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Key points:

 Seizure forecasting is a key goal of the epilepsy community, but many parameters and 

requirements remain unknown.

 Existing seizure prediction algorithms often rely on short term EEG data and have not 

been tested in prospective clinical settings.

 Non-invasive biomarkers of seizure likelihood, e.g. heart rate and stress levels, are 

being explored alongside advances in wearable technology.

 Emerging evidence of robust, individual seizure cycles over circadian and multiday 

timescales should guide forecasting strategies.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1111/EPI.16541
https://doi.org/10.1111/EPI.16541
mailto:karolyp@unimelb.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fepi.16541&domain=pdf&date_stamp=2020-07-26


This article is protected by copyright. All rights reserved

 Longitudinal clinical trials of seizure forecasting should be undertaken to understand 

user requirements and clinical effectiveness.

Abstract

Epilepsy is a unique neurological condition characterised by recurrent seizures, where causes, 

underlying biomarkers, triggers and patterns differ across individuals. The unpredictability of 

seizures can heighten fear and anxiety in people with epilepsy, making it difficult to take part 

in day-to-day activities. Epilepsy researchers have prioritised developing seizure prediction 

algorithms to combat episodic seizures for decades, but the utility and effectiveness of 

prediction algorithms has not been thoroughly investigated in clinical settings. In contrast, 

seizure forecasts, which theoretically provide the probability of a seizure at any time (as 

opposed to predicting the next seizure occurrence), may be more feasible. Many advances 

have been made over the past decade in the field of seizure forecasting, including 

improvements in algorithms as a result of machine learning and exploration of non-EEG 

based measures of seizure susceptibility, such as physiological biomarkers, behavioural 

changes, environmental drivers and cyclic seizure patterns. For example, recent work 

investigating periodicities in individual seizure patterns has determined that more than 90% 

of people have circadian rhythms in their seizures, and many also experience multi-day, 

weekly or longer cycles. Other potential indicators of seizure susceptibility include stress 

levels, heart rate and sleep quality; all of which have the potential to be captured non-

invasively over long time scales. There are many possible applications of a seizure 

forecasting device, including improving quality of life for people with epilepsy, guiding 

treatment plans and medication titration, optimising pre-surgical monitoring and focusing 

scientific research. In order to realise this potential, it is vital to better understand the user 

requirements of a seizure forecasting device, continue to advance forecasting algorithms and 

design clear guidelines for prospective clinical trials of seizure forecasting.

Keywords: epilepsy; seizure cycles; seizure forecast; seizure prediction; circadian rhythms; 

multiday rhythms

Introduction

Epilepsy is a unique neurological condition because seizures are relatively rare for most 

people; yet  seizures can be very disruptive, as they come with little or no warning. While 
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surgical interventions and anti-epileptic drugs (AEDs) treat most people successfully, it is 

estimated that 30% of people are refractory to conventional interventions1,2. People with 

epilepsy are more likely to experience depression, anxiety and low self-esteem, compounded 

by psychological factors including fear of seizures, perceived stigma and discrimination, 

together with side effects of their medication3. Of these comorbidities, Arthurs et al. (2010) 

found fear to be the most insidious aspect of epilepsy as seizures cannot be anticipated4. A 

2016 survey also found ‘unpredictability’ to be the most debilitating characteristic of living 

with epilepsy, particularly for people who experience less frequent seizures (e.g., monthly or 

yearly)5. Quality of life could be dramatically improved with a clinically useful seizure 

forecasting device. Developing such a device, a ‘seizure gauge’, is now a key goal of the 

epilepsy community6 and it is increasingly accepted that a seizure forecast algorithm may be 

more feasible than a seizure prediction algorithm. A seizure forecast should provide users 

with the likelihood (or probability) of a seizure occurring at any time, rather than attempt to 

provide a precise prediction of the time at which a seizure will occur7,8. 

The primary application of a seizure gauge is to inform people with epilepsy and their 

caregivers of their risk of having a seizure, providing more control over their day-to-day 

activities, just as a weather forecast can be used to plan what to wear, what mode of transport 

to use, and whether to carry an umbrella. Knowing when seizures are more likely or less 

likely has the potential to improve quality of life, reduce anxiety and possibly reduce the 

chance of sudden, unexpected death. As well as informing individuals’ lifestyle choices, 

seizure forecasts may be used to guide treatment plans. Medication or electrical stimulation 

could be titrated based on times of high or low seizure risk, thereby potentially reducing costs 

and side effects9–11. The utility of delivering medication at times of day when seizures are 

more commonly observed (chronotherapy) has been explored with some success12; however, 

medication titration has not been trialled using personalised seizure forecasts.  Additionally, 

an individual’s seizure forecast could be used to optimise the timing of diagnostic or pre-

surgical monitoring, which typically rely on ambulatory video-electroencephalography with 

low yield13.

Although seizure forecasting is now considered possible, each application comes with its own 

unique challenges to clinical implementation. A key hurdle is to develop forecasting devices 

that are acceptable to users in terms of both performance and useability (e.g. invasiveness, 

comfort, cost)6,14. Additional technical challenges include the need to run personalized 
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algorithms that can detect patient-specific biomarkers of seizure likelihood, seizure triggers 

and patterns, while remaining computationally feasible to run in real time15,16. This review 

covers some of these challenges while focusing on the key advances in the development of 

practical seizure forecasts for clinical applications. The following sections review the 

requirements of clinical seizure forecasting, then discuss recent developments in forecasting 

algorithms, particularly the increasing focus on circadian and multi-day cycles of seizure 

likelihood that may have enormous implications for forecasting. We then review practical 

biomarkers of seizure likelihood and finally speculate on some future applications of seizure 

forecasts.

Practical requirements of seizure forecasting

A seizure forecasting system may combine user data from various sources, including 

continuous electroencephalography (EEG), clinical records, wearables and other mobile 

devices, determining patient-specific triggers using measurements from physiological, 

behavioural and environmental biomarkers. These biomarkers - such as heart rate, sleeping 

patterns and weather – can be integrated by a forecasting algorithm to output a probability of 

seizure likelihood. The clinical requirements of a forecaster, such as forecasting horizon 

(minutes, hours, days) and presentation (score, categorical risk level, etc), are still unclear, 

and will be discussed further in this section. An overview of a seizure forecasting system is 

shown in Figure 1. 

Historically, it has been difficult to compare performances of different seizure forecasting 

algorithms or even to ascertain what makes a seizure forecaster clinically useful. Forecasting 

algorithms have been evaluated using various performance metrics and guidelines, such as 

sensitivity, specificity, time spent in false warning, false prediction rate per hour, mean 

prediction time, receiver operating characteristic (ROC) curves or area under the ROC curve 

(AUC)15,17. The inconsistency in choice of performance metrics, and somewhat arbitrary 

selection of many algorithm parameters, makes it difficult to compare forecasting 

approaches. For instance, the seizure occurrence period (SOP) is a parameter that is highly 

variable throughout the literature on seizure prediction algorithms, ranging from 2 minutes in 

one study18 to 150 minutes in another19.  The SOP represents the maximum time within 

which a seizure can occur after a positive prediction (or high-risk warning) before it is 

considered a false positive. The problem with these inconsistencies is that the SOP time can 
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drastically alter algorithm performance. For example, one study comparing SOP times on the 

same algorithm improved sensitivity from 19% to 73% simply by increasing the time from 2 

minutes to 40 minutes, both of which are considered acceptable SOP choices18. 

Furthermore, traditional metrics may not be appropriate when evaluating probabilistic 

forecasts, as many are designed for binary predictions where the output is either true (a 

seizure will occur) or false (a seizure will not occur). Intuitively, one can immediately tell if a 

binary prediction is “right” or “wrong”. On the other hand, multiple seizures are required to 

assess the accuracy of a  forecast that outputs the probability of having a seizure. Hence, the 

shift to forecasting seizure probabilities requires a corresponding shift in performance 

measures that are based on a probabilistic framework20. More generally, the performance of 

any prediction (binary classifier or probability) cannot be rigorously evaluated until  enough 

seizures are recorded to determine statistical significance. While there is no prescribed 

threshold on the required number of seizures,  many past studies used data with less than ten 

seizures per patient21. Low seizure numbers were considered a leading cause of the inability 

of many prediction algorithms to generalise to new data22.

The minimum accuracy required for a forecaster to be considered clinically useful is another 

uncertainty in seizure forecasting requirements and may depend on the intended application. 

Recent surveys have established that people with epilepsy and their caregivers would prefer a 

forecasting device to be accurate at least 90% of the time, although this depends on the 

user14,23. Some responders would use a device that was inaccurate up to 30% of the time14, 

and others argued that, without 100% accuracy, a forecasting device could do more harm23. 

Forecasts used for medication titration (without overall dose reduction), responsive 

stimulation, scheduling pre-surgical monitoring or to refine seizure detection devices may not 

require perfect accuracy, as these applications are routinely unassisted and could benefit from 

additional awareness of seizure timing without compromising current standard of care. On 

the other hand, forecasts used for prescriptive purposes, such as day-to-day activity 

modification, tapering down medication or alerting caregivers and people with epilepsy about 

seizure risk, may be detrimental to health and safety without a higher degree of accuracy. 

Due to the lack of prospective data from seizure forecasting devices in real-world 

applications, there are limited resources to adequately review these differing requirements. 

While the aforementioned surveys provide useful information, assessment of clinical utility 

must ultimately be derived from clinical trials. In the only prospective forecasting trial to 
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date, Cook et al. (2013) demonstrated that most subjects found a forecasting device valuable 

despite less than perfect sensitivity (median 60%) and time in warning of up to 30%24,25, 

although these results were based on small user cohort (11 subjects) primarily assessing 

device safety rather than forecasting performance.

In addition to performance standards, the required warning period of a clinically useful 

forecasting device and the relative utility of predicting periods of low seizure risk, high 

seizure risk, or both, also remain unknown. As with performance, these requirements are 

likely to depend on the specific application and user preferences. It is understood from 

surveys that people with epilepsy and their caregivers would prefer a device that predicts 

seizures with a shorter warning time14,23 of less than 10 minutes, with 3 to 5 minutes being 

most preferred in one survey4. However, it is not clear how these desired prediction horizons 

translate to a forecasting device, where the objective is to provide the probability of a seizure, 

rather than a binary yes or no prediction. Cook et al. (2013) provided a gauge of seizure risk 

(low/moderate/high) with warning times between 5 and 960 minutes (average of 114  151 

minutes), where the device was reported clinically useful by most participants24,26. This 

insight suggests that users may benefit from warnings several hours in advance. Recently, the 

prospect of forecasting seizures days in advance has also been proposed27, as longer warning 

times may be desirable for certain applications. For example, medical professionals may want 

a device that provides daily probabilities so they can choose to schedule diagnostic 

monitoring on a day when seizure risk is high. Thus, the application of the forecaster should 

be taken into consideration when it is designed.

To date,  most seizure forecasting algorithms have utilised EEG or measures derived from 

EEG (such as rates of epileptic discharges), typically obtained from implanted devices. 

Invasive or even minimally invasive monitoring may not be well tolerated; for instance, Janse 

et al. (2019) reported that externally worn devices were ranked more favourably than 

subcutaneous or implantable devices as a seizure forecasting device14. More recently, there 

has been a growing focus on developing seizure forecasts from peripheral signals obtained 

from wearable devices, such as heart rate28–30, or even environmental risk factors, such as 

time of day31. New technology utilising wearable EEG electrodes may also provide a 

promising solution for long-term seizure forecasting6.

Recent developments in seizure forecasting

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

In the past decade, great strides have been made in the area of seizure forecasting. In 2005, 

the first international collaborative workshop on seizure prediction was held, and an open-

access prediction database and competition was launched in 2007 to facilitate comparison 

between methods32. This heralded a new era of improved metrics and rigorous evaluation of 

seizure forecasting. In 2009, a prospective human trial was initiated using an implanted 

device, the NeuroVista device25, that collected intracranial recordings of 15 people with 

epilepsy and forecast seizures in real time. The NeuroVista device predicted patients’ 

seizures with 65-100% sensitivity. Similar advancements using implantable seizure 

forecasting devices were also made in naturally occurring canine epilepsy33,34. In 2014, two 

large-scale crowdsourcing competitions were launched to allow the machine learning 

community to tackle seizure detection and forecasting algorithm development17,35, which 

paved the way for a subsequent competition36.  More recently, several studies have quantified 

seizure cycles over daily and multiday time scales across numerous datasets37–41 which have 

important implications for seizure forecasting. Theoretical understanding of the dynamic 

principles underlying pre-ictal brain dynamics has also advanced in the last decade42,43, 

providing new insight into the predictability of seizures44,45. The growth of mobile health 

technology and digital seizure diaries has driven new discoveries46, even enabling diaries to 

provide a basic measure of seizure likelihood47. Alternatives to EEG have also been used in 

seizure prediction with varying degrees of success, including heart rate variability, wearable 

sensor data and self-prediction29,48. However, use of invasive EEG data has achieved the best 

seizure prediction results to date35,36,49. Table 1 summarises some of the key papers over the 

past decade, showing successive developments that have built towards the current state-of-

the-art in seizure forecasting.

Seizure prediction algorithms have traditionally taken a classification approach, decoding 

data into pre-ictal, inter-ictal and post-ictal states. Various classification algorithms have been 

applied to seizure prediction with the field becoming increasingly reliant on machine 

learning, including techniques such as feature thresholding35, linear classifiers50, Bayesian 

networks17, support vector machines51, k-nearest neighbours19 and neural networks52. In 

particular, utilising the machine learning community through crowdsourcing has been 

demonstrated to yield rapid advancements in seizure detection and forecasting 

algorithms17,36,53. In 2014, the first Kaggle seizure prediction contest was entered by over 500 

teams17. The top performing team in this competition ensembled three different algorithms 

with their own features and classifiers: LassoGLM, support vector machine and random 
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forest classifiers. This combination outperformed other teams who used neural networks and 

k-nearest neighbours. However, it was uncertain whether these algorithms would generalise 

to long-term human data. In 2018, a follow-up Kaggle competition on seizure forecasting was 

conducted36 with data from three patients from the long-term NeuroVista dataset (minimum 

of 374 recording days). The winner of this competition, entered by 478 teams, also 

ensembled distinct machine learning classifiers, with numerous feature combinations. 

Competition algorithms were evaluated on continuous EEG data and performed better than 

random and periodic predictors for patients that previously had poor seizure prediction 

outcomes; i.e., where sensitivity was low and time in warning was high25,36. These studies 

demonstrate the usefulness of combining outputs from multiple distinct algorithms.

Other machine learning algorithms have shown impressively high accuracy using open 

source datasets, both in terms of sensitivity and specificity. For instance, studies have 

achieved 100% accuracy and false positive rates of close to zero on the Freiburg dataset, with 

prediction horizons on the order of several hours50,51. Similarly high accuracy and low false 

positive rates are not exclusive to the Freiburg dataset52.  Despite impressive performance, it 

is critical to note that these results were based on limited seizures per person during the study 

period (range of 3 to 8). When limited seizures are used in a retrospective setting, it is 

possible to ‘overtrain’ algorithms to perfectly predict test data yet fail to generalise to unseen 

data, as small datasets cannot afford to include training, validation and test sets35. In contrast, 

crowdsourced algorithms using long-term EEG data (hundreds of seizures per subject) have 

so far failed to achieve perfect accuracy despite improvements in machine learning36, 

highlighting the importance of considering dataset size when comparing algorithm 

performance.

Over the past decade, theories underpinning seizure forecasting have also evolved. Seizure 

prediction algorithms had commonly developed under the assumption that seizures follow a 

pre-ictal brain state, defined retrospectively as some time period immediately preceding 

seizure onset and marked by a measurable change in brain dynamics. On the other hand, 

probabilistic forecasting aims to detect brain states when seizures are more likely but not 

certain (so called “pro-ictal” states)54,55 in a manner that considers information across 

multiple time scales and modalities. Pro-ictal states may or may not lead to the occurrence of 

a seizure. It is also possible for seizures to occur in nominally low-risk states. Figure 2 

illustrates this distinction between pre-ictal and pro-ictal states. The hypothesis that a 
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measurable pre-ictal state exists has long been supported by evidence that seizures often 

occur at transition points in the brain state, such as between sleep and wake states56, and that 

mood and behavioural changes are noticeable in the hours leading up to a seizure57. Pre-ictal 

states are further substantiated by evidence of seizure self-prediction, the notion that some 

people with epilepsy can sense when a seizure is imminent58, although in many cases the 

seizure is likely to have already started57. Evidence of altered pre-ictal dynamics from 

neuroimaging59 has inspired many researchers to look for predictable features in the window 

prior to seizure onset. However, the success of this approach has been limited22 and it is 

possible that seizure transitions are not always characterised by a deterministic state60. 

Additionally, restricting seizure prediction methods to consider a limited pre-ictal time 

window reduces the ability to incorporate known rhythms over longer, multi-day timescales, 

which are discussed in detail in the following section.

Table 1. Advances in seizure forecasting over the past decade that highlight key 

developments towards state-of-the-art forecasting performance.

Cycles of seizure susceptibility

In many cases, the problem of seizure forecasting can be cast as developing a model of past 

seizure times in order to predict future risk. Many models of seizure times have been 

considered, including the possibility that seizure onset is noise driven or follows a random 

process60. On the other hand, epileptic seizures have long been known to follow consistent 

cyclic patterns61. These patterns are often patient-specific, but may follow circadian, multi-

day or seasonal rhythms37,38,40,62. Many decades ago, Griffiths (1938) noted some people 

experienced seizures only in the morning or at night and some followed regular monthly 

cycles, speculating that this could follow other physiological cycles such as the hormonal or 

menstrual cycles61. However, other people with epilepsy experience cycles that follow no 

known physiological variables, such as every 3 or 5 weeks or, in one unique case, regular 

seizures in one month followed by no seizures in the next month61. More recently, Cook et al. 

(2014) found long-memory dynamics governed seizure timing with highly patient-specific 

time scales of days to weeks39. Subsequent studies on the same database showed cyclic 

patterns were evident over years, with 92% of people showing strong circadian (24 hour) 

rhythms and 25% showing approximate weekly cycles37. Spencer et al. (2016) also found 

consistent circadian and/or ultradian patterns in 98% of participants with an implanted EEG 
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device62. Furthermore, there is evidence that interictal epileptiform activity oscillates with 

similar multi-day periods38,40 and that these rhythms persist for up to 10 years40. Importantly, 

analogous circadian and multi-day (weekly and monthly) cycles have been observed in long-

term animal recordings from both canine epilepsy41,63 and rodent models64. Animal studies 

showed multi-day rhythms were independent of AEDs and not purely exogenous (driven by 

environmental factors)41,64. The long temporal scales of epileptic rhythms (from weeks to 

months) pose an interesting challenge for seizure forecasting, which has traditionally 

considered seizure prediction horizons of minutes to hours.

Individual seizure patterns may help to develop algorithms for seizure susceptibility. It has 

recently been demonstrated that including circadian rhythms of seizures can improve 

forecasting accuracy31 and these patterns can probabilistically forecast seizure occurrence 

both alone and in conjunction with machine learning models31,36. In a similar vein, multiday 

cycles measured from long-term, intracranial EEG were also shown to be closely associated 

with seizure occurrence40,44. These cycles have been used to forecast seizures with accuracy 

surpassing all other methods44 and can provide prediction horizons of a day or more27. The 

ability to forecast seizures using slow cyclic rhythms suggest that long time scales are 

important to measure seizure likelihood and highlight the existence of periodicities where 

seizures become more likely to occur (the pro-ictal period shown in Figure 2). In line with 

this, it has been suggested that seizures may not occur as a result of a chain reaction of 

predictable events that lead to the onset of a seizure, but rather as the crossing of a tipping-

point or critical transition, analogous to ‘the last straw which breaks the camel's back’45. A 

critical transition can be thought of as the change from normal brain activity to a seizure 

state. In theory, a system experiences a period of decreased resilience, or critical slowing, as 

it approaches a critical transition42. Critical slowing is often marked by delayed recovery to a 

state of equilibrium after a perturbation and an increase in system sensitivity42–44. Biomarkers 

of critical slowing associated with these critical transitions have been investigated prior to 

seizure onset/offset44,45,65, and in relation to cortical excitability and AED concentration63,66 

in human and animal studies. Notably biomarkers of critical slowing have been shown to 

periodically fluctuate over timescales from hours to days44,63, with a phase-locked 

relationship to seizure occurrence44. On the other hand, studies investigating critical slowing 

over shorter time scales (minutes to hours) have found no evidence for critical slowing prior 

to epileptic seizures67,68. Irrespective of the mechanisms underlying seizure cycles, it is 
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becoming clear that such prevalent, consistent rhythms are highly valuable in forecasting 

applications.

Practical biomarkers of seizure susceptibility

In the past decade, many studies have demonstrated the accurate seizure forecasting (Table 

1), showing that is it possible to perform better than chance at detecting pro-ictal states. 

Despite the robustness of these forecasting approaches, they may not all be appropriate for 

clinical use. Methods of seizure forecasting must be practical for long-term, continuous use 

and so potential biomarkers of seizure likelihood should be evaluated based on feasibility in 

addition to accuracy. An overview of current biomarkers and recording modalities is shown 

in Figure 3. As previously described, signal features from continuous EEG have been used 

extensively to develop seizure forecasts, with circadian and multi-day cycles measured from 

intracranial EEG proving to be the most accurate biomarker of seizure susceptibility44. 

However, to date, chronic EEG recordings have only been possible with invasive implantable 

monitoring devices. Implanted EEG devices that are currently available in some countries are 

designed for therapeutic stimulation and have limited data telemetry capabilities for real-time 

forecasting69,70. Other chronically implantable EEG devices capable of continuous telemetry 

are under investigation in some research settings71. Wearable EEG recording devices are also 

becoming available72 and minimally-invasive, sub-scalp electrodes are undergoing early 

trials73. However, it remains to be seen whether forecasting biomarkers developed from 

invasive cortical electrodes can be translated to scalp or sub-scalp EEG signals. The limited 

availability of chronic EEG recording has driven the search for alternative biomarkers of 

seizure susceptibility6.

Physiological, Behavioural and Environmental Drivers

The underlying drivers of epileptic seizures are not well understood and may vary between 

individuals. Hormonal and other physiological variables fluctuate and cycle over the 

mammalian lifespan and have been hypothesised to mechanistically determine cyclic patterns 

in epilepsy74. Mechanisms that govern the hibernation, menstruation, reproductive and sleep 

cycles are examples of potential biological drivers. For instance, key circadian regulators, 

including glucocorticoids75 and melatonin76, modulate cortical excitability and fluctuate with 

the circadian cycle. Other cyclic hormones implicated in seizure onset include oestrogen, 

progesterone77 and prolactin78. Currently, there is no conclusive evidence to show that these 
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biological variables have long-term predictive value for measuring seizure likelihood, and 

forecasts that look at a single biomarker, such as cortisol levels, may be clinically useful for 

some participants but not for others75. For example, some women with epilepsy may have 

coordinated seizure rhythms and menstrual hormones77, but men also experience near-

monthly cycles with no known physiological correlation37,40,61.

In addition to physiological variables, there are behavioural and environmental factors that 

are thought to increase seizure probability. Factors include alcohol or illicit drug usage79, 

change in external temperature80, missing a medication dose, sleep deprivation46 and 

stress48,58,81. These seizure triggers are highly individual,  so factors that increase the chance 

of a seizure in one person may have no effect on someone else. Precipitating factors are 

reported for around a third of seizures46 and by over 60% of people with epilepsy82. The 

relationship between triggering factors and seizures is not straightforward and may depend on 

seizure duration or epilepsy syndrome46,82. However, individuals’ triggers may be useful to 

improve forecasting potential81. .

Measurable physiological signals

Recently, there has been an interest in clinically viable forecasting methods based on data 

that is easily recordable and collected non-invasively, such as through a wearable device or 

mobile app. These devices offer a solution to measuring biomarkers of seizure likelihood that 

are practical over the long term (years). Potential measurements have been suggested in a 

recent workshop, such as cortisol levels, heart rate, weather, sleep quality, body temperature 

and blood oxygen levels6. Evidence linking these prospective biomarkers to seizure risk is 

limited but emerging and some, such as heart rate and sleep, have been extensively studied.

Epileptic seizures can cause functional changes in the autonomic nervous system, affecting 

both the parasympathetic and sympathetic nervous systems83. These changes are known to be 

prominent at the onset of a seizure84, though changes have also been detected prior to 

seizures85 and after seizures86. Autonomic changes – often marked by tachycardia or 

bradycardia87,88 – are patient specific and depend on several factors, such as AED usage89, the 

type of seizure28, the person’s wakefulness/sleep state prior to a seizure30, the lateralisation 

and localisation of the seizure90 and age91. Heart rate variability (HRV), known to reflect 

autonomic nervous system function89, has therefore been of interest to epilepsy researchers 

for years, not just in seizure prediction, but in treating refractory epilepsy with vagus nerve 
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stimulation92. Numerous studies analysing HRV have demonstrated significant changes in 

heart rate may occur approximately five minutes before a seizure28,84,93,94. More recently, 

Billeci et al (2018) detected earlier heart rate changes - up to 20 minutes prior to seizures -  

by taking a patient-specific approach29. Nevertheless, despite promising results, several 

limitations arise when considering applying these studies clinically. For instance, apart from 

one meta-analysis93, sample sizes in the aforementioned studies were limited (ranging from 

11 to 20), false prediction rates were high (up to 14 per hour29) and not all subjects showed 

strong prediction based on heart rate93. Furthermore, prediction horizons may not translate 

well from controlled study conditions to real-world settings, with many other confounding 

factors affecting heart rate changes1.

The relationship between epileptic seizures and sleep has also been of interest to researchers 

for centuries95,96. Gowers (1885) observed that almost two-thirds of people with epilepsy 

experienced seizures exclusively during either the night or day. Since then, many studies 

have confirmed the existence of ‘pure sleep epilepsy’, albeit at a lower prevalence, and have 

highlighted that sleep – predominantly the stage of sleep – plays a role in seizure activity95. 

The complex role of sleep also depends on the type of epilepsy syndrome95,97. For example, 

the rate of epileptiform discharges has been shown to increase at sleep onset, but decrease at 

awakening in idiopathic generalized epilepsies; and this cyclic pattern persists irrespective of 

AEDs97. In seizure prediction, increased sleep was found to decrease self-reported seizure 

likelihood81, and a combination of sleep staging and other information has shown significant 

predictive value using long-term electrographic seizure records98. . Evidently, sleep patterns 

may be a valuable physiological signal for seizure forecasters, and can be determined using 

non-EEG methods. However, the  validity of sleep information has yet to be determined in a 

prospective seizure forecasting study.

It may be possible to use wristbands and smart watches to detect physiological variables that 

are useful for seizure prediction. Wearables have numerous benefits over traditional EEG 

monitoring devices, including affordability, fewer complications compared to invasive 

devices and attractiveness for people who wish to reduce the potential stigma associated with 

cumbersome external devices. Wearables can detect many distinct physiological signals 

simultaneously and have demonstrated utility in seizure detection applications99,100. Several 

automated seizure detection devices are already available on the market; see Elger and Hoppe 

(2018) for a recent review100. These wearable devices monitor physiological signals such as 
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electrodermal activity, accelerometry, body temperature, blood volume pressure, heart rate 

and activity levels, which can then be applied to other variables like sleep quality. There have 

been some positive developments in seizure prediction using data from wearable devices, 

although current studies remain limited with regard to accuracy and clinical validity101,102.

Epilepsy seizure diaries have also shown promise as a source of diverse clinical insights46, 

including as a measure of seizure risk103. Despite well documented inaccuracies and 

limitations inherent to seizure diaries104, self-reported events remain the standard data source 

for medical practice and clinical trials in epilepsy. The widespread use of seizure diaries is 

likely to increase with the uptake of digital health tools and new applications for self-reported 

data105. Haut et al. (2007) demonstrated that an e-diary application could be used to forecast 

seizure risk based on a user’s self-prediction and self-reported stress and anxiety levels81. 

Seizure self-prediction was confirmed in follow-up studies 48,58,81. It has also been shown that 

cyclic seizure patterns can be detected from the timing of an individual’s self-reported 

seizures37. For some people, cycles recorded from diaries were relevant to electrographic 

seizures and accurate forecasts were developed based entirely on self-reported events47. 

Seizure diaries and self-reported seizure risk factors are practical for long-term recording and, 

particularly for individuals who experience clear precipitants and patterns, may be a powerful 

input for personalised seizure forecasts.

In short, numerous types of physiological signals and self-reported data have shown promise 

in seizure forecasting, and have several advantages over traditional EEG methods. 

Algorithms that use wearable and mobile app data are still in early stages of development 

relative to EEG-based methods, and many potential variables are yet to be explored in long-

term studies, such as cortisol levels and blood oxygen levels. Furthermore, the existence of 

longer, cyclic rhythms in physiological variables (other than EEG) has not been well studied, 

but could be a useful avenue to monitor seizure likelihood or even to identify the drivers 

behind periodic seizure patterns.

Applications of seizure forecasts

There are many potential applications of seizure forecasts. An accurate forecast may benefit 

people with epilepsy, their caregivers, medical professionals, researchers and pharmaceutical 

and medical device companies. However, as seizure forecasts are not in widespread clinical 
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use, the potential advantages remain mainly speculative, and individual preferences for 

different forecasting parameters further complicates assessment of the clinical utility of these 

systems. The clearest possible benefit is to improve the quality of life for people with 

epilepsy and their caregivers by reducing the debilitating effects of living with constant 

uncertainty5. Despite showing few symptoms apart from their seizures, people with epilepsy 

often avoid driving, cooking, working, and everyday situations that could expose them to 

humiliation or injury106. Most people with epilepsy and their caregivers are positive about the 

prospect of a seizure forecasting device14, although people with years of actual experience 

with an implantable seizure warning device did not universally experience positive 

outcomes24,25. In the NeuroVista clinical study, most participants noticed an increased sense 

of control over daily activities, noticeable improvements in confidence and reductions in 

stress levels; contrary to this, one person reported feelings of self-estrangement and 

depression as a result of the implanted warning device24.

Seizure forecasting could also be used in clinical contexts to improve the yield of diagnostic 

or pre-surgical monitoring. Continuous EEG monitoring remains the standard approach for 

epilepsy diagnosis107 as it is critical to capture an electrographic clinical seizure when 

distinguishing epileptic events from non-epileptic events, and there may be serious 

implications if a correct diagnosis is missed108. Nevertheless, rates of misdiagnosis in 

epilepsy are between 30% and 70%109. Inpatient EEG monitoring fails to capture seizures in 

up to one third of patients across both diagnostic and pre-surgical monitoring13. Scheduling 

EEG monitoring for times when more seizures are anticipated has the potential to improve 

the number of seizures recorded during testing. Diagnostic applications further motivate the 

development of non-invasive, predictive biomarkers including from seizure diaries and 

wearable devices.

 

As previously mentioned, seizures have historically been categorised into diurnal and 

nocturnal categories9, and were often thought to follow other recurrent patterns, such as 

menstrual and lunar cycles because of their about-monthly periodicity. Recently, circadian 

patterns have been found to occur in 80-98% of people with epilepsy37,62. Chronotherapy, 

where medication doses are increased throughout the day when seizure susceptibility is high, 

often without changing total daily dose, utilises this concept and has previously been shown 

to improve outcomes for people with nocturnal seizures and non-responders to conventional 
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pharmacotherapy11. Applying chronotherapy for seizure cycles longer than 24 hours has 

exciting potential in conjunction with seizure forecasting, raising the possibility of 

administering higher doses during times of high seizure susceptibility and reducing or 

stopping doses during times of low seizure susceptibility12. For instance, increasing 

medication during menstruation has been postulated as a strategy for women with catamenial 

epilepsy110, though clinical results have been inconsistent111. This cyclic titration has the 

potential to maximise therapeutic value and minimise total dosage, thereby reducing well-

known adverse side effects of AEDs112. In future, a time-varying medication therapy, 

controlled by a seizure forecaster, may be delivered via implanted devices. Tailoring 

medication dosage to seizure susceptibility can also be applied to other therapies, such as 

responsive neurostimulation10.

Conclusion

Numerous advances in seizure forecasting and scientific understanding of epilepsy have been 

made over the past decade, including access to long-term data, improved algorithm 

performance and converging evidence of predictable cyclic rhythms modulating seizures and 

epileptic activity. Despite this, the clinical feasibility of most algorithms remains unknown as 

the overwhelming majority of algorithms are built upon small data sets and often use 

invasively collected EEG data, which may not be possible or desirable for all users. Most 

importantly they have not been applied in prospective studies. Moreover, the requirements of 

a seizure forecasting device, such as the accuracy, forecasting horizon and display style, are 

unknown; although will likely be highly dependent on the intended application and user. To 

drive the next advances in seizure forecasting, we advocate for utilising circadian and 

multiday cycles measured from seizure times, epileptic activity or EEG biomarkers as the 

leading indicator of seizure susceptibility. In addition, it is important to validate alternative 

measures that may also be used to track multiscale cycles of seizure susceptibility, such as 

stress, hormone concentrations, blood glucose, heart rate, activity, sleep quality and 

temperature. The development of new wearable technologies will enable novel biomarkers 

for a seizure forecasting device to be explored, particularly biomarkers that can be measured 

chronically and non-invasively. Finally, we join the call to initiate new longitudinal clinical 

trials of seizure forecasting6,15,16, in parallel with extensive user experience research to 

understand and meet users’ expectations and requirements. To facilitate the next wave of 

seizure forecasting device trials, it is our hope that the epilepsy community will work to 
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develop clear guidelines for each phase of seizure forecasting trials, analogous to proposed 

standards for wearable seizure detection devices113.
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Table Captions

Table 1. Advances in seizure forecasting over the past decade that highlight key 

developments towards state-of-the-art forecasting performance.

Figure Captions

Figure 1: Overview of seizure forecasting. A. Forecasts should combine data from multiple 

sources including wearable and mobile devices, clinical records, and continuous 

neurophysiology (EEG). B. Measurements should cover diverse, patient-specific triggers 

including physiological, behavioural and environmental factors. C. Computational methods 

are used to integrate data sources and output a final probability of seizure likelihood. D. User 

interface requirements for a forecasting device are unclear, including parameters such as 

forecasting horizon (minutes, hours, days) and presentation (score, categorical risk level, etc).
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Figure 2. Pre-ictal and pro-ictal states. The pre-ictal state is defined retrospectively as 

some window of time prior to seizure onset. In contrast, pro-ictal states, where seizures 

become more likely but not certain, may emerge transiently and have been observed to occur 

with periodic circadian and multiday cycles. Shown in the figure is an example of a daily 

cycle overlaid by an about-weekly (7-day) cycle of seizure likelihood.

Figure 3. Biomarkers and available recording devices. Many biomarkers have been 

related to seizure likelihood, including EEG features, heart rate, and other physiological and 

environmental factors. Current commercially available recording devices can continuously 

measure most relevant biomarkers. Devices include mobile seizure diary apps, wearable 

devices, wearable sensor patches, and deep brain stimulation (DBS) or responsive 

neurostimulation (RNS) devices. Long-term recording devices utilising sub-scalp recording 

electrodes and recording/stimulating cortical electrodes are currently in trial phase.
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Table 1. Advances in seizure forecasting over the past decade that highlight key 

developments towards state-of-the-art forecasting performance.

Title (Authors) Year Key Advancement

A common strategy and database to compare the 

performance of seizure prediction algorithms. 

(Schelter et al.) Epilepsy & Behaviour

2010 Facilitation of a strong international research community 

based on open-access seizure prediction databases to 

enable comparison between methods.

Prediction of seizure likelihood with a long-term, 

implanted seizure advisory system in patients with 

drug-resistant epilepsy: a first-in-man study. (Cook 

et al.) Lancet Neurology

2013 First real time prospective seizure warning device used in a 

human clinical trial.

Forecasting seizures in dogs with naturally 

occurring epilepsy. (Howbert et al.) PLoS ONE

2014 Seizure forecasting in a prospective trial for canines with 

epilepsy outperformed a Poisson chance predictor.A
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The dynamics of the epileptic brain reveal long-

memory processes. (Cook et al.) Frontiers in 

Neurology

2014 Demonstrated long memory dynamics of seizure 

generation with multiday time scales of up to 40 days.

Crowdsourcing reproducible seizure forecasting in 

human and canine epilepsy. (Brinkmann et al.) 

Brain

2016 Demonstrated the usefulness of uniting machine learning 

community to develop a seizure forecasting algorithm.

The circadian profile of epilepsy improves seizure 

forecasting. (Karoly et al.) Brain

2017 Demonstrated that including circadian distributions of 

seizure times significantly improves forecasting accuracy.

Multi-day rhythms modulate seizure risk in 

epilepsy. (Baud et al.) Nature Communications

2018 Showed rates of interictal epileptiform activity oscillate 

with circadian and multi-day rhythms that may influence 

seizure likelihood.

Characteristics of large patient‐reported outcomes: 

Where can one million seizures get us? (Ferastorou 

et al.) Epilepsia Open

2018 Highlighted that novel insights can arise from a large 

cohort of mobile seizure diaries. The same database has 

subsequently driven key advances in forecasting seizure 

risk from self-reported event times.

Epilepsyecosystem.org: crowd-sourcing 

reproducible seizure prediction with long-term 

human intracranial EEG. (Kuhlmann et al.) Brain

2018 Seizure prediction algorithms generated through a Kaggle 

competition produced better long-term results for study 

participants that previously achieved poor performance.

Circadian and circaseptan rhythms in human 

epilepsy: a retrospective cohort study. (Karoly et 

al.) Lancet Neurology

2018 Showed circadian and multiday (weekly, monthly) cycles 

of seizure occurrence exist for most people with epilepsy, 

using a large cohort of seizure diaries

Patient-specific seizure prediction based on heart 

rate variability and recurrence quantification 

analysis (Billeci et al.) PLoS ONE

2018 Demonstrated the utility of an individualised approach to 

analyse pre-ictal changes in the autonomic nervous system. 

This highlights the potential for non-invasive ECG 

methods to predict seizures.

Deep learning for seizure forecasting in canines 

with epilepsy (Nejedly et al.) Journal of Neural 

Engineering

2019 Developed a fully automated, patient-specific seizure 

forecaster based on deep learning for canines with 

epilepsy.

Loss of neuronal network resilience precedes 

seizures and determines the ictogenic nature of 

interictal synaptic perturbations (Chang et al.) 

Nature Neuroscience

2019 Demonstrated that seizure emergence is a slow process 

characterised by progressive loss of resilience and critical 

slowing. This validates mathematical models and proposes 

a mechanistic basis for seizure clustering.
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Seizure self-prediction in a randomized controlled 

trial of stress management (Privitera et al.) 

Neurology

2019 Found a significant relationship between seizure self-

prediction and seizure occurrence at 6, 12 and 24 hours 

prior to a seizure.

Circadian and multiday seizure periodicities, and 

seizure clusters in canine epilepsy (Gregg et al.) 

Brain Communications

2020 Demonstrated that circadian and multiday cycles occur 

independent of AEDs in canines with naturally occurring 

epilepsy.

Forecasting Cycles of Seizure Likelihood (Karoly et 

al.) Epilepsia

2020 Demonstrated the feasibility of using seizure diaries to 

measure circadian and multi-day cycles and forecast 

seizure likelihood.

Critical slowing as a biomarker for seizure 

susceptibility (Maturana et al.) Nature 

Communications

2020 Demonstrated that seizure occurrence was consistently 

preceded by a critical transition in brain state heralded by 

critical slowing over multiple time scales. Biomarkers of 

critical slowing outperformed all previous approaches to 

forecast seizure likelihood.
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