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Originality-Significance Statement 

    This paper is the first study in examining soil microbial diversity and community 

compositions on Mt. Kilimanjaro, which is a substantial contribution by filling the 

knowledge gap regarding this rarely/hardly touched, but important region. Our results 

showed the contrasting patterns and drivers of soil bacterial and fungal diversity 

across a broad elevation gradient of a range of 3400 m on Mt. Kilimanjaro. The 

diversity patterns and drivers of those diversity patterns differ among taxonomic 

groups (phyla/classes) within bacterial or fungal communities. Our study 

demonstrated that bacterial and fungal diversity and community composition 

responded differently to climate and edaphic properties along an extensive mountain 

gradient and suggest that the elevational diversity patterns across microbial groups are 

determined by distinct environmental variables. These novel findings will add 

important knowledge for regional-scale species distributions, as well as microbial 

responses to climate change in montane ecosystems.  
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Summary 

    Microbial elevational diversity patterns have been extensively studied, but their 

shaping mechanisms remain to be explored. Here, we examined soil bacterial and 

fungal diversity and community compositions across a 3.4 km elevational gradient 

(consists of 5 elevations) on Mt. Kilimanjaro located in East Africa. Bacteria and 

fungi had different diversity patterns across this extensive mountain gradient – 

bacterial diversity had a U shaped pattern while fungal diversity monotonically 

decreased. Random forest analysis revealed that pH (12.61% importance) was the 

most important factor affecting bacterial diversity, whereas mean annual temperature 

(9.84% importance) had the largest impact on fungal diversity, which was consistent 

with results obtained from mixed-effects model. Meanwhile, the diversity patterns and 

drivers of those diversity patterns differ among taxonomic groups (phyla/classes) 

within bacterial or fungal communities. Taken together, our study demonstrated that 

bacterial and fungal diversity and community composition responded differently to 

climate and edaphic properties along an extensive mountain gradient, and suggest that 

the elevational diversity patterns across microbial groups are determined by distinct 

environmental variables. These findings enhanced our understanding of the formation 

and maintenance of microbial diversity along elevation, as well as microbial 

responses to climate change in montane ecosystems.  
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Introduction 

    Ecologists have been searching for generalizable patterns describing biodiversity 

for 100's of years and observations along elevational gradients have been key in 

shaping debates about how biodiversity responds to climate (Rahbek, 1995; Lomolino, 

2001; Martiny et al., 2006). In fact, elevational species diversity patterns for plants 

and animals have been studied for two centuries, and related hypotheses (e.g., climate, 

mid-domain effect) have been proposed to explain general patterns along gradients 

(e.g., decreasing, unimodal) (Rahbek, 2005; McCain, 2009). In spite of their high 

abundance and vital roles in ecosystem functioning, until recently, microorganisms 

have been left out of in these analyses because their abundance and composition was 

difficult to observe and measure (but see, Bryant et al., 2008; Singh et al., 2012; Shen 

et al., 2014; Peay et al., 2017; Hendershot et al., 2017; Nottingham et al., 2018).  

    Microbial responses to elevational gradients remain mixed. Some studies found 

that soil bacteria showed decreasing diversity patterns (Bryant et al., 2008; Wang et 

al., 2015; Nottingham et al., 2018; Shen et al., 2019). For example, one of the earliest 

studies reported that the diversity of soil Acidobacteria monotonically decreased with 

the increasing elevation (Bryant et al., 2008). Some studies found hump-shaped or 

U-shaped diversity patterns for soil bacteria (Singh et al., 2012; Li et al., 2016; Peay 

et al., 2017). There were also studies showing that soil bacterial diversity did not vary 

with elevation (Fierer et al., 2011; Shen et al., 2013; Singh et al., 2014). Nonetheless, 

the lack of a discernable trend in microbial diversity with elevation across studies may 

be the result of compounding effects of multiple environmental factors or undetected 
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factors that are relevant to microbes, as well as the possibility that microbial diversity 

may not vary on a spatial scale that corresponds in any way to elevational gradients.  

    There are likely different elevational diversity patterns across microbial groups at 

multiple taxonomic levels. For example, one study on the Kohala Volcano of Hawai'i 

found contrasting diversity patterns with a hump-shaped diversity-elevation trend for 

bacteria and an increased diversity-elevation trend for fungi (Peay et al., 2017). While 

within bacterial communities, one study on Fuji Mountain found a decreasing 

diversity pattern for Acidobacteria and a hump-shaped diversity pattern for 

Proteobacteria, while actinobacterial diversity did not show any pattern with 

elevation (Singh et al., 2012). Given phyla or classes possess unique phylogenetic and 

ecological traits (e.g., r-strategy and k-strategy), an in-depth analysis of specific phyla 

or classes may help to inform hypotheses about why variance in diversity patterns 

emerges (Fierer et al., 2007).  

    There are two main scale-dependent categories of environmental factors that 

likely impact soil microbial diversity patterns along elevational gradients: (1) 

regional-scale factors such as climate, area, parent material, historical impacts 

(evolutionary constraints), plant productivity (Gaston, 2000); and (2) local-scale 

abiotic factors including pH and nutrients availability, and biotic interactions (e.g. 

mutualism and competition). Some studies suggest regional-scale climate factors 

(particular temperature) could strongly affect soil microbial diversity and community 

composition along elevational gradients (Singh et al., 2014; Ding et al., 2015; 

Nottingham et al., 2018), whereas others suggest the elevational microbial diversity 
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patterns are determined by local-scale variation in soil pH (Shen et al., 2013; Geml et 

al., 2014; Wang et al., 2015; Peay et al., 2017). However, the relative importance of 

these hierarchical environmental factors in shaping soil biodiversity along elevation 

gradient remains less evaluated.  

    Theories have been proposed to explain the relationship between environmental 

factors and species diversity. For example, the mid-domain effect, assuming that 

spatial boundaries cause more overlap of species' ranges towards the centre of an area, 

has been widely used to explain the unimodal diversity pattern with elevation 

(Colwell et al., 2004; McCain, 2004; Miyamoto et al., 2014). Temperature has been 

shown positively correlate with species richness for macroorganisms (Hawkins et al., 

2003; Evans et al., 2005) and microorganisms (Furhman et al., 2008; Zhou et al., 

2016) in large-scale diversity patterns. The positive temperature-diversity relationship 

was commonly explained by the metabolic theory of ecology, which predicts changes 

of organisms' diversity along temperature gradients via biochemical kinetics of 

metabolism (Brown et al., 2004). The metabolic theory predictions have been 

specifically applied to microorganisms in horizontal and elevational investigations 

(Zhou et al., 2016; Nottingham et al., 2018). Species diversity often increases with 

increasing available energy, which is termed species-energy theory (Wright, 1983). 

This theory was widely accepted for plants and animals (Hawkins et al., 2003; 

Phillips et al., 2010). However, its applicability to soil communities has been less 

explored, although there is some evidence it holds for fungal functional guilds in 

wood and leaf environments (Schmit et al., 2005; Yang et al., 2016).  

This article is protected by copyright. All rights reserved.



8 
 

    Mt. Kilimanjaro, the highest free-standing mountain on earth, has a distinct 

vertical distribution of vegetations that extends from tropical to frozen zones. This 

extensive gradient mirrors the latitudinal vegetation gradient in the 

northern hemisphere and thus provides us with an excellent laboratory to study 

microbial distribution patterns at a regional scale (Hemp, 2006). Previous studies 

showed that the species richness of plants and animals significantly decreased with 

increasing elevation on Mt. Kilimanjaro (Hemp, 2006; Peters et al., 2016). Here, we 

measured soil bacterial and fungal communities along an elevation gradient (3.4 km 

elevation gradient, consists of 5 elevations) on Mt. Kilimanjaro. We used this gradient 

to test the following hypotheses: (1) Soil bacteria and fungi will have unique 

elevational diversity patterns, but different environmental drivers will be correlated 

with those patterns. (2) Fungal diversity will be positively related to plant productivity, 

as predicted by species-energy theory and recent findings which showed a significant 

relationship between them (Hiiesalu et al., 2017; Yang et al., 2017). (3) The 

composition of bacterial and fungal communities differed with elevation. Based on 

recent findings of global topsoil microbial studies by Bahram and colleagues (2018), 

bacterial community composition will be related to local soil conditions such as pH, 

whereas fungal community composition will be related to larger scale processes, such 

as climate and plant productivity.  

 

Results 

Contrasting patterns with elevation: U-shaped for bacterial diversity, decreasing for 
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fungal diversity 

    For richness, evenness and Shannon diversity metrics, the whole bacterial 

community showed a significant (r2 = 0.721, p < 0.001) U-shaped pattern, whereas the 

whole fungal community significantly (r2 = 0.404, p < 0.001) decreased with 

elevation (Fig. 1a, Fig. 1b). Spearman correlation analysis showed that richness and 

evenness of the whole bacterial and fungal community were significantly (p < 0.01) 

correlated with Shannon index, with evenness having a higher coefficient with 

Shannon index (Fig. S1). For bacterial specific phyla, the diversity of nine phyla 

exhibited significant (p < 0.05) elevational patterns, with a U-shaped diversity pattern 

for Acidobacteria, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, an 

increasing diversity pattern for Gemmatimonadetes, Verrucomicrobia, 

Betaproteobacteria, Deltaproteobacteria, and a hump-shaped diversity pattern for 

Chloroflexi (Fig. S3). For fungal specific phyla and classes, the diversity of three 

phyla and eight classes exhibited significant (p < 0.05) elevational patterns, with a 

decreasing diversity pattern for Ascomycota, Archaeorhizomycetes, Pezizomycetes, 

Saccharomycetes, Tremellomycetes, a hump-shaped diversity patterns for 

Glomeromycota, Dothideomycetes, Leotiomycetes, Sordariomycetes, Agaricomycetes, 

and a U-shaped diversity pattern for Chytridiomycota (Fig. S4).  

 

Contrasting drivers: pH for bacterial diversity, MAT for fungal diversity 

    In terms of Shannon index, bacterial and fungal diversity were linked with 

environmental factors. Random forest analysis found that pH (12.61%) was the most 
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important factor affecting bacterial diversity, whereas MAT (9.84%) had the largest 

impact on fungal diversity (Fig. 1c, Fig. 1d). This result was consistent with results 

obtained from mixed-effects model (Table 2). According to random forest analysis, 

MAP (11.35%) and pH (7.98%) were the second important factor for predicting 

bacterial and fungal diversity, respectively. Classified by climate, energy and local 

factors, random forest analysis showed a more important role of local factors in 

explanation of bacterial diversity, whereas climate factors shape fungal diversity (Fig. 

1c, Fig. 1d). For bacterial specific phyla, the diversity of 10 phyla showed significant 

(p < 0.05) relationships with pH. For fungal specific phyla and classes, the diversity 

of three phyla and seven classes exhibited significant (p < 0.05) relationships with 

MAT (Fig. S5).  

 

Effect of elevation on bacterial and fungal compositional dissimilarities 

    The composition of bacterial and fungal communities differed with elevation 

according to PCoA plots based on Bray-Curtis distance (Fig. 2c, Fig. 2d). 

Permutational multivariate analysis of variance (PERMANOVA) showed that the 

compositional dissimilarities among elevations were significant (p < 0.05; Table S3). 

Dissimilarity of bacterial and fungal communities significantly (p < 0.001) and 

exponentially increased with increasing elevation distance (Fig. 2a, Fig. 2b). 

Specifically, the relative abundance of 10 bacterial phyla Alphaproteobacteria, 

Armatimonadetes, Bacteroidetes, Betaproteobacteria, Chlorobi, Chloroflexi, 

Cyanobacteria, Gammaproteobacteria, Elusimicrobia and Fibrobacteres significantly 
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increased with increasing elevation (Fig. S6, Fig. S7, Table S5). For fungi, increased 

elevation was associated with increased dominance of Archaeorhizomycetes, 

Leotiomycetes, Tremellomycetes, and decreased dominance of Agaricomycetes, 

Blastocladiomycetes, Eurotiomycetes, Geoglossomycetes, Microbotryomycetes, 

Orbiliomycetes, Pucciniomycetes, Saccharomycetes, Ustilaginomycetes, 

Wallemiomycetes (Table S5). The beta diversity decomposition analyses showed that 

bacterial and fungal community compositional dissimilarities among all study sites 

were dominated by species replacement processes (contributed 80.24% and 74.17% 

for bacterial and fungal beta diversity, respectively), while richness difference 

processes only contributed 19.76% and 25.83% on average (Fig. 3a, Fig. 3b). Also, 

relative contribution of richness difference processes was lower (averagely 15.59% 

and 21.90% for bacterial and fungal beta diversity, respectively) for beta diversity 

among sites within elevation (Fig. 3c, Fig. 3d).  

 

Linkages of bacterial and fungal community composition with environmental factors 

    Of all the environmental factors examined, pH showed the highest correlation 

with bacterial community composition (ρ = 0.759, p = 0.001), whereas MAT was 

most significantly correlated with fungal community composition (ρ = 0.582, p = 

0.001) as determined by partial Mantel tests (Table S4). For bacterial community 

composition, five significant variables – pH, MAT, TC, MAP and C/N explained 

88.02% of the total variation (p < 0.05), with pH providing the greatest explanatory 

power (42.98% of the total variation). Most of the variation, 65.75%, in fungal 
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community composition was explained by MAT, MAP, TN, and TC (p < 0.05) and 

MAT explained the largest percentage, 24.25% of the total variation (Table 3). For 

specific phyla and classes, the relative abundance of 11 bacterial phyla showed 

significant (p < 0.05) correlations with pH, and the relative abundance of 13 fungal 

classes were significantly (p < 0.05) correlated with MAT (Fig. 5a, Fig. 5b, Table S5). 

Variation partitioning analysis showed that the joint effects of climate and local 

factors accounted for the largest explanation for variance of both bacterial and fungal 

community composition, whereas the pure effects of climate, energy and local were 

small (Fig. 4c, Fig. 4d).  

 

Predicted functional groups of bacteria and fungi 

    Across all the sampling sites, dominant bacterial functional groups included 

groups that were involved into chemoheterotrophy, cellulolysis, nitrogen fixation and 

nitrification (Fig. S8). Dominant fungal functional groups included groups that were 

involved into wood saprotroph, soil saprotroph, dung saprotroph, plant pathogen, 

ectomycorrhizal and arbuscular mycorrhizal (Fig. S9). The effects of elevation on the 

diversity of eight fungal functional groups were tested, with a decreasing diversity 

pattern for animal pathogens, fungal parasites, and a hump-shaped pattern for 

arbuscular mycorrhiza, endophytes, saprotrophs being found, while others including 

ectomycorrhizal, lichenized and plant pathogen showed no apparent diversity pattern 

with elevation (Fig. S10). The relative abundance of 21 predicted bacterial functional 

groups and six predicted fungal functional groups showed significant (p < 0.05) 
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relationships with elevation (Fig. S11, Fig. S12). The relative abundance of 15 

bacterial functional groups and four fungal functional groups showed significant (p < 

0.05) correlations with MAT, and the relative abundance of 12 bacterial functional 

groups and five fungal functional groups were significantly (p < 0.05) correlated with 

pH (Fig. 5c).  

 

Discussion 

    We found that soil bacterial and fungal communities had contrasting diversity 

patterns along an extensive elevational gradient on Mt. Kilimanjaro. Bacterial 

diversity patterns were U-shaped, while fungal diversity decreased monotonically 

with elevation. These results contrast with previous studies, that occurred along 

shorter gradients or homogenous environmental factors, exploring bacterial and 

fungal diversity along mountain gradients that found consistent decreasing 

(Nottingham et al., 2018) or no detectable (Shen et al., 2014) patterns. Our results 

were identical with one study on the Kohala Volcano of Hawai'i that found contrasting 

elevational diversity patterns with a hump-shaped trend for bacteria and an increasing 

trend for fungi (Peay et al., 2017). A recent global-scale study of soil microbes 

observed contrasting patterns across the latitudinal gradient – fungal diversity 

decreased with latitude, but bacterial diversity exhibit a hump-shaped pattern with 

latitude (Bahram et al., 2018). Thus, our results, together with the two previous 

studies, highlight the disparities between bacterial and fungal community diversity 

patterns along gradients. In fact, when we drill down and explore a finer resolution of 

This article is protected by copyright. All rights reserved.



14 
 

taxonomic diversity (phyla and classes) within bacterial and fungal communities, the 

patterns of diversity become more complex. For example, much like the entire 

bacterial community, the diversity of Acidobacteria, Actinobacteria, 

Alphaproteobacteria and Gammaproteobacteria followed a U-shaped elevational 

pattern, whereas Gemmatimonadetes, Verrucomicrobia, Betaproteobacteria and 

Deltaproteobacteria diversity increased with elevation. Likewise, the diversity of 

Archaeorhizomycetes, Pezizomycetes, Saccharomycetes and Tremellomycetes 

followed the fungal community trend of decreasing with elevation, however, the 

diversity of Dothideomycetes, Leotiomycetes, Sordariomycetes and Agaricomycetes 

exhibited a hump-shaped pattern. Undoubtedly, the diversity patterns of dominant 

(with higher relative abundance) phyla and classes contributed significantly to the 

overall community pattern – highlighting that generalizing the response of bacterial 

and fungal community diversity patterns as a whole may hide important responses 

within less common, but still functionally important taxa (Yeh et al., 2019). 

Nonetheless, these observed microbial diversity patterns indicate niche differentiation 

(environmental conditions differentiation) among taxa along gradients (Prosser et al., 

2007; Fierer et al., 2007).  

    Our data indicate that, in general, bacterial and fungal community diversity 

patterns are influenced by different ecological drivers and the role of local and 

regional drivers may also differ between these two diverse groups. We found that 

local factors, such as soil pH, predicted bacterial elevational diversity patterns, not 

only for the whole community, and many of the phyla as well. Our field sites had a 
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wide range of soil pH, from 3.82-7.80, resulting in a strong correlation between 

bacterial diversity and soil pH – a pattern observed in other elevational studies (Shen 

et al., 2013; Wang et al., 2015; Shen et al., 2019). Additionally, along our gradients of 

sites, soil pH was highly correlated with the diversity of four dominant bacterial phyla 

including Alphaproteobacteria, Acidobacteria, Actinobacteria and 

Gammaproteobacteria (Table S5). Identically, pH strongly predicted bacterial 

diversity across latitudinal gradient (Fierer and Jackson, 2006; Chu et al., 2010; 

Karimi et al., 2018). Despite the importance of pH, it should be noted that other 

factors like MAP, TC, TN, NDVI and C/N, that were significantly correlated with pH, 

contributed to the variation of bacterial diversity (Fig. S1, Fig. 1c). The results of 

random forest analysis revealed that MAP (11.35% importance) were the second 

important factor for predicting bacterial diversity. We infer that precipitation might 

indirectly affect bacterial diversity by mediating other environmental factors such as 

pH and NDVI (Angel et al., 2010; Tian et al., 2018).  

    While local-scale variation in soil properties, pH, predicted bacterial diversity, 

larger-scale patterns in climate, temperature (MAT), predicted fungal diversity. This 

result was supported by both spearman correlation analysis (Table S1) and 

mixed-effect models, the latter of which found that MAT was a unique key factor 

compared with other explanatory variables (Table 2). MAT was significantly 

correlated with the diversity of specific fungal phyla and classes, such as Ascomycota, 

Archaeorhizomycetes, Pezizomycetes, Leotiomycetes, Saccharomycetes and 

Tremellomycetes; yet, not all phyla/class diversity were best predicted by MAT. Some 
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phyla and class diversity, such as Glomeromycota, Chytridiomycota, Dothideomycetes, 

Sordariomycetes and Agaricomycetes were correlated with soil pH (Table S2). Our 

results showed that pH (7.98% importance) was the second contributor for predicting 

fungal diversity (Fig. 1d). These results are consistent with a recent global study by 

Bahram et al. (2018) that found that MAT was the best predictor for the richness of 

the entire fungal community as well as the major ascomycete classes; however, the 

richness of Glomeromycota and Chytridiomycota was better predicted by soil pH. 

Fungal species typically have a wider pH optimal growth than bacterial taxa, as 

revealed by pure culture and gene sequencing studies (Nevarez et al., 2009; Rousk et 

al., 2010) – thus, it is not surprising that their diversity patterns are less responsive 

than bacteria to local-scale shifts in pH. Collectively, our study emphasizes the pivotal 

role of temperature in driving fungal elevational diversity patterns.  

    Fungi play important ecological roles as decomposers, mutualists and pathogens 

of plants, thus we hypothesized that a significant plant productivity-fungal diversity 

relationship would exist along the elevational gradients we measured. This hypothesis 

emerged from two complimentary theories developed to understand diversity patterns 

across landscapes: 1) the species-energy theory that predicts that species richness 

increases with increasing available energy, such as resource production (Wright, 

1983), and 2) the productivity-diversity hypothesis that predicts that the availability of 

growth-limiting resources in a location limits the diversity of biotic communities at 

that location (Tilman, 1982; Waldrop et al., 2006). A meta-analysis found that plant 

productivity contributes to species richness patterns across taxa at the regional scale 
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(Gillman and Wright, 2006). Yet, we unexpectedly found no significant relationship 

between plant productivity (NDVI) and the diversity of the entire fungal community 

using both spearman correlation analysis and mixed-effect models (Table 2, Table S1). 

While surprising, previous studies on fungi conducted at the regional or global scale 

found that fungal diversity was not related to plant productivity across latitudes 

(Tedersoo et al., 2014; Yang et al., 2017). Plant productivity is mainly driven by 

precipitation at Mt. Kilimanjaro, as revealed by previous studies (Ensslin et al., 2015; 

Peters et al., 2016). Our spearman correlation analyses showed that NDVI was highly 

(ρ = 0.9, P < 0.5) correlated with MAP, but not significant (P > 0.5) with MAT (Fig. 

S1). In this study, the influence of other factors, such as temperature (this study and 

Tedersoo et al., 2014) and plant diversity (Yang et al., 2017) appear to be larger 

drivers than plant productivity in predicting fungal diversity patterns at the 

community scale. However, when we look at specific community member guilds, 

plant productivity significantly and positively correlated with the diversity of 

Glomeromycota, Dothideomycetes and Sordariomycetes (Table S1). Not surprisingly, 

the functional guilds that closely interact with plants – arbuscular mycorrhizal fungi, 

endophyte fungi and saprotropic fungi – have a positive fungal diversity-plant 

productivity relationship (Table S3; Hiiesalu et al., 2017; Yang et al., 2017). Thus, in 

partial support of our hypothesis, significant productivity-diversity relationships occur 

for guilds that closely interact with plants, but once again, drivers of patterns at the 

larger-community scale and the more fine phyla/class/guild scale differ. Together, 

these findings underline the close interaction of host plant growth with specific fungal 
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groups, especially arbuscular mycorrhizal fungi, and that the drivers of diversity 

patterns can shift at different taxonomic scales.  

    The plant diversity hypothesis states that greater plant diversity increases the 

range of organic substrates entering soil thus creating niche space for heterotrophic 

fungi (Lodge, 1997; Hooper et al., 2000), and is an alternative hypothesis for what 

drives soil fungal diversity along gradients. Although plant diversity was not directly 

assessed in this study, previous studies on the same plots found that plant species 

richness significantly decreased with increasing elevation on the southern slope of Mt. 

Kilimanjaro, and the patterns were largely predicted by MAT (Hemp, 2006; Peters et 

al., 2016). Thus, our data together with data shown by Peters et al. (2016), indicated a 

potential coupling of plant and fungal diversity, as we found significant relationships 

between fungal diversity and MAT. These results also suggest that plant diversity 

impacts fungal diversity to a greater degree than bacterial diversity, a finding that is 

consistent with recent results that showed plant richness significantly correlated with 

soil fungal diversity, but not with bacterial diversity, from a plant richness 

manipulation experiment (Dassen et al., 2017; Chen et al., 2019). Actually, the 

significant plant diversity-fungal diversity relationships have been observed in natural 

regional-scale grassland ecosystems (Yang et al., 2017; Chen et al., 2017).  

    Our data suggest that the combination of temperature and soil pH are the 

strongest predictor of microbial community composition. Similar to our diversity 

patterns, – pH and temperature – were the best predictors for bacterial and fungal 

composition, respectively (partial mantel test in Table S4, DistLM model in Table 3). 
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Specifically, pH was the best predictor of the relative abundance of 12 bacterial phyla 

and MAT was the best predictor for the relative abundance of 14 fungal classes (Fig. 

5a, Fig. 5b). Variation partitioning analyses found the combined effects of climate and 

local factors accounted for the largest variance of both bacterial and fungal 

community composition, whereas the direct effects of climate, energy and local 

factors contributed less to the variation (Fig. 4c, Fig. 4d). The combined effects were 

also important when we explored correlations between specific phyla/classes and 

environmental factors (Fig. 5a, Fig. 5b). For example, MAT was most correlated with 

the relative abundance of bacterial phyla including Alphaproteobacteria, Firmicutes, 

Cyanobacteria, Fibrobacteres, Armatimonadetes, Chlorobi, and pH was most 

correlated with the relative abundance of fungal classes including Dothideomycetes, 

Eurotiomycetes, Sordariomycetes, Monoblepharidomycetes, Glomeromycetes. 

Temperature could alter the composition of microbial communities through a direct 

effect on individuals' metabolic rates and growth (Brown et al., 2004; Zhou et al., 

2016). Meanwhile, temperature may indirectly affect microbial community 

composition via plant attributes or soil properties (Delgado-Baquerizo et al., 2016; 

Delgado-Baquerizo et al., 2018; Liu et al., 2020). The reason that why pH predicted 

best for the community composition derives from two (but not limited) general 

explanations (Lauber et al., 2008; Rousk et al., 2010). First, pH directly imposes a 

physiological stress for individual's growth (Bárcenas-Moreno et al., 2016; Rath et al., 

2019). Second, pH is not a direct influencing factor, but instead as an integrated 

functional index, because lots of soil characteristics (e.g., salinity, nutrients 
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availability and organic matter) are often directly or indirectly related to soil pH 

(Siciliano et al., 2014; Zeng et al., 2016; Rath et al., 2019). In addition to pH and 

MAT, other local and climate factors played significant roles in shaping bacterial and 

fungal community compositions. For example, MAP and TN were significantly 

correlated with some bacterial phyla (e.g. Acidobacteria, Chloroflexi) and fungal 

classes (e.g. Dothideomycetes, Wallemiomycetes). Indeed, the roles of precipitation, 

temperature, pH and nutrients influencing soil bacterial and fungal community 

composition has been reported in agricultural (Lauber et al., 2008, Sun et al., 2016), 

forest (Angel et al., 2010; Tian et al., 2018), tundra (Shen et al., 2015; Shi et al., 

2015), grassland (Chen et al., 2016; Chen et al., 2017) and desert ecosystems (Fierer 

et al., 2012; Chu et al., 2016). Even at the global scale, the integrated effects of 

climate and local factors influenced the composition of soil bacterial and fungal 

communities (Tedersoo et al., 2014; Leff et al., 2015; Prober et al., 2015; Bahram et 

al., 2018). These results suggest that, to a large extent, climate and local factors 

jointly determined bacterial and fungal community compositions.  

 

Conclusion 

    In summary, we found a U-shaped diversity pattern for soil bacteria and a 

monotonically decreasing diversity pattern for soil fungi across elevational gradients 

on Mt. Kilimanjaro. The contrasting patterns resulted largely from two different 

processes, local and climate processes for bacteria and fungi, respectively. These 

results highlight the disparity of elevational diversity patterns between bacteria and 
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fungi, which were attributed to different environmental drivers. Further, our results 

suggest that generalize the response of bacterial and fungal community diversity 

patterns as a whole may hide important responses within less common, but still 

functionally important taxa. We found significant productivity-diversity relationships 

between plant productivity and some fungal specific taxonomic or functional groups. 

Finally, we found that climate and local factors together influenced bacterial and 

fungal community composition. These findings enhanced our understanding of the 

formation and maintenance of microbial diversity along elevation, as well as 

microbial responses to climate change in montane ecosystems.  

 

Experimental procedures 

Study site 

    Mt. Kilimanjaro (2°45'–3°25'S; 37°00'–37°43'E), located 300 km south of the 

equator in Tanzania (East Africa), is the highest mountain in Africa and the highest 

free-standing mountain on the Earth. It rises from savanna plains at 700 m elevation 

to a snow-clad summit at an elevation of 5895 m a.s.l. The terrain is extremely 

complex with huge changes of inclinations and slopes. It is an eroded relic of an 

ancient volcano with three peaks (Shira, Mawenzi and Kibo) and has a diameter of 90 

km from northwest to southeast. Mt. Kilimanjaro is characterized by a typical 

equatorial day-time climate (Hemp, 2006). The precipitation regime follows a 

bimodal pattern with a long rainy season from March to May and a short rainy season 

between October and December. The mean annual temperature (MAT), ranges from 5 
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to 25 °C, decreases almost linearly with elevation. The mean annual precipitation 

(MAP), ranges from 500 to 3000 mm, shows a unimodal pattern with a peak at ~2200 

m a.s.l.  

    Five elevations, namely at 767, 1920, 2850, 3880 and 4190 m were selected, 

representing five typical vegetation types with Lowland dry broadleaf forest, lower 

montane forest, Podocarpus forest, Erica bush forest, and Helichrysum cushion, 

respectively. All selected sites were natural forest and alpine ecosystems. A detailed 

description of site characteristics was summarized in Table 1.  

 

Soil sampling and plant data collection 

    We collected soil samples from the southern slope of Mt. Kilimanjaro in October 

2014. At each elevation, four independent replicate plots (5 × 5 m; about 100 m apart) 

were selected. In each plot, five top-soil samples (0-10 cm depth directly below the 

litter layer) were taken randomly and composited together into a single sample. The 

fresh soil samples were sieved through a 2 mm sieve after roots and residues were 

removed. Samples were separated into two portions: one was stored at 4 °C to 

determine the chemical properties and the other was frozen (-20 °C) until DNA 

extraction.  

    Normalized Difference Vegetation Index (NDVI) was used as a proxy for net 

plant productivity. We collected NDVI data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard NASA’s Terra satellites 

(https://ladsweb.nascom.nasa.gov/data/search.html) that were updated once every 8 
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days with 250 m resolution. Specifically, the NDVI in October 2014 was chosen at the 

elevation level based on the coordinate of longitude and latitude.  

 

DNA sequencing and chemical properties 

    DNA was extracted using the MoBio PowerSoil DNA isolation kit (MoBio, 

Carlsbad, CA, USA) following the manufacturer's instructions. For bacterial 

community composition, 515f/806r primer sets (515f, 

GTGYCAGCMGCCGCGGTAA, 806r, GGACTACNVGGGTWTCTAAT) were used 

to amplify (triplicate reactions for each sample) the 16S rRNA gene (cited by Earth 

Microbiome Project). For fungal community composition, ITS1f/ITS2 primer pair 

(ITS1f, CTTGGTCATTTAGAGGAAGTAA, ITS2, GCTGCGTTCTTCATCGATGC) 

was selected to amplify the ITS1 region of the rRNA gene (cited by Earth 

Microbiome Project). A unique 10-base pair Golay barcode was included between the 

806r/ITS2 primer and the Nextera adapter sequence. All PCR reactions were 

performed in 25 μL reaction systems including 13 μL of Phusion Master Mix 

(NewEngland Biolabs, USA), 0.5 μL each of 10 μM forward and reverse primers, 1 

μL template DNA (20 ng μL–1
 ), and 10 μL H2O. Thermal cycling included an initial 

denaturation step at 95 °C for 1 min, followed by 30 cycles of 95 °C for 30 s, 55 °C 

for 30 s, and 72 °C for 30 s, with a final extension stage of 72 °C for 7 min. 16S 

rRNA amplicons and ITS amplicons were pooled separately and then sequenced with 

Illumina MiSeq instrument (Illumina, San Diego, CA, USA). Raw sequence data were 

processed using the QIIME v1.9 pipeline, where sequences were quality filtered 
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(script: split_libraries.py; parameters: min_seq_length = 200, max_ambig = 0, and 

min_qual_score = 25), chimera checked, OTU clustered and taxonomy assignment 

(Caporaso et al., 2012). USEARCH algorithm was utilized to conduct chimera 

detection and OTUs clustering (97% similarity) (Edgar, 2010). Taxonomy was 

identified for each OTU using the RDP classifier (Wang et al., 2007) trained on the 

Greengenes (McDonald et al., 2012) and UNITE (Abarenkov et al., 2010) databases 

for bacterial and fungal sequences. Samples were rarefied to 30,276 and 49,326 

sequences per sample for bacteria (30,276-36,913 sequences) and fungi 

(49,326-58,227 sequences), respectively. Functions were predicted based on bacterial 

and fungal taxa using the Functional Annotation of Prokaryotic Taxa (FAPROTAX) 

database (http://www.zoology.ubc.ca/louca/FAPROTAX/) and FUNGuild database 

(http://www.stbates.org/guilds/app.php). The rarified OTU/taxon tables were first 

translated into function tables, based on taxon-function annotations in the 

FAPROTAX and FUNGuild database. Then the relative abundance of each functional 

group was calculated based on the number of sequences per sample. The sequencing 

data have been deposited in the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA) under the accession number PRJNA525365.  

    Soil total carbon (TC) and total nitrogen (TN) content was measured using a dry 

combustion elemental analyzer at 950°C (Vario EL II, Hanau, Germany)( Peters et al., 

2016). Soil pH was determined in water (soil to water ratio 1:5)( AB15 pH meter, 

Accumet, Fisher Scientific).  
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Statistical analyses 

    We calculated OTU richness, Pielou’s evenness and Shannon index for the 

measured bacterial and fungal communities. In addition, we estimated these indices 

for 11 bacterial phyla and five fungal phyla and 10 fungal classes based on the same 

sequencing depth (Table 2). To test for the effects of elevation on diversity, the linear 

or quadratic model was selected based on the lower value of Akaike’s information 

criterion (AIC). Spearman’s rank correlations were used to examine the relationships 

between diversity and environmental variables (elevation, MAT, MAP, NDVI, pH, TC, 

TN and C/N). The effects of elevation and environmental factors on diversity were 

tested by linear mixed-effects models using the R package lmerTest, with elevation 

fitted as a random effect in every model, and using maximum likelihood to assess the 

significance of the fixed effects. We started with full models with all seven variables 

as fixed effects, and reduced these to final models containing only significant 

variables. To test the relative importance of environmental variables in driving 

bacterial and fungal diversity, we used random forest analysis using the R package 

randomForest. We performed the regression using the 'randomForest' function. The 

importance of variables was determined by the value of %IncMSE (increased in mean 

squared error) calculated by the 'importance' function. Basically, we classified the 

measured environmental variables to three categories: climate factors (MAT and 

MAP), energy factors (NDVI and TC), local factors (pH, TN and C/N).  

    Community compositional dissimilarities were estimated based on the 

Bray-Curtis distance of OTU abundance table. To examine the elevational differences 

This article is protected by copyright. All rights reserved.



26 
 

in compositional dissimilarities, principal co-ordinates analysis (PCoA) and 

permutational multivariate analysis of variance (PERMANOVA) were performed in R 

package vegan. An exponential model was selected to test the relationship between 

dissimilarity of bacterial and fungal communities with elevation difference. 

Compositional dissimilarities among sites (beta diversity) was partitioned into 

replacement and richness difference components (Podani family, Sørensen dissimilarities) 

using the R package adespatial. Partial Mantel tests were used to test the correlations 

between environmental variables and community composition. The percentages of 

explained variations in community composition by variables were tested through 

distance-based multivariate analysis for a linear model (DistLM) which were 

conducted in DISTLM_forward3 software (Anderson, 2003). Variation partitioning 

analyses (VPA) in R package vegan were performed to show the independent or joint 

effects of three grouping environmental factors (climate, local and energy) on 

explaining the variations in community composition. Additionally, we also performed 

VPA based on regional (MAT, MAP and NDVI) and local (pH, TC, TN and C/N) 

factors partition criterion. Random forest analysis was used to estimate the 

predictability of environmental variables on the relative abundance of specific phyla 

or classes.  

    For the predicted functional groups, a linear or quadratic model was selected to 

test the relationship between the diversity and the relative abundance of functional 

groups and elevation. Spearman’s rank correlations were used to examine the 

relationships between the relative abundance of functional groups and environmental 
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variables. Random forest analysis was used to estimate the predictability of 

environmental variables on the relative abundance of functional groups.  
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Table 1: Summary of the main characteristics of sampling sites. MAT, mean annual temperature; MAP, mean annual precipitation; NDVI, 

normalized difference vegetation index; TC, total carbon; TN, total nitrogen.  

Forest type Longitude Latitude 
Elevation     

(m) 
MAT                      
(ºC) 

MAP    
(mm) 

NDVI 
TC                  

(g/kg) 
TN                   

(g/kg) 
C/N  pH ranges 

Lowland dry broadleaf forest  37°10' E  3°22' S 767 23.7  844.75  0.26  95.24±11.38 7.42±0.71 12.77±0.45 7.24–7.80 
Lower montane forest  37°14' E 3°10' S 1920 15.3  2377.52  0.87  212.24±11.31 14.07±0.73 15.08±0.09 3.99–4.25 
Podocarpus forest  37°15' E  3°6' S 2850 9.4  1773.00  0.64  325.85±25.16 17.71±0.75 18.37±0.97 3.82–3.95 
Erica bush forest 37°17' E 3°4' S 3880 4.5  1188.00  0.45  187.22±25.20 9.88±1.05 18.77±0.77 4.73–5.17 
Helichrysum cushion  37°19' E 3°5' S 4190 4.5  961.52  0.21  47.75±6.72 3.13±0.40 15.18±0.22 4.45–5.65 
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Table 2: The effects of environmental factors on diversity were tested using linear 

mixed-effects models for bacteria and fungi (with elevation as a random effect). A 

quadratic term of elevation was included to test for non-linear effects of elevation. 

Marginal R2 gives the proportion of variance accounted for by the fixed effects; 

Conditional R2 that accounted for by both fixed and random effects. SE, standard 

error; MAT, mean annual temperature.  

(1) Bacteria         

  Estimate SE t-value P-value 

Intercept 0.6979 0.3044 2.293 0.034 

pH 0.9564 0.3037 3.149 0.005 

pH2 -0.7347 0.2536 -2.897 0.01 

Random effects variance       

Elevation 0.0264       

Residual 0.6928       

Marginal R2 0.327 Conditional R2 0.354 
 

(2) Fungi         

  Estimate SE t-value P-value 

Intercept 0 0.1917 0 1 

MAT 5.511 0.1967 2.802 0.011 

Random effects variance       

Elevation 0.0485       

Residual 0.7151       

Marginal R2 0.243 Conditional R2 0.292   
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Table 3: Results of a distance-based linear model (DistLM) analysis determining the 

suite of environmental variables that describe significant and independent proportions 

of the variation in bacterial and fungal community composition. Variables are listed in 

order of importance, and they are added to the model. Values in bold indicate 

significant (p < 0.05). SS, sum of squares; MAT, mean annual temperature; MAP, 

mean annual precipitation; NDVI, normalized difference vegetation index; TC, total 

carbon; TN, total nitrogen.  

Variable SS(Trace) Pseudo-F P-value Proportion Cumulative 

(1) Bacteria           
pH 16300.3135 13.5691 0.001 0.4298 0.4298 
MAT 12380.1458 22.7701 0.001 0.3265 0.7563 
TC 2478.1265 5.8612 0.001 0.0653 0.8216 
MAP 1420.9976 3.9887 0.001 0.0375 0.8591 
C/N 801.4968 2.4703 0.023 0.0211 0.8802 
TN 494.3036 1.5874 0.097 0.013 0.8933 
NDVI 195.9825 0.6105 0.838 0.0052 0.8984 
(2) Fungi           
MAT 14562.3792 5.7628 0.001 0.2425 0.2425 
MAP 12497.197 6.4403 0.001 0.2081 0.4506 
TN 9350.5814 6.3294 0.001 0.1557 0.6063 
TC 3077.1171 2.4031 0.012 0.0512 0.6575 
pH 2439.2934 1.7261 0.093 0.0406 0.6981 
C/N 1474.8765 1.0469 0.373 0.0246 0.7227 
NDVI 856.5974 0.651 0.831 0.0143 0.7371 
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Figures and legends 

Figure 1 a. Elevational patterns for the diversity of bacterial whole community (with 

green points and blue fitting curve) and specific phyla. Scaled Shannon, 

z-transformed Shannon index. The quadratic model was selected based on the lower 

value of AIC (linear, AIC = 2.79; quadratic, AIC = -20.52). b. Elevational patterns for 

the diversity of fungal whole community (with purple points and blue fitting curve) 

and specific phyla/classes. Scaled Shannon, z-transformed Shannon index. The linear 

model was selected based on the lower value of AIC (linear, AIC = -7.61; quadratic, 

AIC = -5.62). c. The relative importance of environmental variables for bacterial 

diversity (Shannon). The percentages were separated by dash line. d. The relative 

importance of environmental variables for fungal diversity (Shannon). The 

percentages were separated by dash line. MAT, mean annual temperature; MAP, mean 

annual precipitation; NDVI, normalized difference vegetation index; TC, total carbon; 

TN, total nitrogen. 

 

Figure 2 a. b. The relationship between dissimilarity of bacterial (a) and fungal (b) 

communities with elevation distance. The strength of the relationship is based on 

exponential models {y = a[1-exp(-bx)]+c; with parameter estimates for bacteria (a = 

0.6381, b = 0.001, c = 0.1872) and fungi (a = 0.4526, b = 0.0026, c = 0.4207)}. c. d. 

PCoA plots of trends in the composition of bacteria (c) and fungi (d) based on 

Bray-Curtis dissimilarity. For bacteria, samples were coded with different shapes and 

colors according to the elevations and pH. For fungi, samples were coded with 
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different shapes and colors according to the elevations and MAT. MAT, mean annual 

temperature. 

 

Figure 3 Triangular plots of beta diversity comparisons (using Sørensen dissimilarity 

index) for bacterial and fungal communities among all sites (a, b) and among sites 

within elevation (c, d). Each point represents a pair of sites. Its position is determined 

by a triplet of values from the S (similarity), Repl (replacement) and RichDiff 

(richness difference) matrices; each triplet sums to 1. Mean values of S, Repl and 

RichDiff are shown. 

 

Figure 4 Results of variation partitioning analysis showing the percentages of 

explained variation for the composition of bacteria (a, c) and fungi (b, d). a. b. 

Variation was partitioned by regional factors (MAT, MAP and NDVI) and local 

factors (pH, TC, TN and C/N). c. d. Variation was partitioned by climate factors 

(MAT and MAP), energy factors (NDVI and TC) and local factors (pH, TN and C/N). 

MAT, mean annual temperature; MAP, mean annual precipitation; NDVI, normalized 

difference vegetation index; TC, total carbon; TN, total nitrogen. 

 

Figure 5 Correlation and best random forest model for relative abundance of major 

bacterial phyla (a, class for Proteobacteria), relative abundance of major fungal 

classes (b), relative abundance of predicted functional groups (c, green dash line 

means predicted functional groups based on bacterial taxa, purple dash line means 
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predicted functional groups based on fungal taxa). For variable selection and 

estimating predictability, the random forest machine-learning algorithm was used. 

Circle size represents the variable importance (that is, decrease in the prediction 

accuracy (estimated with out-of-bag cross-validation)) as a result of the permutation 

of a given variable. Colors represent Spearman correlations. MAT, mean annual 

temperature; MAP, mean annual precipitation; NDVI, normalized difference 

vegetation index; TC, total carbon; TN, total nitrogen. 
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Figure 1 a. Elevational patterns for the diversity of bacterial whole community (with 

green points and blue fitting curve) and specific phyla. Scaled Shannon, 

z-transformed Shannon index. The quadratic model was selected based on the lower 

value of AIC (linear, AIC = 2.79; quadratic, AIC = -20.52). b. Elevational patterns for 

the diversity of fungal whole community (with purple points and blue fitting curve) 

and specific phyla/classes. Scaled Shannon, z-transformed Shannon index. The linear 

model was selected based on the lower value of AIC (linear, AIC = -7.61; quadratic, 

AIC = -5.62). c. The relative importance of environmental variables for bacterial 

diversity (Shannon). The percentages were separated by dash line. d. The relative 

importance of environmental variables for fungal diversity (Shannon). The 
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percentages were separated by dash line. MAT, mean annual temperature; MAP, mean 

annual precipitation; NDVI, normalized difference vegetation index; TC, total carbon; 

TN, total nitrogen. 
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Figure 2 a. b. The relationship between dissimilarity of bacterial (a) and fungal (b) 

communities with elevation distance. The strength of the relationship is based on 

exponential models {y = a[1-exp(-bx)]+c; with parameter estimates for bacteria (a = 

0.6381, b = 0.001, c = 0.1872) and fungi (a = 0.4526, b = 0.0026, c = 0.4207)}. c. d. 

PCoA plots of trends in the composition of bacteria (c) and fungi (d) based on 

Bray-Curtis dissimilarity. For bacteria, samples were coded with different shapes and 

colors according to the elevations and pH. For fungi, samples were coded with 

different shapes and colors according to the elevations and MAT. MAT, mean annual 
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temperature. 

 

This article is protected by copyright. All rights reserved.



49 
 

 

Figure 3 Triangular plots of beta diversity comparisons (using Sørensen dissimilarity 

index) for bacterial and fungal communities among all sites (a, b) and among sites 

within elevation (c, d). Each point represents a pair of sites. Its position is determined 

by a triplet of values from the S (similarity), Repl (replacement) and RichDiff 

(richness difference) matrices; each triplet sums to 1. Mean values of S, Repl and 

RichDiff are shown. 
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Figure 4 Results of variation partitioning analysis showing the percentages of 

explained variation for the composition of bacteria (a, c) and fungi (b, d). a. b. 

Variation was partitioned by regional factors (MAT, MAP and NDVI) and local 

factors (pH, TC, TN and C/N). c. d. Variation was partitioned by climate factors 

(MAT and MAP), energy factors (NDVI and TC) and local factors (pH, TN and C/N). 

MAT, mean annual temperature; MAP, mean annual precipitation; NDVI, normalized 

difference vegetation index; TC, total carbon; TN, total nitrogen. 
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Figure 5 Correlation and best random forest model for relative abundance of major 

bacterial phyla (a, class for Proteobacteria), relative abundance of major fungal 

classes (b), relative abundance of predicted functional groups (c, green dash line 

means predicted functional groups based on bacterial taxa, purple dash line means 

predicted functional groups based on fungal taxa). For variable selection and 

estimating predictability, the random forest machine-learning algorithm was used. 
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Circle size represents the variable importance (that is, decrease in the prediction 

accuracy (estimated with out-of-bag cross-validation)) as a result of the permutation 

of a given variable. Colors represent Spearman correlations. MAT, mean annual 

temperature; MAP, mean annual precipitation; NDVI, normalized difference 

vegetation index; TC, total carbon; TN, total nitrogen. 
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