the model and the estimation procedure, simulation

studies are conducted in a small sample setting. Also, we illustrate the practical importance of

the model by analyzing two biomedical data sets from a colorectal cancer hospital readmission

study and a metastatic colorectal cancer clinical trial.

2. Notation, models and likelihoods

2.1 Notation of data

Consider a longitudinal follow-up study that measures recurrent clinical events from M

independent patients. We assume that the observation of the recurrent event process is

subject to right censoring, possibly due to death, loss to follow-up or end of the study (i.e

administrative censoring). Define Rjk as the gap time of the kth recurrent event on the

jth patient, Dj is the time to death from the last recurrent event and Cj is the censoring

time due to lost to follow-up or end of study. Here, we assume that Cj is independent of

both Rjk and Dj. We suppose the follow-up time is Tjk = min(Rjk, Dj, Cj), with binary

indicator for recurrent events denoted by δRjk, which takes on a value of 1 if Tjk = Rjk and

0 if Tjk = Dj or Tjk = Cj. Let Tj denote the time between the last recurrent event and

death or censoring time, which represents the last follow-up time for patient j, defined as

Tj = min(Dj, Cj). Here, we note, δDj is the binary indicator for death, which is 1 when

Tj = Dj and 0, if censored. Notice that, the data we observe on the jth patient is Oj =
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{(
tjk, δ

R
jk, δ

D
j , xj

)
, j = 1, ...,M, k = 1, ..., nj

}
, where tjk consists of recurrent gap times tRjk

and death time tDj which are both subject to censoring, nj is the number of recurrent events

experienced by the jth patient and xj = (xj1, ..., xjp)
T is a p dimensional covariate vector on

the jth patient, that may include some treatment or prognostic variables, e.g. chemotherapy,

sex, age, BMI and comorbidity. The superscript T denotes a vector transpose and
∑M

j=1 nj =

N is the total number of observations in the data.

For notations relevant for the description of cure, let Yjk denote a binary indicator, that

is 1 for any patient who experiences the kth recurrent event (i.e. an uncured patient) and 0

otherwise (i.e. a cured patient). Denote by Yj an indicator for death related to the disease,

that is 1 when a patient dies and 0, otherwise (i.e. a long-term survivor). We assume that

cured patients can neither experience recurrent events nor death due to the disease. Note that

Yjk = 1 when δRjk = 1 and also Yj = 1 when δDj = 1. However, when the censoring indicators

δRjk and δDj are zeros, Yjk and Yj are not observed. To examine the survival behaviour of

a study population that consist of a subgroup of uncured patients who are susceptible to

disease relapses and death, and a subgroup of non-susceptible patients, we consider the joint

frailty mixture cure model.

2.2 The bivariate joint frailty mixture cure model

Suppose in our data described in Section 2.1, follow-up has been sufficiently long and the

observed right censoring times are due to death, loss to follow-up and also a heavy magnitude

of administrative censoring (i.e. end of study censoring time). Furthermore, we assume that

death times are possibly correlated with the gap times between recurrent events and also the

presence of a heavy magnitude of administrative censoring, given a sufficiently long follow-

up pre-supposes that there may be a non-negligible fraction of patients who are potentially

cured and thus not susceptible to recurrent disease events and death related to recurrence

of the disease. Among the patients who are not cured, that is, those who are susceptible to
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recurrent events and death, their gap times and death times are not only affected by the

observed covariates but also their own frailties, e.g. individual lifestyle, genetic predisposition,

etc. The mixture cure model for the marginal population may be written as

S (tjk) = 1− πk (xj) + πk (xj)Su(tjk;xj), j = 1, ...,M and k = 1, ..., nj, (1)

where S (tjk) is a bivariate survival function for recurrent events and death for the marginal

population, πk(xj) = P (Yjk = 1) is the probability of experiencing the kth recurrent event

after the (k− 1)th event, 1−πk(xj) is the probability of being cured after the kth event and

Su(tjk;xj) is the conditional bivariate survival function for recurrent events and death in the

proportion of uncured patients.

When a patient is cured the bivariate survival function for recurrent events and death de-

generates to 1. The probability of being uncured πk(xj) is potentially related to the covariate

vector xj through the logistic regression model. For recurrent event data, the logistic model

may be fitted to the first observations within each individual or all observations available on

each individual (Rondeau et al., 2011; Tawiah et al., 2019a). In the case of the later, multiple

observations within an individual may be potentially correlated. An unobservable random

effect term may be useful to adjust for the correlation among observations within patients.

In principle with the GLMM framework, the model may be specified as

πk(xj) = exp(ξjk)/ [1 + exp(ξjk)] , ξjk = wTj α + uj, (2)

where ξjk is the linear predictor, α is the fixed effect vector that measures the effects of

covariates xj on the uncured probability, wj = (1 xTj )T , and uj is the frailty term affecting

the uncured probability. Let u = (u1, ..., uM)T denote the realization of uj on M patients.

We assume that the realizations of u are independent and identically distributed from the

normal distribution N(0, θ2
uIM), where IM is an M dimensional identity matrix. The variance

component θ2
u is a measure for unobserved heterogeneity in the probability of the proportion

of cured patients.
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Notice that the latency function Su(tjk;xj) is a bivariate function that depends on tRjk

and tDj . For the proportional hazards (PH) cure model, the latency part may be modelled

through a survival function (Peng and Taylor 2016) or a hazard function (Yau and Ng 2001;

Lai and Yau 2008, 2009). We follow the hazard based approach to model the hazard rate

for recurrent events and death in the uncured patients. We adopt two separate PH models

which are correlated through unobservable patient-specific random effects vj and Vj, which

represent the frailties affecting the hazard rates of disease recurrence and death on the jth

uncured patient, respectively. Given the random effects vj and Vj and covariate vector xj,

the hazards function for recurrent events hu(t
R
jk;xj) and death λu(t

D
j ;xj) for the jth uncured

patients are defined, respectively,

hu
(
tRjk;xj

)
= hu0

(
tRjk
)

exp (ηjk) ; ηjk = xTj β + vj,

λu
(
tDj ;xj

)
= λu0

(
tDj
)

exp (ζj) ; ζj = xTj γ + Vj,

(3)

where ηjk and ζj are the linear predictors corresponding to the two hazard models, hu0(tRjk)

and λu0(tDj ), are the baseline hazard functions for recurrent events and death in the uncured

patients, which are specified non-parametrically, β is the fixed effect parameter vector that

relates xj to the hazard rate for recurrent events and γ is the fixed effect parameter vector

that measures the effect of xj on the hazard for death. The first model in Equation (3) is

a frailty model for multivariate survival data (McGilchrist, 1993). It assumes that frailty

arises from unobserved heterogeneity and intra-subject correlation of recurrent event times.

The second model conceptualizes frailty in terms of unobserved covariates in univariate

(independent) failure time data to allow for individual differences in mortality hazard rate

(Hougaard 1995). The framework of Equations (1), (2) and (3) constitute the bivariate joint

frailty mixture cure model proposed in this work. Equation (3) denotes a bivariate joint

frailty model. Like the frailty terms, the covariate vector xj may not be necessarily the same

for the hazard rates of recurrent events and death, likewise the covariates of the uncured

probability in the logistic part.
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Let v = (v1, ..., vM)T and V = (V1, ..., VM)T denote the random vectors of vj and Vj such

that q = (vT , V T )T . We assume that q follows a bivariate normal distribution BV N(0,Σ),

where the variance covariance matrix Σ = Γ ⊗ IM . Notice that ⊗ is a Kronecker product

and Γ is defined in the following

Γ =




θ2
v ρθvθV

ρθvθV θ2
V


 ,

where ρ is a correlation parameter that incorporates dependence between the hazard rate for

recurrent events and death. If, for example, ρ = 0, the hazard rate for death is independent

of the hazard rate for disease recurrences. Also, θ2
v and θ2

V measure heterogeneity in the

frailty for the hazard rates of disease recurrence and death. Notice that the frailties in the

model are (bivariate) log-normal since the exponential function of the random effects on the

normal distribution are log-normal. Other distributions, such as the gamma distribution can

also be used; see, for example, Wienke et al. (2003).

Let W(N×(p+1)), X1(N×p), X2(M×p), R(N×M), Z1(N×M) and Z2(M×M) denote the design matri-

ces corresponding to α, β, γ, u, v and V , respectively. From here onwards, we write the design

matrices without their dimensions. The linear predictors, ξjk, ηjk and ζj may be rewritten in

terms of the design matrices and the vectors of the fixed and the random effects, as follows

ξ = Wα +Ru, η = X1β + Z1v and ζ = X2γ + Z2V.

To formulate a likelihood function for the model, we assume that a recurrent event and death

cannot be observed at the same time point within the same patient. Considering the bivariate

joint frailty cure model in Equations (1), (2) and (3), and the conditional independence of

recurrent events and death within patient j given vj and Vj, as well as uj, the complete-data

likelihood can be expressed as LC = L1 (α, uj; yjk, yj)L2 (β, γ,Hu0,Λu0, vj, Vj; yjk, yj) , where

L1 (α, uj; yjk, yj) is the likelihood contribution on the basis of the parameters of the random

effect logistic regression model and L2 (β, γ,Hu0,Λu0, vj, Vj; yjk, yj) is that of the bivariate
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joint frailty model. For brevity and conciseness, we simply write L1 and L2 to denote these

two likelihood components. Notice that L2 can be written as

L2 =
{
hu0

(
tRjk
)

exp (ηjk)
}δjkyjk exp

{
−yjkHu0

(
tRjk
)

exp (ηjk)
}

×
{
λu0

(
tDj
)

exp (ζj)
}δjyj

exp
{
−yjΛu0

(
tDj
)

exp (ζj)
}
.

(4)

The first line of expressions in Equation (4) corresponds to the likelihood of the recurrent

event gap times and the second line is the likelihood of death times. In standard frailty

models, where the non-informative censoring assumption is considered, the first line of

expressions are only used. If cure fraction is not assumed, then yjk = 1 and yj = 1, for

all j and k and the likelihood L2 reduces to that of a bivariate joint frailty model. In that

case, Equation (4) is analogous to the derivation given by Huang and Wolfe (2002) for the

joint-shared frailty model. The joint likelihood L2 raises concerns about issues pertaining

to identifiability because in survival analysis the usual independent censoring assumption is

required in order to avert an identifiability problem (Ebrahimi et al., 2003). Nevertheless, we

note in passing that L2 is practically identifiable once the data provide sufficient information

that distinguishes one censoring mechanism from the other, for example as discussed in

the case of the data notation
(
tjk, δ

R
jk, δ

D
j , xj

)
in Section 2.1. Furthermore, with the use

of random effects, the issue of identifiability on the lines of L2 is not a problem, since

independent censoring assumption is not displaced in the definition of the likelihood and

the bivariate joint frailty model. By this we mean that, the recurrent event times and the

death censoring times are assumed to be independent, conditional on the random effects

v and V , while dependent censoring is captured by means of their covariance structure Σ.

However, identifiability issues may arise within the framework of mixture cure models, due

to improper separation of the mixture (Yau and Ng 2001; Peng and Taylor 2016; Ng et al.,

2019). It is because it is sometimes unclear whether a censored individual is cured or follow-

up has not been pursued long enough for the event to occur in such individual. In practice,
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it is necessary to consider the context where cure models are appropriate (e.g. long-term

follow-up, non-zero marginal survival probability/heavy long-term censored times).

Denote byRr andDi, the respective recurrent event gap/censoring time and the death/censoring

time which are reordered in an increasing order of magnitude, with their corresponding

reordered linear predictors ηr and ζi. Following an argument in Klein (1992) and Sy and

Taylor (2000) on the lines of the profile likelihood construction for standard PH model, it

can be shown that replacing Hu0(tRjk) and Λu0(tDj ) by the Aalen-Nelson estimator (Breslow

1972), Equation (4) reduces to a joint partial likelihood of β and γ in terms of η and ζ, with

the random effects v and V conditionally fixed. Letting l2 to denote the logarithm of L2, it

follows that

l2 =
K∑

r=1



ηk − log

N∑

l∈R(k)

yl exp(ηl)



+

P∑

i=1



ζi − log

M∑

s∈R(i)

ys exp(ζs)



 , (5)

where R(k) and R(i) are the risk sets corresponding to the gap times of the recurrent events

and the death times, respectively. Also, t1 < ... < tK and t1 < ... < tP denote the respective

distinct reordered gap times and death times. Similarly, let l1 = log (L1), then

l1 =
M∑

j=1

N∑

k=1

{yjk log πk (xj) + (1− yjk) log (1− πk (xj))} =
N∑

r=1

{yrξr − log (1 + exp (ξr))} .

(6)

Within the realm of the GLMM framework, the logarithm of the joint density function of u

and q, may be expressed as

l3 = −1

2

{
M log

(
2πθ2

u

)
+

1

θ2
u

uTu

}
− 1

2

{
M log(2π|Σ|) + qTΣ−1q

}
, (7)

where u is independent of q. From the concept of the GLMM framework (McGilchrist 1993),

the complete-data BLUP-type log-likelihood for the random effect logistic model and the

bivariate joint frailty model can be presented as

lΦ = l1 −
1

2

{
M log

(
2πθ2

u

)
+

1

θ2
u

uTu

}
(8)
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and

lΩ = l2 −
1

2

{
M log(2π|Σ|) + qTΣ−1q

}
, (9)

where Φ = (α, u) and Ω = (β, γ, q).

3. Estimation procedure

The MLE and the REML are the most commonly used estimators within the GLMM

methodology. Previous research has established that the REML method performs satisfac-

torily well in terms of bias of fixed effect and variance component estimates, compared

to the ML method (McGilchrist 1993; Yau 2001; Tawiah et al., 2019b). Therefore, we use

the REML method to estimate the unknown parameters of the proposed bivariate joint

frailty mixture cure model. As presented in Equations (8) and (9), the proposed model

yields the complete-data log-likelihood. Accordingly, it is natural to apply the EM algorithm

to achieve maximization of the REML estimation. Note that the log-likelihoods involve

two binary indicators yjk and yj which are partially missing. The E-step completes the

missing data on yjk and yj through the computation of the expectation of the complete-data

log-likelihood conditional on the observed data and the current values of the parameters

Φ = (α, u), Ω = (β, γ, q), Ψ = (θ2
u, θ

2
v, θ

2
V , ρ), Su0(tRjk) and Su0(tDj ). The M-step, on the other

hand, maximizes this conditional expectation of the complete-data log-likelihood over the

unknown parameters. Intuitively, the E-step reduces to the conditional expectation of yjk

and yj, calculated to be

gjk = E
{
yjk|

(
α, β, u, v, Su0(tRjk)

)}
= δRjk +

(
1− δRjk

)
πk (xj)Su0

(
tRjk
)exp(ηjk)

1− πk (xj) + πk (xj)Su0

(
tRjk
)exp(ηjk)

(10)

and

gj = E
{
yj|
(
α, γ, u, V, Su0(tDj )

)}
= δDj +

(
1− δDj

)
π (xj)Su0

(
tDj
)exp(ζj)

1− π (xj) + π (xj)Su0

(
tDj
)exp(ζj)

, (11)

which respectively update yjk and yj, in lΦ and lΩ, where gjk is the posterior probability of

the jth patient being uncured, given the kth possible recurrent event, and gj is the posterior
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probability of the jth patient experiencing a terminal event. At convergence, the estimates

of 1− gjk and 1− gj can respectively be interpreted as the cure and the longer-term survival

rate for the jth patient. The terms Su0(tRjk) and Su0(tDj ) are respectively defined as the

conditional baseline survival function for recurrent event and death in the uncured patients.

As in previous work (Sy and Taylor 2000; Lai and Yau 2008), we adopt the Breslow-type

estimator to estimate Su0(tRjk) and Su0(tDj ) and their tails are smoothly approximated to zero

by means of the ETAIL completion method (Peng 2003).

Let Φ0, Ω0 and Ψ0 denote the vectors of the initial values of the parameter vectors Φ, Ω and

Ψ, respectively. Given the current estimates of gjk, gj, Φ, Ω and Ψ, the M-step maximizes

lΦ and lΩ through the Newton-Raphson iterative methods, viz


α̂

û


 =



α0

u0


+G−1



∂lΦ/∂α

∂lΦ/∂u


 (12)

and



β̂

γ̂

v̂

V̂




=




β0

α0

v0

V0




+H−1




∂lΩ/∂β

∂lΩ/∂γ

∂lΩ/∂v

∂lΩ/∂V




, (13)

respectively, where G−1 and H−1 are the inverse of the information matrices corresponding

to lΦ and lΩ and

∂lΦ
∂α

= W T ∂l1
∂ξ

;
∂lΦ
∂u

= RT ∂l1
∂ξ
− θ−2

u u;
∂lΩ
∂β

= XT
1

∂l2
∂η

;
∂lΩ
∂γ

= XT
2

∂l2
∂ζ

;

∂lΩ
∂v

= ZT
1

∂l2
∂η
− vθ2

V − V ρθvθV
θ2
vθ

2
V (1− ρ2)

and
∂lΩ
∂V

= ZT
2

∂l2
∂ζ
− V θ2

v − vρθvθV
θ2
vθ

2
V (1− ρ2)

.

For the derivation of ∂l1/∂ξ, ∂l2/∂η and ∂l2/∂ζ, see Web Appendix A. Letting Dηη =

−∂2l2/∂η∂η
T , Dζζ = −∂2l2/∂ζ∂ζ

T and Dηζ = ∂2l2/∂η∂ζ
T = Dζη = ∂2l2/∂ζ∂η

T = 0 and

following the derivation given in the Web Appendix A, matrices G and H may be written
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as blocks, in the form

G =



Gβ,β Gβ,u

Gu,β Gu,u


 where, G−1 =



Aα,α Aα,u

Au,α Au,u




and

H =




Hβ,β Hβ,γ Hβ,q

Hγ,β Hγ,γ Hγ,q

Hq,β Hq,γ Hq,q




where, H−1 =




Bβ,β Bβ,γ Bβ,q

Bγ,β Bγ,γ Bγ,q

Bq,β Bq,γ Bq,q



.

At convergence the Newton-Raphson iterative methods in Equations (12) and (13) provide

estimates of the random effects which can be interpreted as the individual fragility of

the patients. Prediction intervals of the frailties can also be obtained from the underlying

information matrix using empirical Bayes (EB) or the conditional mean squared error of

prediction (CMSEP) method to estimate the variances of the random effects (Tawiah et al.,

2019b).

To this end, the simplification of the system of equations of the first order derivative

of the REML log-likelihood (B.1), given in Web Appendix B, yields the respective REML

estimators of θ2
v, θ

2
V and ρ, expressed in the following

θ̂2
v =

1

M
=1, θ̂

2
V =

1

M
=3, and ρ̂ =

1√
=1=3

=2, (14)

where =1 = tr
{
K1

(
Bq,q + qqT

)}
,=2 = tr

{
K2

(
Bq,q + qqT

)}
/2, =3 = tr

{
K3

(
Bq,q + qqT

)}

and tr denotes the trace of a matrix. The block matrices K1, K2 and K3 are defined in Web

Appendix B. Similarly, the REML estimator of θ2
u is given by

θ̂2
u =

1

M

{
tr (Au,u) + uTu

}
. (15)

A summary of the computational iterative routine for the foregoing estimation procedure is

given in Web Appendix C. The computational procedure is initialized by setting the starting

values of Φ and Ω to zero and those of Ψ to relatively small values. The method alternates

between the E-step and the M-step, then to the REML estimation of the variance components

and it recycles until convergence. Once convergence is obtained, the underlying observed
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complete-data information matrices G and H are calculated. The asymptotic standard errors

of the fixed effect parameters α, β and γ are respectively calculated from Aα,α, Bβ,β and Bγ,γ,

while those of the variance components are obtained by inverting the REML information

matrices. Details for the later can be found in Web Appendix B.

4. Simulation studies

In this section, we provide simulation studies to investigate the performance of the proposed

model and the estimation procedure. In the simulation design, we assumed a sample of 400

patients who are followed up to a maximum of 2000 days, approximately 5.5 years from the

beginning of the study. We considered a treatment variable xj1 as the covariate appearing in

the linear predictors of the components of the proposed joint-mixture cure frailty model. The

covariate xj1 is generated from the Bernoulli distribution with a 0.5 chance of randomization

for each patient. The recurrent time-to-event data (tjk, δ
R
jk, δ

D
j ) characterized by dependent

terminal event and cure fraction were simulated as follows:

i. We first generate the independent censoring time cj for each patient using the uniform

distribution with a maximum of 2000 days.

ii. Next, we generate uj from N(0, θ2
u) and by means of the Bernoulli distribution, the binary

indicators yjk and yj are generated for each patient, with the probability of being uncured

and that of death, given by the random effect logistic regression model in Equation (2).

iii When a patient is cured (yjk = 0), we assign the time of recurrence tRjk to ∞. Likewise,

if a patient has no terminal event (yj = 0), we assign the death time tDj to ∞. Here,

whenever yjk = 0 we restrict yj = 0.

iv. We generate qj = (vTj , V
T
j )T from BV N(0,Σj). When a patient is not cured (yjk = 1),

we generate the time of recurrence tRjk repeatedly from the frailty model hu
(
tRjk;xj1

)
=

hu0

(
tRjk
)

exp (ηjk) ; ηjk = xTj1β + vj until the corresponding uncured patient is either

cured, dies or until
∑nj

k=1 t
R
jk > cj. Similarly, when a patient dies, the death time tDj is
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thus generated from the frailty model λu
(
tDj ;xj1

)
= λu0

(
tDj
)

exp (ζj) ; ζj = xTj1γ+Vj. In

both settings, we assumed that the functions of the baseline hazards follow the Weibull

distribution µτtτ−1, with µ = 0.0005, τ = 1.8 for recurrent event gap times and µ =

0.0003, τ = 1.5 for the death times.

v. The observed failure time tjk is then generated from min(tRjk, t
D
j , cj), and δRjk and δDj are

obtained according to their definitions given in Section 2.1.

The settings of the true parameter values were considered as follows: α0 = 1.0, 0.3; α1 =

−0.5,−0.8; β1 = −0.8,−0.6; γ1 = −0.5,−0.3; θ2
u = 0.5; θ2

v = 0.3, 0.5; θ2
V =0.5 and ρ =

0.2, 0.4, 0.6, 0.8,−0.2,−0.8. The first set of true parameter values for α0 and α1 were chosen

to achieve a moderately low cure rate of 37.8%, while the second set gives a moderately high

cure rate of 62.2% in the treatment group. Moreover, the varying settings of ρ were used to

validate the model in different magnitudes of dependent censoring, that is, relatively low,

moderate and high positive correlations as well as negative correlations. Several simulation

scenarios were considered, in each case 500 data sets were generated and the EM REML

procedure detailed in Section 3 was applied for estimation. We present in Tables 1 and S1 in

Web Appendix D, a summary of the estimation results given in terms of average bias (Ave.

bias), average of the standard error estimates (SEE), the standard error (SE) of the parameter

estimates and the coverage probability (CP) of 95% confidence interval (CI) based on the

normal approximation. For the simulation scenarios with low cure rate (Table 1), the fixed

effect parameter α1 is empirically unbiased under all the settings of dependent censoring,

while α0, β1 and γ1 have small biases. Similarly, no substantial bias is observed for α0, α1,

β1 and γ1 in the simulation with high cure rate (Table S1) considering all the magnitudes

of dependent censoring. However, when cure rate is high and the magnitude of ρ and θ2
v

increases simultaneously, β1 has slightly positive bias, though the magnitude of the bias of

γ1 reduces (Simulation 6 in Table S1). Comparing all the simulation sets, it is seen that the

size of bias of γ1 decreases sufficiently when the correlation moves from a low level to a higher
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order. This is particularly apparent when the cure rate decreases. The fixed effect parameters

and the variance components have acceptable biases when ρ goes to zero in both the low and

high cure rate. The accuracy of the standard error estimates of the fixed effect parameters is

acceptable, comparing SEE and SE. Under the positive correlation schemes, the CPs of α0,

α1 and β1 are close to the nominal level, while those of γ1 are slightly below the nominal level

for both low and high cure rate. However, it is noticed that the CP of γ1 has the tendency of

drawing closer to the nominal level when it decreases in bias. The CP of α0 shrinks slightly

from the nominal level when dependent censoring is of higher magnitude in the negative

direction. This is possibly due to the increment in bias in the estimates of α0 under strongly

negative correlation scheme, as observed in both low and high cure rates. For the variance

component parameters, we found that the bias is reasonably small. Nevertheless, the bias of

θ2
V increases towards null when the correlation goes to a higher order in the positive direction

for both the low and high cure rates. The standard errors of θ2
v, θ

2
V and ρ are quite well

estimated, comparing SEE and SE. Nonetheless, in the case of θ2
u the estimates of SEE are

noticeably larger than those of SE and its CP is above the nominal level in all the simulation

settings. In this regard, the estimator (B.5) (see Web Appendix B) may overestimate the

standard errors of this variance parameter. As a remark, it is not advisable to directly apply

the standard error estimates of the variance components to conduct a test of statistical

significance, even in the case where the standard errors are accurately estimated (Tawiah et

al., 2019a). The reason is that the use of the normal approximation of the null test statistic

is inappropriate because the null hypothesis of the variance components lies on the boundary

of parameter space (Vaida and Xu 2000; Lai and Yau 2009). Some formal tests such as the

score test of homogeneity, the likelihood ratio test with corrected null distribution or random

effect inference based on EB prediction interval may be used to highlight the significance of

random effects (Vaida and Xu 2000; Tawiah et al., 2019b). In this paper, we consider the EB
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prediction interval approach, which tests, for example, H0 : vj = 0 rather than H0 : θ2
v = 0.

For the correlation coefficient, we provided a test for H0 : ρ = 0 versus H0 : ρ 6= 0 based

on the conventional approach using standard error estimates since the null hypothesis is

not affected by the boundary condition related to the restricted parameter space. Another

issue that worth noting is that, the use of the normal approximation for the CIs of the

variance component parameters could possibly affect the accuracy of their CPs because the

estimates of these parameters have right-skewed distributions. Further simulation studies

are outlined to examine the robustness of the proposed model to misspecification of the

normal assumption underlying the distribution of the random effects; see Table S2 and Web

Appendix D for results and discussion.

[Table 1 about here.]

5. Application

5.1 Hospital readmissions and death in a colorectal cancer study

We analyze the data set from a colorectal cancer hospital readmission study (Gonzalez

et al., 2005), which involved 403 patients who received surgery to remove tumors after

being diagnosed with colorectal cancer. During follow-up, some patients encountered several

hospital readmissions related to the colorectal cancer. The first admission time was defined

as the time between the date of surgery and the first hospital admission date. The subsequent

readmission times were considered as the difference between the last date of discharge and

the current date of hospitalization. In total, 861 readmissions were observed, about 200

patients had no recurrence at all and 112 patients died during follow-up. The maximum

number of readmission was 22, with mean 2.25 and median 1.0. The times to hospital

readmission and death are both important outcome measures. The study provides data

on some variables which may potentially affect the readmission and the death times. These
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include chemotherapy, gender, tumor stage measured by Dukes classification (i.e. A-B, C

and D) and comorbidity measured by Charlson index (i.e. 0, 1-2, >3).

Figure 1(a)-(c) present the Kaplan-Meier (KM) survival curves of the gap times for the first

three successive readmissions, classified by treatment arms. It appears that the recurrence

free rate is higher in the chemotherapy arm than the control arm for the first readmission,

while in the case of the second and the third readmissions the recurrence free rate are

statistically equivalent for both treatment arms. The right tails of the curves for both arms

are quite stable. While the control arm stays away from zero survival probability for the

three successive readmissions, the arm for chemotherapy drops to zero. The zero-survival

probability in the tails of the chemotherapy arm is due to the fact that the largest gap

times in this arm are uncensored for the first, second and the third readmissions. Therefore,

it would be unrealistic to rule out the possibility of a cure fraction in the data. In Figure

1(d) the KM curve stratified by treatment arm is illustrated for the death times following

the last readmission. We see that the tails of the curves for both arms level-off above 0.6.

Empirically, this feature suggests that a fraction of long-term survivors exists in the data.

This could be a reflection of patients who may have been cured and therefore not susceptible

to death related to the disease. Also, dependent censoring may appear in these data because

hospital readmissions and death observed on the same patient are likely to be correlated.

This dependence feature may be due to patient specific unobserved frailties. Hence, a frailty

model accommodating cure fraction and dependent terminal event (i.e. death) in the presence

of recurrent events (i.e. readmissions) should be considered for modelling these data.

[Figure 1 about here.]

We apply the proposed model to these data. Again we consider two reduced models, that is,

a joint frailty model that do not incorporates a cure fraction and a standard frailty model

to allow comparison of results. Table 2 gives a summary of the results. For all the three
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models, the reference group consists of male patients who did not receive chemotherapy,

had Dukes stage A-B and Charlson comorbidity index 0. From the proposed model, it is

seen that chemotherapy has negative coefficient estimates in the logistic and the hazard

components. The corresponding p-values suggest that chemotherapy minimizes the hazard

rate of readmission in the uncured patients, but it leads to a small, insignificant in curing

the disease as well as minimizing the hazard rate of death in the uncured patients. Female

gender has significant negative estimates in all the components of the model. From the logistic

component, the results clearly depict that female patients are substantially more likely to

be cured than males. On the hazard part, the uncured female patients have significantly

longer times to be readmitted and significantly longer survival rate (i.e. time to death) after

readmission compared to the male patients who are uncured. Dukes stage C and D decrease

the probability of being cured and also increase the hazard rate of readmission and death.

Higher comorbidity (i.e. Charlson index > 3) leads to a significant lower cure probability

and significant increasing hazard rate for hospital readmission and death.

[Table 2 about here.]

Figure 2 displays the point estimates of the random effects u, v and V and their 95% EB

prediction interval. The figure provides inferences concerning heterogeneity of the individual

frailties among the 403 patients, where patients are arranged in ascending order of the number

of events encountered. For the frailty terms u and V , no significant heterogeneity is to be

expected since their CIs do not depart from zero. Patients 397, 402 and 403 would have

higher risk of recurrence because the CIs of their individual frailties vj’s are significantly

higher than zero, though in general, most of the interval lengths of the CIs of v involves zero,

thus also suggesting a small heterogeneity in the hazard rate for hospital readmission. As

confirmed by the results from the model (Table 2), the estimates of the variance components

in the hazard part, θ2
v and θ2

V , and that in the logistic part θ2
u are mild. The correlation ρ
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is significant and moderate in magnitude, indicating that there is a meaningful dependence

between the hazard rate of readmission and death. However, when the correlation is ignored

(i.e. ρ̂ = 0), the estimates of the regression coefficients, the variance components and their

standard errors do not change noticeably (see Table S3 in Web Appendix E). In the analysis of

the second data example on metastatic colorectal cancer (Ducreux, et al., 2011) presented in

Web Appendix E, ρ is significant and ρ̂ = 0.963 (Table S4). Neglecting this correlation yields

different regression estimates (see Web Appendix E and Table S5 for further discussion).

From Table 2, the results from the reduced models are comparable with those from the

proposed model, although some slight differences can also be seen. In particular, in the

proposed model chemotherapy has a negative coefficient estimate (γ1 = −0.009) on the

hazard rate for death, but it is positive (γ1 = 0.264) in the joint frailty model, although the

estimate is not significant in both models. The reduced models depict that Dukes stage D

has significant increasing effect on the hazard rate of readmission, but it is insignificant in

the proposed model. The estimate of the frailty variance parameters θ2
v, θ

2
V and ρ in the joint

frailty model are considerably larger than those in the proposed. These differences could be

due to the inclusion of cure fraction in the proposed model because the adjustment for this

feature may explain some aspects of unobserved heterogeneity across patients. The proposed

joint frailty mixture cure model and the joint frailty model were fitted to the data set using

author written R codes and the standard frailty model was fitted in R using the coxme

package (Therneau 2018). The implementation of the package is based on the penalized

partial likelihood estimation (Ripatti and Palmgren 2000) for log-normal frailty model. The

current version of the package does not provide the standard errors of the frailty variance

parameters. Estimation of the joint frailty model is based on the REML method (McGilchrist

1993; Yau 2001), without EM implementation.

[Figure 2 about here.]
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6. Discussion

In this paper, a semiparametric joint frailty mixture cure model has been developed to deal

concurrently with dependent censoring and cure fraction in recurrent event data. Differing

from the use of shared frailty, we propose to use the bivariate frailty approach, by this way

the failure time for the recurrent events and the censoring mechanism are not constrained

to have a common frailty. This approach provides means of dealing with situations with

either positive or negative dependence structure and it overcomes the limitations of the

shared frailty approach that provides one parameter to model correlation and variance. One

essential advantage of the model is that, it yields clinically important information beyond

those that can be observed from standard frailty models and cure models as well as the

recently developed frailty cure models. These models arise as special cases of the proposed

model.

Our proposed EM-based REML estimation contrasts with the Markov chain Monte Carlo

(MCMC) EM procedure (e.g. see, Huang and Wolfe 2002; Liu et al., 2004) that is used

when the integrals in the E-step are not available in closed form. The MCMC EM method

is, however, computationally intensive and it leads to issues related to the assessment of

the convergence of the MCMC algorithm (Abrahantes and Burzykowski 2005). A potential

alternative is the numerical integration method, but this approach is not feasible when the

dimension of the random effect goes to a higher order (Vaida and Xu 2000). The relative

advantage of the proposed EM REML estimation is that it circumvents these complications.

This method allows for flexibility in modeling additional correlation structures, for instance,

the correlation of uj with vj or Vj can be considered as a topic for further research. Another

advantage of the proposed model is its ability to predict individual fragility of patients. This

information is valuable to identify high-risk individuals with poorer outcomes. The analysis
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of the data example shows that the presence of cure fraction can explain some aspect of

between-patient heterogeneity in the data, consistent with the results of Liu et al. (2016).

The probability of experiencing the kth recurrent event (πk(xk)) can depend on the fre-

quency of previous recurrent events by means of a time-varying covariate. However, the

absence of such covariate highlights the necessity of random patient effect in the logistic

part. Other practical problems where mixture modeling of dependent censoring can be useful

include the two-component survival mixture model proposed by Ng et al. (2004).
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Figure 1: Kaplan-Meier curves of the gap times for colorectal cancer hospital readmissions
and death, stratified by treatment arm. Times to the first three readmissions are shown.
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Figure 2: Patient-specific frailties and their 95% empirical Bayes prediction interval for
heterogeneity in the (a) cure probability and the hazard rates for (b) hospital readmission and
(c) death. Patients are sorted in increasing order of number of hospitalizations encountered.
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Table 1: Bias, standard error and coverage probability of the REML estimators for the
bivariate joint frailty cure model with 37.8% cure rate in treatment group based on 500
replications of simulated data.

Parameter True value Ave. bias SEE SE CP Parameter True value Ave. bias SEE SE CP

Simulation 1 Simulation 2
α0 1.0 0.050 0.115 0.118 0.922 1.0 0.045 0.116 0.119 0.928
α1 −0.5 0.000 0.163 0.167 0.954 −0.5 0.001 0.164 0.166 0.950
β1 −0.8 0.053 0.110 0.102 0.932 −0.8 0.058 0.107 0.100 0.922
γ1 −0.5 −0.068 0.188 0.230 0.884 −0.5 −0.058 0.185 0.228 0.892
θ2
u 0.5 0.013 0.174 0.035 1.000 0.5 0.028 0.176 0.049 1.000
θ2
v 0.3 −0.044 0.052 0.028 0.956 0.3 −0.045 0.049 0.029 0.968
θ2
V 0.5 0.026 0.046 0.032 0.992 0.5 −0.032 0.042 0.037 0.968
ρ 0.2 −0.021 0.063 0.062 0.976 0.4 −0.027 0.062 0.069 0.994
Simulation 3 Simulation 4
α0 1.0 0.035 0.116 0.119 0.938 1.0 0.032 0.116 0.118 0.940
α1 −0.5 0.002 0.164 0.166 0.948 −0.5 0.002 0.164 0.166 0.948
β1 −0.8 0.060 0.106 0.099 0.916 −0.8 0.060 0.105 0.099 0.920
γ1 −0.5 −0.037 0.175 0.215 0.896 −0.5 −0.027 0.171 0.210 0.902
θ2
u 0.5 0.041 0.177 0.049 1.000 0.5 0.043 0.177 0.049 1.000
θ2
v 0.3 −0.038 0.040 0.026 0.980 0.3 −0.044 0.037 0.024 0.962
θ2
V 0.5 −0.066 0.034 0.026 0.961 0.5 − 0.087 0.034 0.024 0.965
ρ 0.6 0.026 0.045 0.038 0.983 0.8 −0.017 0.030 0.022 0.977
Simulation 5 Simulation 6
α0 1.0 0.063 0.116 0.120 0.903 1.0 0.048 0.115 0.120 0.926
α1 −0.5 −0.002 0.163 0.170 0.944 −0.5 −0.001 0.163 0.167 0.950
β1 −0.8 0.065 0.109 0.101 0.931 −0.8 0.067 0.106 0.101 0.917
γ1 −0.5 −0.068 0.188 0.237 0.876 −0.5 −0.028 0.171 0.216 0.900
θ2
u 0.5 0.008 0.175 0.035 1.000 0.5 0.019 0.175 0.030 1.000
θ2
v 0.5 −0.047 0.052 0.027 0.944 0.5 −0.051 0.038 0.021 0.960
θ2
V 0.5 0.024 0.046 0.031 0.995 0.5 −0.093 0.036 0.020 0.988
ρ 0.2 −0.024 0.063 0.060 0.980 0.8 0.033 0.023 0.014 0.979
Simulation 7 Simulation 8
α0 1.0 0.066 0.116 0.119 0.902 1.0 0.078 0.116 0.120 0.886
α1 −0.5 −0.004 0.164 0.167 0.956 −0.5 −0.007 0.164 0.168 0.948
β1 −0.8 0.065 0.113 0.103 0.932 −0.8 0.072 0.110 0.104 0.918
γ1 −0.5 −0.082 0.190 0.230 0.892 −0.5 −0.051 0.173 0.211 0.882
θ2
u 0.5 0.015 0.175 0.030 1.000 0.5 0.016 0.176 0.029 1.000
θ2
v 0.3 −0.018 0.063 0.029 0.986 0.3 −0.041 0.051 0.027 0.976
θ2
V 0.5 0.034 0.052 0.033 0.984 0.5 0.047 0.048 0.026 0.991
ρ −0.2 −0.011 0.063 0.042 0.993 −0.8 0.061 0.022 0.012 0.964

Abbreviations: Ave. bias, average bias; SE, standard error; SEE, standard error estimates; CP, coverage probability.
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Table 2: Estimates of the proposed bivariate frailty mixture cure model, a joint frailty model
and a standard frailty model based on the colorectal cancer hospital readmission data.

Joint frailty cure model Joint frailty model Frailty model

Estimate OR/HR SE Estimate HR SE Estimate HR SE

Logistic component
Intercept 0.251 0.202
Chemotherapy −0.067 0.935 0.200
Sex (female) −0.476a 0.621 0.188
Dukes stage
C 0.487a 1.627 0.205
D 3.767a 43.250 0.587
Charlson index
1-2 0.503 1.654 0.395
> 3 0.486b 1.626 0.252
Patient frailty
θ2
u 0.398 0.198

Hazard component
Readmission
Chemotherapy −0.230b 0.795 0.137 −0.138 0.871 0.143 −0.177 0.838 0.139
Sex (female) −0.376a 0.687 0.135 −0.457a 0.633 0.139 −0.457a 0.633 0.135
Dukes stage
C 0.116 1.123 0.156 0.327 1.390 0.161 0.285b 1.329 0.156
D 0.223 1.250 0.178 1.144a 3.140 0.191 1.052a 2.863 0.187
Charlson index
1-2 0.291 1.338 0.253 0.286 1.330 0.257 0.407 1.502 0.252
> 3 0.303a 1.354 0.131 0.371a 1.450 0.134 0.320a 1.378 0.133
Patient frailty
θ2
v 0.354 0.041 0.610 0.071 0.494

Death
Chemotherapy −0.009 0.991 0.237 0.264 1.300 0.265
Sex (female) −0.468a 0.626 0.227 −0.418b 0.658 0.252
Dukes stage
C 1.015a 2.759 0.346 0.928a 2.530 0.355
D 2.327a 10.247 0.366 2.621a 13.700 0.376
Charlson index
1-2 0.529 1.697 0.641 0.403 1.500 0.682
> 3 1.405a 4.076 0.258 1.373a 3.950 0.280
Patient frailty
θ2
V 0.429 0.036 1.235 0.141
ρ 0.489a 0.047 0.949a 0.007

Abbreviations: OR, odds ratio; HR, hazard ratio; SE, standard error.
Male, reference category for gender; A-B, reference category for Dukes’s stage;
0, reference category for Charlson index.
a p-value < 0.05
b p-value < 0.10
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